
 1

 The use of Modeling & Simulation-based Analysis & Optimization of
Software Testing

Ljubomir Lazić, SIEMENS d.o.o, Radoja Dakića 7, 11070 Beograd, Serbia&Montenegro,

 http://www.siemens.co.yu
Nikos Mastorakis, Military Institutions of University Education, Hellenic Naval Academy, Terma

Hatzikyriakou, 18539, Piraeus, Greece

Abstract:- The Software Testing Process (STP) raised many challenging issues in past decades of software
development practice, several of which remain open. The System/Software under test (SUT) continually increases
complexity of applied technology, software application domain model and corresponding process knowledge and
experience. Today’s SUT have billions of possible inputs and outputs. How does one obtain adequate test coverage
with reasonable or even optimal number of test events i.e. test cases? How does one measure test effectiveness,
efficacy, benefits, risks (confidence) of project success, availability of resources, budget, time allocated to STP?
How does one plan, estimate, predict, control, evaluate and choose “the best” test scenario among hundreds of
possible (considered, available, feasible) number of test events (test cases)? How does one judge, decide if
satisfied/not satisfied program behavior, Pass/Fail result , Go/Ngo decision after test run i.e. does have Test Oracle?
This paper describes the major issues that are encountered while developing framework of Integrated and Optimized
Software Testing Process (IOSTP). IOSTP framework combines few engineering and scientific areas such as:
Design of Experiments, Modeling & Simulation, integrated practical software measurement, Six Sigma strategy,
Earned (Economic) Value Management (EVM) and Risk Management (RM) methodology through simulation-based
software testing scenarios at various abstraction levels of the SUT to manage stable (predictable and controllable)
software testing process at lowest risk, at an affordable price and time. In order to significantly improve software
testing efficiency and effectiveness for the detection and removal of requirements and design defects in our
framework of IOSTP, during 3 years of our IOSTP framework deployment to STP we calculated overall value
returned on each dollar invested i.e. ROI of 100:1.

Key-Words:- software testing, optimization, simulation, continuous risk management, earned value management, test
evaluation, measurement.

1 Introduction
The increasing cost and complexity of software
development is leading software organizations in the
industry to search for new ways through process
methodology and tools for improving the quality of the
software they develop and deliver. However, the overall
process is only as strong as its weakest link. This critical
link is software quality engineering as an activity and as
a process. Testing is the key instrument for making this
process happen.
Software testing has traditionally been viewed by many
as a necessary evil, dreaded by both software developers
and management alike, and not as an integrated and
parallel activity staged across the entire software
development life cycle. One thing is clear - by
definition, testing is still considered by many as only a
negative step usually occurring at the end of the
software development process while others now view
testing as a “competitive edge” practice and strategy.
Solutions in software engineering are more complex-
interconnect in more and more intricate technologies
across multiple operation environments. With the
increasing business demand for more software coupled
with the advent of newer, more productive languages

and tools, more code is being produced in very short
periods of time.
In software development organizations, increased
complexity of product, shortened development cycles,
and higher customer expectations of quality proves that
software testing has become extremely important
software engineering activity. Software development
activities, in every phase, are error prone so defects play
a crucial role in software development. We usually think
of testing in software development as something we do
when we run out of time or after we have developed
code. However, the fundamental approach as presented
here focuses on testing as a fully integrated but
independent activity with development that has a
lifecycle all its own, and that the people, the process and
the appropriate automated technology are crucial for the
successful delivery of the software based system.
Planning, managing, executing, and documenting testing
as a key process activity during all stages of
development is an incredibly difficult process.
Software vendors typically spend 30 to 70 percent of
their total development budget i.e. of an organization’s
software development resources on testing. Software
engineers generally agree that the cost to correct a defect

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 2

increase, as the time elapsed between error injection and
detection increases several times depending on defect
severity and software testing process maturity level
[1,2].
Until coding phase of software development, testing
activities are mainly test planning and test case design.
Computer based Modeling and Simulation (M&S) is
valuable technique in Test Process planning in testing
complex Software/System under test (SUT) to evaluate
the interactions of large, complex systems with many
hardware, user, and other interfacing software
components such are Spacecraft Software, Air Traffic
Control Systems, in DoD Test and Evaluation (T&E)
activities [4-6].
There is strong demand for software testing
effectiveness and efficiency increases. Software/System
testing effectiveness is mainly measured by percentage
of defect detection and defect leakage (containment), i.e.
late defect discovery. Software testing efficiency is
mainly measured by dollars spent per defect found and
hours spent per defect found. To reach ever more
demanding goals for effectiveness and efficiency,
software developers and testers should apply new
techniques such as computer-based modeling and
simulation - M&S [6-9].
The results of computer-based simulation experiments
with a particular embedded software system, an
automated target tracking radar system (ATTRS), are
presented in our paper [6]. The aim is to raise awareness
about the usefulness and importance of computer-based
simulation in support of software testing.
At the beginning of the software testing task the
following question arises: how should the results of test
execution be inspected in order to reveal failures?
Testing by nature is measurement, i.e. test results must
be analyzed and compared with desired behavior.
This paper is contribution to software testing
engineering by presenting challenges and corresponding
methods implemented in Integrated and Optimized
Software Testing Process framework (IOSTP). IOSTP
framework combines few engineering and scientific
areas such as: Design of Experiments, Modeling &
Simulation, integrated practical software measurement,
Six Sigma strategy, Earned (Economic) Value
Management (EVM) and Risk Management (RM)
methodology through simulation-based software testing
scenarios at various abstraction levels of the SUT to
manage stable (predictable and controllable) software
testing process at lowest risk, at an affordable price and
time [6-22]. In order to significantly improve software
testing efficiency and effectiveness for the detection and
removal of requirements and design defects in our
framework of IOSTP, during 3 years of our IOSTP
framework deployment to STP of embedded-software
critical system such as Automated Target Tracking
Radar System [6,16,19], we calculated overall value
returned on each dollar invested i.e. ROI of 100:1 .

The paper begins with an outline of fundamental
challenges in software testing in section 2, then the
problems with software testing and Integrated and
Optimized Software Testing Process framework state-
of-the-art methods implementation is described in
section 3. The main contribution of M&S with
illustrative details and experience of methods
implemented in IOSTP are presented in section 4. In
section 5, M&S as one effective and efficient test oracle
solution is presented. Section 6 illustrate how M&S can
be successfully exploited in Trade-Off Studies and
Prioritization, Cost-Performance trade-offs i.e. as the
IOSTP optimization model. Finally in section 7, some
concluding remarks are given.

2 Software testing, as a part of software
development process, is human intensive
work with high uncertainty i.e. risks
There are at list four domains of software engineering
where uncertainty is evident: uncertainty in
requirements analysis, uncertainty in the transition from
system requirements to design and code, uncertainty in
software re-engineering and uncertainty in software
reuse [24]. Software testing, like other development
activities, is human intensive and thus introduces
uncertainties and obeys Maxim of Uncertainty in
Software Engineering-MUSE [24]. Afore mentioned
uncertainties may affect the development effort and
should therefore be accounted for in the test plan. We
identify three aspects of test planning where uncertainty
is present: the artifacts under test, the test activities
planned, the plans and their fulfillments themselves.
According to MUSE, uncertainty permeates these
processes and products. Plans to test these artifacts,
therefore, will carry their uncertainties forward. In
particular, many testing activities, such as test result
checking, are highly routine and repetitious and thus are
likely to be error-prone if done manually, which
introduces additional uncertainty. Humans carry out test
planning activities at an early stage of development,
thereby introducing uncertainties into the resulting test
plan. Also, test plans are likely to reflect uncertainties
that are, as described above, inherent in software
artifacts and activities. Care must be taken during test
planning to decide on the method of results comparison.
Oracles, also, are required for validation and the nature
of an oracle depends on several factors under the control
of the test designer and automation architect [14,20].
Different oracles may be used for a single automated test
and a single oracle may serve many test cases. If test
results are to be analyzed, some type of oracle is
required: a) oracle that gives exact outcome for every
program case, b) oracle that provides range of program
outcome and c) oracle that can not provide program
outcome for some test cases.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 3

2.1 Estimating quality
One of the reasons why projects are late and exceed
their budgets is because they have so many defects that
they cannot be released to users. Many of these defects
escape detection until late in the testing cycle when it is
difficult to repair them easily. Then, the testing process
stretches out indefinitely. The cost and effort for finding
and fixing defects may be the largest identifiable IT
system cost estimate, so defects cannot be ignored in the
estimating process.
Defect potentials are the sum of errors that occur
because of:

 Requirements errors
 Design errors
 Coding errors
 User documentation errors
 Bad fixes or secondary errors.

Defect levels affect IT project costs and schedules. The
number and efficiency of defect removal operations can
have major impacts on schedules, cost, effort, quality,
and maintenance. Quality estimates must consider
defect potentials, defect removal efficiency, and
maintenance.
All system defects are not equally easy to remove.
Requirements errors, design problems, and bad fixes
tend to be the most difficult. At the time of delivery,
defects originating in requirements and design tend to
far outnumber coding defects. While a number of
approaches can be used to help remove defects, formal
design and code inspections have been found to have the
highest defect removal efficiency.
Typically, more than 50% of the global IT population is
engaged in modifying existing applications rather than
developing new applications. Estimates are required for
maintenance for initial releases to repair defects in
software applications to correct errors and for
enhancements to add new features to software
applications.

3 IOSTP framework state-of-the-art
methods implementation
Unlike conventional approaches to software testing (e.g.
structural and functional testing) which are applied to
the software under test without an explicit optimization
goal, the IOSTP with embedded Risk Based Optimized
STP (RBOSTP) approach designs an optimal testing
strategy to achieve an explicit optimization goal, given a
priori [6,22]. This leads to an adaptive software testing
strategy. A non-adaptive software testing strategy
specifies what test suite or what next test case should be
generated, e.g. random testing methods, whereas an
adaptive software testing strategy specifies what testing
policy should be employed next and thus, in turn, what
test suite or test case should be generated next in
accordance with the new testing policy to maximize test
activity efficacy and efficiency subject to time-schedule

and budget constraints. The process is based on a
foundation of operations research, experimental design,
mathematical optimization, statistical analyses, as well
as validation, verification, and accreditation techniques.
The use of state-of-the-art methods and tools for
planning, information, management, design, cost trade-
off analysis, and modeling and simulation, Six Sigma
strategy significantly improves STP effectiveness.
Figure 1 graphically illustrates a generic IOSTP
framework [12].
The focus in this paper is description of IOSTP with
embedded RBOSTP Approach to Testing Services that:

• Integrate testing into the entire development
process

• Implement test planning early in the life cycle via
Simulation based assessment of test scenarios

• Automate testing, where practical to increase
testing efficiency

• Measure and manage testing process to maximize
risk reduction

• Exploit Design of Experiments techniques
(optimized design plans, Orthogonal Arrays etc.)

• Apply Modeling and Simulation combined with
Prototyping

• Continually improve testing process by pro-
active, preventive (failure mode analysis) Six
Sigma DMAIC model

• Continually monitor Cost-Performance Trade-
Offs (Risk-based Optimization model, Economic
Value and ROI driven STP)

Fig. 1 Integrated and optimized software testing process
(IOSTP) framework [12]

Framework models are similar to the structural view, but
their primary emphasis is on the (usually singular)
coherent structure of the whole system, as opposed to
concentrating on its composition. IOSTP framework

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 4

model targeted specific software testing domains or
problem classes described above. IOSTP is a systematic
approach to product development (acquisition) which
increases customer satisfaction through a timely
collaboration of necessary disciplines throughout the life
cycle. Successful definition and implementation of
IOSTP can result in:

 Reduced Cycle Time to Deliver a Product
 Reduced System and Product Costs
 Reduced Risk
 Improved Quality

4 Modeling, simulation, and design of
experiments for software testing
The IOSTP framework is a multi disciplinary integrated
engineering solution to the testing process incorporating
modeling and simulation, design of experiments,
software measurement, and the Six Sigma approach to
software test process quality assurance and control, as
depicted in Figure 1 [12]. Unlike conventional
approaches to software testing (e.g. structural and
functional testing), which are applied to the software
under test without an explicit optimization goal, the
IOSTP approach designs an optimal testing strategy to
achieve an explicit optimization goal, given a priori.
This leads to an adaptive software testing strategy. A
non-adaptive software testing strategy specifies what
test suite or what next test case should be generated, e.g.
random testing methods, whereas an adaptive software
testing strategy specifies what testing policy should be
employed next and thus, in turn, what test suite or test
case should be generated next [6] in accordance with the
new testing policy to maximize test activity efficacy and
efficiency subject to time-schedule and budget
constraints. The process is based on a foundation of
operations research, experimental design, mathematical
optimization, statistical analyses, as well as validation,
verification, and accreditation techniques.
The focus in this section of the paper is on the
application of M&S and DOE to minimize test suite size
dramatically through black box scenario testing for the
ATTRS real-time embedded software application, and
also on using M&S as a test oracle in this same case
study.

4.1 Model-based testing through simulation
As far as this paper is concerned, computer-based
simulation is “the process of designing a computerized
model of a system (or process) and conducting
experiments with this model for the purpose either of
understanding the behaviour of the system or of
evaluating various strategies for the operation of this
system”[23,38]. Put simply, a simulation allows one to
develop a logical abstraction (an object), and then
examine how that object behaves under differing
stimuli. Simulation can provide insights into the designs

of, for example, processes, architectures, or product
lines before significant time and cost have been
invested, and can be of great benefit in support of the
testing process and training therein. There are several
distinct purposes for computer-based simulation. One is
to allow the creation of a physical object or system such
as the ATTRS, as a logical entity in code. It is practical
(and faster) to develop a simulator for testing physical
system design changes. Changes to the physical system
can then be implemented, tested, and evaluated in the
simulation. This is easier, cheaper, and faster than
creating many different physical engines, each with only
slightly different attributes. Because of these features,
network-based simulation tools allow one to develop
large detailed models quite rapidly. The focus thus
becomes less on the construction of a syntactically
correct model and more on the model’s semantic
validity and the accuracy of its numerical driver. The
simulation tools in today’s market place, such as SLAM
II, SIMSCRIPT, SIMAN, GPSS, PowerSim, MATLAB,
etc, are robust and reasonably inexpensive.
Unfortunately, before a simulation can be of benefit, a
model of the system must be developed that allows the
simulation developer to construct the computer-based
simulation. Modeling is the first step—the very
foundation of a good simulation. If the model is valid, it
provides an opportunity to study system phenomena in a
controlled manner, which may be very difficult
otherwise due to an inability to control the variables in a
real system.
However, parts of the simulation might not have well
known interactions. In this case, one of the goals of
simulation is to determine the real-world interactions.
To make sure that only accurate interactions are
captured, the best method is to start with a simple
model, and ensure that it is correct and representative of
the real world. Next, the interactions and complexity can
be increased iteratively, validating the model after each
increment. Additional interactions can be added until an
adequate model is created that meets the desired needs.
Unfortunately the previous description implies that
clearly identified needs are available. This requires a
valid statement of requirements.
It also requires planning for validation of the model. As
in creating any software product, requirements and
needs must be collected, verified, and validated. These
steps are just as important in a simulation as they are in
any system. A system that has not been validated by
field-testing against the real world could produce invalid
results. Abstraction and validation are equally necessary
to create a reliable model that correctly reflects the real
world, and also contains all attributes necessary to make
the model a useful tool for prediction. The steps of
abstraction and validation are in themselves, however,
not totally sufficient to create a valid and usable model.
Other steps are necessary to create a model that is of
sufficient detail to be useful. These steps that describe

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 5

the process of producing and using a dynamic
simulation are described by Cristie [3].
One of the most important problems facing the
developer of a real-world simulation is that of trying to
determine whether the simulation model is an accurate
representation of the actual system being studied. In
M&S based systems acquisition, computer simulation is
used throughout the development and deployment
process, not just as an analysis tool, but also as a
development, integration, test, verification and
sustainment resource. Because of this, verification and
validation (V&V) in the simulation development process
are most important tasks. If the model is to be credible,
and a predictor of future behaviour, it is critical that it is
validated [3,6].
Modeling and simulation (M&S) techniques are a cost-
effective approach to reduce the time, resources and
risks, and to improve the quality, of acquired systems.
Validated M&S can support all phases of IOSTP, and
should be appropriately applied throughout the software
life cycle for requirements definition; program
management; design and engineering; test and
evaluation; and field operation and maintenance
presented in our works [6-9, 14-22]. The model of SUT
is designed to consider the system as a whole and to
allocate resources to maximize the benefits and
credibility of applied M&S class associated with the
overall IOSTP with embedded RBOSTP program.
Test engineers and operational evaluators play a key role
in evaluating system/software performance throughout
the life cycle. They identify:

• The information needed and when it must be
available. This includes understanding the
performance drivers and the critical issues to be
resolved.
• The exact priority for what must be modeled
first, then simulated, and then tested. This includes
learning about the subcomponent level, the
components, and the system level.
• The analysis method to be used for each issue to
be resolved. Timing may have a significant effect on
this. The design function can use models before any
hardware is available. It will always be more
expedient to use models and simulations at the early
stage of system design. However, the design itself
may be affected by operational considerations that
require examination of real tests or exercise data. It
will, given the training and logistic information
required of systems today, be prudent in the long run
to develop appropriate models and simulations.
• The data requirements and format for the
analysis chosen. Included in this determination is the
availability of instrumentation, not only for
collecting performance data, but also for validating
appropriate models and simulations.

Models and simulations can vary significantly in size
and complexity and can be useful tools in several
respects. They can be used to conduct predictive
analyses for developing plans for test activities, for
assisting test planners in anticipating problem areas, and
for comparison of predictions to collected data.
Validated models and simulations can also be used to
examine test article and instrumentation configurations,
scenario differences, conduct what-if tradeoffs and
sensitivity analyses, and to extend test results.
Testing usually provides highly credible data, but
safety, environmental, and other constraints can limit
operational realism, and range cost and scheduling can
be limiting factors. Modeling, especially credible model
building may be very expensive although M&S can be
available before hardware is ready to test. A prudent
mix of simulation and testing is needed to ensure that
some redesign is possible (based on M&S) before
manufacturing begins.
While developing the Software Test strategy, the
program office with test-team must also develop a plan
to identify and fund resources that support the
evaluation. In determining the best source of data to
support analyses, IOSTP with embedded RBOSTP
considers credibility and cost. Resources for
simulations and software test events are weighed
against desired confidence levels and the limitations of
both the resources and the analysis methods. The
program manager works with the test engineers to use
IOSTP with embedded RBOSTP to develop a
comprehensive evaluation strategy that uses data from
the most cost-effective sources; this may be a
combination of archived, simulation, and software test
event data, each one contributing to addressing the
issues for which it is best suited.
Success with IOSTP with embedded RBOSTP does not
come easy, nor is it free. IOSTP with embedded
RBOSTP, by integrating M&S with software testing
techniques, provides additional sources of early data and
alternative analysis methods, not generally available in
software tests by themselves. It seeks the total
integration of IOSTP with embedded RBOSTP
resources to optimize the evaluation of system/software
worth throughout the life cycle. The central elements of
IOSTP with embedded RBOSTP are: the acquisition of
information that is credible; avoiding duplication
throughout the life cycle; and the reuse of data, tools,
and information.

4.2 Design of experiments for software testing
A wide variety of approaches, methods, and analysis
techniques, known collectively as design of
experiments, has been around for many decades and is
well documented in many books like those of Box et al.
[44] or Montgomery [45]. One of the principal goals of
experimental design is to estimate how changes in input

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 6

factors affect the results, or responses, of the
experiment.
While these methods were developed with physical
experiments in mind (like agricultural or industrial
applications), they can fairly easily be used in computer-
simulation experiments, and software testing as well
[6,31]. Careful planning of how to experiment with a
simulation model generally repays big dividends in
terms of how effectively one can learn about the system
and how one can exercise the model further. This
section looks at such experimental design issues in the
broad context of a simulation project. The term
‘experimental design’ has specific connotations in its
traditional interpretation, and some of these will be
mentioned below. However, the issues of planning
simulations will also be covered in a broader context,
which considers the special challenges and opportunities
one has when conducting a computer-based simulation
experiment rather than a physical experiment. This
includes questions of the overall purpose of the project,
what the output performance measures should be, how
to use the underlying random numbers, measuring how
changes in the inputs might affect the outputs, and
searching for some kind of optimal system
configuration. Specific questions of this type might
include:

 What model configurations should be run?
 How long should the runs be?
 How many runs should be performed?
 How should the output be interpreted and

analyzed?
 What is the most efficient way to perform the

runs?
These questions, among others, are what one has to deal
with when trying to design simulation experiments. In a
stochastic simulation like the ATTRS case study, one
would really like to know all about the distributions of
the output variables. Usually one has to settle for various
summary measures of the output distributions.
Traditionally, people have focused on estimating the
expected value (or mean) of the output variable
distribution and this can be of great interest.
For people without statistical training, it can be difficult
to organize information about the system under study in
a way that aids the design of the experiment. To help
clarify this process, the design task itself can be
decomposed into five separate steps.

1. Define the goals of the experiment.
2. Identify and classify the independent and

dependent variables.
3. Choose a probability model for the behaviour of

the simulation model.
4. Choose an experiment design plan.
5. Validate the properties of the chosen design.

After defining the goals, an appropriate DOE plan
should be chosen. One determines the number of distinct

model settings to be run and the specific values of the
factors for each of these runs. There are many strategies
for selecting the number of runs and the factor settings
for each run. These include random designs,
combinatorial designs, mixture designs, sequential
designs, factorial designs, and optimal designs (one of
the latter is chosen in the ATTRS case study in this
section). In this paper one particular method of
experimental design applied to software testing is
emphasized, i.e. orthogonal array-based robust testing
(OART) [6,31], which is based on Taguchi robust
design; it has a mathematical foundation in linear
algebra (specifically, Galois field theory) and began with
Euler as Latin squares. This method is exploited in
ATTRS field testing [6]. Black-box testing of software
components and systems is indispensable and requires
test data for all input parameters. The number of test
cases needed for exhaustive testing, i.e. for all possible
combinations of input data is usually extremely large –
almost always too large for the allocated testing
resources that are always limited. The only solution is
intelligent test case generation to cut down costs and
improve the quality of testing. The OART method has
been used to test software from many diverse industries,
e.g., telecommunications, automotive, and
electromechanical systems. The users have typically
reported a factor of 2-to-1 or better productivity
improvement compared to traditional testing methods
[6]. The number of tests needed for this method is
similar to the number of tests needed for the one-factor-
at-a-time method, and with a proper software tool, the
effort to generate the test plan can be small. Its ability to
find faults is much better than the one-factor-at-a-time
method and approaches 100 percent, especially when
used in conjunction with code coverage analysis tools.
The test cases generated by this method have the highest
effectiveness, measured in terms of the number of faults
detected per test. As an illustration, consider a simple
scenario consisting of a system under test with 4
components (factors designated as A, B, C and D
respectively) each of which has 3 possible elements
(levels designated as 1, 2, 3):
There were three input variables in the field tests of
ATTRS in our case study: A - the target speed with three
levels (1 was 0 m/s, 2 was 150 m/s, 3 was 300m/s), B -
the radar probability of target detection with three levels
(1 was 70%, 2 was 80%, 3 was 100%, although the latter
cannot be controlled accurately), and C - the radial
acceleration of target manoeuvre with three levels (1
was 0g, 2 was 3g, 3 was 6g). The L9 orthogonal array
algorithm was applied as shown in Table 1 (the last
column from the original L9 has been omitted). Results
of the field test and simulation-based experiments that
were run afterwards are shown in Table 2. Mean and
standard deviation error (µ, σ) of the differences
between the simulation-based experiments and the field
trials were compared and it was found that the

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 7

confidence interval of differences for β = 1-α = 0.95
were in the range of field trial experimental error. If
field testing is used as the comparative system, the
calibration radar then has 10 times lower error in target
position estimation. The results of both experiments
verify that the required automatic target tracking quality
of ATTRS was fulfilled. Some computer-base
simulation experiments and field trial results are shown
in Figure 2 and 3. An exhaustive testing suite would
require the set of test cases to be executed for 34 = 81
possible configurations using the one-factor-at-a-time
method. The OART algorithm L9 [6] calculates only 9
combinations that are already sufficient to cover all pair-
wise component interactions as shown in Table 1. The
rows correspond to test cases; the columns correspond to
the test parameters. Thus, the first test case comprises
level 1 for each parameter, i.e. it represents the
combination A1, B1, C1, D1. The second test case
comprises combination A1, B2, C2, D2, etc. An
orthogonal array (OA) has the balancing property that,
for each pair of columns, all parameter-level
combinations occur an equal number of times. In OA
L9, there are nine parameter-level combinations for each
pair of columns, and each combination occurs once. By
applying the algorithm based on orthogonal arrays and
covering arrays, the overall number of test cases can be

dramatically reduced compared to exhaustive testing, yet
with the certainty that test coverage of all pair-wise
input parameter or software component (i.e.
configuration) combinations is achieved as in the
ATTRSt example. Suppose that another SUT has 13
input parameters each with 3 input parameter domains.

Table 1. L9 Orthogonal Array Design Experiment plan

Test

Case No.

Test Parameters

 A B C D
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Fig. 2. Simulation result of straight-line target attack: target speed v=150 [m/s], Pd=0.94, and parabolic-curvilinear
trajectory: v=300 [m/s], Pd=1.0, manoeuvre 6g.

Then exhaustive testing would require 313 = 1,594,323
possible input parameter combinations. The OART
algorithm calculates just 15 configurations that are
sufficient to cover all pair-wise input parameter

interactions. The OART method is applicable to unit
testing, integration and system scenario black-box
testing, configuration testing, interoperability testing,
and web testing.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 8

Fig. 3. Some field trial results with same conditions as in simulation cases shown on Fig. 2

Table 2. L9 OART compared results

Test Results N
o.
T Field test Simulation
 µR

[m]
σR

[m]
µθ

[mrad]
 σθ
 [mrad]

µR

[m]
σR

[m]
µθ

 [mrad]
σθ

[mrad]

1 105 70 20 10 95 65 16 8

2 78 23 10 4 73 21 9 4

3 77 21 9 3 72 20 7 3

4 104 68 18 9 92 62 15 7

5 82 41 13 8 80 40 12 7

6 76 19 8 3 69 17 8 2

7 102 72 17 9 91 61 15 7

8 53 36 6 12 54 35 6 10

9 43 34 3 11 42 31 4 11

5 Using simulation as a test oracle
There are many areas where simulation can be applied to
support software development and acquisition. Such
areas include requirements specification, process
improvement, architecture trade-off analysis, and
software testing. Of particular interest here is the use of
simulation as a test oracle as described in our articles
[6,12,14,20]. The term oracle may be used to mean
several things in testing—the process of generating
expected results, the expected results themselves, or the
answer to whether or not the actual results are as
expected.
The testing process is typically systematic in test data
selection and test execution. For the most part, however,
the effective use of test oracles has been neglected, even
though they are a critical component of an effective
method for designing in software quality for testability

that should include the concurrent development of test
oracles in the testing process [6,12,42]. Oracle
development can represent a significant effort, which
may increase design and implementation costs;
however; overall testing and maintenance costs should
be reduced. Oracle development must therefore be
carefully integrated into the software
development/testing life cycle. Oracles must be
designed, verified and validated for unit testing, through
subsystems testing (integration testing) up to system
testing in a systematic, disciplined and controlled
manner. Test oracles prescribe acceptable behaviour for
test execution. In the absence of judging test results with
oracles, i.e. use of a reference system, testing does not
achieve its goal of revealing failures or assuring correct
behaviour in a practical manner – manual result
checking is neither reliable nor cost-effective.
In much of the research literature on software test case
generation or test set adequacy, the availability of
oracles is either explicitly or tacitly assumed, but
applicable oracles are not described. In current industrial
software testing practice, the oracle is often a human
being. The most significant oracle characteristics are:
Relying on a human to assess program behaviour has
two evident drawbacks: accuracy and cost. While the
human “eyeball oracle” has an advantage over more
technical means in interpreting incomplete, natural-
language specifications, humans are prone to error when
assessing complex behaviour or detailed, precise
specifications, and the accuracy of the eyeball oracle
drops precipitously with increases in the number of test
runs to be evaluated. Automated test oracles are required
for running large numbers of tests. An ideal test oracle
would satisfy desirable properties of program
specifications, such as being complete but avoiding
over-specification, while also being efficiently
checkable. These properties are in conflict, and many of
the interesting issues and trade-offs in the design of test
oracle systems come in various ways as those tensions

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 9

between desirable properties of specifications and
necessary properties of implementations are resolved.
When simulation is used as an oracle, it tends to take on
more of the capabilities of a “real” specification
language, or provides more powerful facilities for
deriving run-time checks from external specifications.
Approaches to bridging the gap usually involve some
combination of restricting the language to what can be
effectively or efficiently checked (e.g. disallowing
quantification over infinite sets), mapping
implementation entities to specification-level entities,
and/or taking advantage of the peculiarities of particular
application domains.
The research literature on test oracles is a relatively
small part of the entire research literature on software
testing Weyuker has set forth some of the basic
problems and argued that truly general test oracles are
often unobtainable [43]. Some older proposals base their
analysis either on the availability of pre-computed
input/output pairs [42] or on a previous version of the
same program, which is presumed to be correct. The
latter hypothesis sometimes applies to regression testing,
but is not sufficient in the general case. The former
hypothesis is usually too simplistic: being able to derive
a significant set of input/output pairs would imply the
capability of analyzing the system outcome. Computer-
based simulation at various levels of SUT abstraction
can serve as a test oracle, which is able to derive a
significant set of input/output pairs.
A simulation-centric development environment is a
developer’s dream, especially in the development of
embedded real-time systems. It directly provides the
many advantages inherent to software over hardware,
reducing costs, risk, and schedule. These advantages are
now briefly enumerated.
Control and early availability: The simulator can be
executed a single-step at a time; it provides breakpoints
triggered by expressions of arbitrary complexity; it can
checkpoint everything while recording all intermediate
variables that can serve as test cases for input variables
or expected output variables depending on the simulated
level of system abstraction; and it can be dramatically
reconfigured in a matter of moments. The simulator
generally has a shorter development cycle than hardware
of comparable fidelity, and so can be available earlier in
the project life cycle. Developers can begin work on a
full-fidelity platform, rather than constructing ad hoc
scaffolding for their individual areas of concern.
Hardware/software design trade-offs can be explored
before hardware is developed – no more tedious days
with a logic analyzer trying to find an interrupt problem
or race condition. This aspect of simulation satisfies
several of the required characteristics of test oracles:
predicting speed and short oracle execution time.
Visibility: The full state of the system, at any instant, is
easily examined, check-pointed, logged, or modified.
Formal analysis for deadlock potential or race conditions

is feasible. Cache patterns can be analyzed in detail.
Abuse of the hardware (e.g. use of an uninitialized
variable, or failure to save the entire state during an
interrupt, or setting both of the “never set this bit and
that bit at the same time” bits) can be detected online
and in situ.
Extensibility: The behaviour of the simulator is easily
extended, especially with the use of modern scripting
subsystems that give the sophisticated power-user access
to the full feature set of the tool. This aspect of
simulation satisfies the required characteristic of test
oracle evolution through changes in the SUT.
Automated control: Hands-off and repeatable testing is
encouraged because it is easy and natural to control the
execution of the simulator via other software. Nightly
integration testing is reasonable. Testing staff and
schedule can be greatly reduced.
Modularity: A simulator can be constructed in a highly
modular fashion, so that more urgently needed models
are built first and available to the users before the entire
simulator has been built and validated.

6 Trade-Off Studies and Prioritization,
Cost-Performance trade-offs i.e. IOSTP
optimization model

• Trade-Off Studies and Prioritization

To fully leverage the IOSTP framework, design
trade-offs that optimize system requirements vs. cost
should be performed during the earliest phases of the
software life cycle. Product/process performance
parameters can be traded-off against design,
development, testing, operations and support, training
requirements, and overall life cycle costs. System
attributes such as mission capability, operational safety,
system readiness, survivability, reliability, testability,
maintainability, supportability, interoperability and
affordability also need to be considered. Quality
Function Deployment (QFD) is one technique for
evaluating trade-off scenarios [13,18]. It is predicated
on gaining an understanding of what the end user really
needs and expects. The QFD methodology allows for
tracking/tracing trade-offs through various levels of the
project hierarchy, from requirements analysis, through
the software development process, to operational and
maintenance support. Testing represents a significant
portion of the software development efforts that must be
integrated in parallel to QFD. Risk-Based Optimization
of Software Testing Process i.e. RBOSTP is part of a
proven and documented IOSTP [12,17] designed to
improve the efficiency and effectiveness of the testing
effort assuring the low project risk of developing and
maintaining high quality complex software systems
within schedule and budget constraints [21,22]. Basic
considerations of RBOSTP are described in [21] article
and some RBOSTP implementation issues, experience
results are presented in [22]. In our article [22], we

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 10

describe how RBOSTP combines Earned (Economic)
Value Management (EVM) and Risk Management (RM)
methodology through simulation-based software testing
scenarios at various abstraction levels of the
system/software under test activities to manage stable
(predictable and controllable) software testing process at
lowest risk, at an affordable price and time.

Predicting future outcomes
Both EVM and RM attempt to predict the future
outcome of the project, based on information currently
known about the project. For EVM this is achieved
using calculated performance indices, with a range of
formulae in use for calculating Estimate at Completion
(EAC). Most of these formulae start with the Actual
Cost of Work Performed to date (ACWP, or Actual Cost
AC), and add the remaining budget adjusted to take
account of performance to date (usually using the Cost
Performance Index CPI, or using a combined
Performance Efficiency Factor based on both CPI and
SPI). These calculations of the Estimate to Complete
(ETC) are used to extrapolate the ACWP plot for the
remainder of the project to estimate where the project
might finally end (EAC), as shown in Fig. 4. However
calculating EAC in this way does not take explicit
account of the effect of future risks on project outcome.
One simple way to do this is by adding an amount into
the EAC calculation to account for risk-weighted
contingency or management reserve. RM predicts a
range of possible futures by analyzing the combined
effect of known risks and unknown uncertainty on the
remainder of the project. When an integrated covering
the uncompleted portion of the project, as in Fig. 5. In
the same way that the initial spend baseline should be
determined using both risk and earned value data, the
remaining element of the project should also be
estimated using both sets of information.
It is also possible to use risk analysis results to show the
effect of specific risks (threats or opportunities) on
project performance as measured by earned value. Since
the risk analysis includes both estimating uncertainty
and discrete risks, the model can be used to perform
“what-if” scenario analysis showing the effect of
addressing particular risks. For example, if a key threat
is modelled using a probabilistic branch, a “what-if”
analysis can set the probability of the threat occurring to
zero, simulating the result if that risk is removed.
Similarly the effect of capturing key opportunities can
also be shown.

• Cost-Performance trade-offs i.e. IOSTP

optimization model
Activity-Based Costing (ABC), which focuses on those
activities that bring a product to fruition, is considered a
valuable tool for IOSTP framework cost analysis. Costs
are traced from IOSTP activities to products, based on
the consumption of each product of those activities.

Fig. 4 Risk-Based cumulative spend model (BCWS or
PV)

Fig. 5 Risk-Based calculation of remaining project
performance

The cost of the product is measured as the sum of all
activities performed, including overheads, capital costs,
etc. Stakeholders are most interested in the benefits that
are available and the objectives that can be achieved.
The benefit-based test reports present this clearly.
Project management is most interested in the risks that
block the benefits and objectives. The benefits-based
test reports focus attention on the blocking risks so that
the project manager can push harder to get the tests that
matter through [22].If testers present risk and benefits
based test reports, the pressure on testers is simply to
execute the outstanding tests that provide information on
risk. The pressure on developers is to fix the faults that
block the tests and the risks of most concern. Testers
need not worry so much about justifying doing more

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 11

testing, completing the test plan or downgrading “high
severity” incidents to get through the acceptance criteria.
The case for completing testing is always self-evident:
has enough test evidence been produced to satisfy the
stakeholders’ need to deem the risks of most concern
closed? The information required by stakeholders to
make a release decision with confidence might only be
completely available when testing is completed.
Otherwise, they have to take the known risks of release.
How good is our testing? Our testing is good if we
present good test evidence. Rather than getting so
excited about the number of faults we find, our
performance as testers is judged on how clear is the test
evidence that we produce. If we can provide evidence to
stakeholders for them to make a decision at an
acceptable cost and we can squeeze this effort into the
time we are given, we are doing a good testing job. This
is a different way of thinking about testing. The
definition of good testing changes from one based on
faults found to one based on the quality of information
provided. Consider what might happen if, during a test
stage, a regression test detects a fault. Because the test
fails, the risk that this test partially addresses becomes
open again. The risk-based test report may show risks
being closed and then re-opened because regression
faults are occurring. The report provides a clear
indication that things are going wrong – bug fixes or
enhancements are causing problems. The report brings
these anomalies directly to the attention of management.
Main task is development of a versatile Optimization
Model (OM) for assessing the cost and effectiveness of
alternative test, simulation, and evaluation strategies.
The System/Software under test and corresponding
testing strategy-scenario make up a closed-loop
feedback control system. At the beginning of software
testing our knowledge of the software under test is
limited. As the system/software testing proceeds, more
testing data are collected and our understanding of the
software under test is improved. Software development
process parameters (e.g. software quality, defect
detection rates, cost etc.) of concern may be estimated
and updated, and the software testing strategy is
accordingly adjusted on-line. The important ingredients
in successful implementation of IOSTP with embedded
RBOSTP are (1) a thoughtful and thorough evaluation
plan that covers the entire life cycle process, (2) early
identification of all the tools and resources needed to
execute that software test and evaluation process plan
and timely investment in those resources, (3) assuring
the credibility of the tools to be employed, and (4) once
testing is accomplished, using the resulting data to
improve the efficacy of the test event, models and
simulations. In order to provide stable (controlled and
predictable) IOSTP we integrated two of the leading
approaches: Earned (Economic) Value Management
(EVM) and Risk Management (RM). These stand out
from other decision support techniques because both

EVM and RM can and should be applied in an
integrated way across the organization that some authors
[40,41], recently recognized as Value-Based Testing.
Starting at the project level, both EVM and RM offer
powerful insights into factors affecting project
performance. While this information is invaluable in
assisting the project management task, it can also be
rolled up to portfolio, program, departmental or
corporate levels, through the use of consistent
assessment and reporting frameworks. This integration
methodology operates at two levels with exchange of
information. The higher, decision making level takes
into account the efficacy and costs of models,
simulations, and other testing techniques in devising
effective programs for acquiring necessary knowledge
about the system under test. The lower, execution level
considers the detailed dimensions of the system
knowledge sought and the attributes of the models,
simulations, and other testing techniques that make them
more or less suitable to gather that knowledge. The OM
is designed to allow planners to select combinations of
M&S and/or tests that meet the knowledge acquisition
objectives of the program. The model is designed to
consider the system as a whole and to allocate resources
to maximize the benefits and credibility of applied M&S
class associated with the overall IOSTP with embedded
RBOSTP program [22].

• Risk Management implemented in IOSTP
In order to implement RBOST we use one of favorite
schedule risk software includes RISK+ from C/S
Solutions, Inc an add-in to Microsoft Project at
www.cs-solutions,com. We suggest, also, @RISK for
Project Professional from Palisade Corporation, also
an add-in to Project at www.palisade.com, Pertmaster
from Pertmaster LTD (UK) at www.pertmaster.com
reads MS Project and Primavera files and performs
simulations. Pertmaster is substituting for an older
product, Monte Carlo from Primavera Systems which
links to Primavera Project Planner (P3)
www.primavera.com . Risk+ User’s Guide provides a
basic introduction to the risk analysis process. The risk
analysis process is divided into following five steps, as
depicted in Fig. 6.

11.. The first step is to plan our IOSTP with
embedded RBOSTP project. It is important to note that
the project must be a complete critical path network to
achieve meaningful risk analysis results. Characteristics
of a good critical path network model are:

 There are no constraint dates.
 Lowest level tasks have both

predecessors and successors.
 Over 80% of the relationships are finish

to start.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 12

Fig. 6 The risk analysis process implemented in RBOSTP

In the Risk + tutorial, we use the DEMO.MPP project
file, which has the characteristics of a good critical path
network model. Since the scheduling process itself is
well covered in the Project manual we won't repeat it
here.
22.. The second step is to identify the key or high
risk tasks for which statistical data will be collected.
Risk + calls these Reporting Tasks. Collecting data on
every task is possible; however, it adds little value and
consumes valuable system resources. In this step you
should also identify the Preview Task to be displayed
during simulation processing.
33.. The third step requires the entry of risk
parameters for each non-summary task. For each non-
summary task enter a low, high, and a most likely
estimate for duration and/or cost. Next, assign a
probability distribution curve to the cost and duration
ranges. The probability distribution curve guides Risk +
in the selection of sample costs and durations within the
specified range. See the section titled "Selecting a
Probability Distribution Curve" in the Risk+ manual for
more information on selecting a curve type. Update
options such as "Quick Setup" and "Global Edit" can
dramatically reduce the effort required to update the risk
parameters.
44.. The fourth step is to run the risk analysis. Enter
the number of iterations to run for the simulation, and
select the options related to the collection of schedule
and cost data. For each iteration of the simulation, the
Monte Carlo engine will select a random duration and
cost for each task (based upon its range of inputs and its
probability distribution curve), and recalculate the entire
schedule network. Results from each iteration are stored
for later analysis.
55.. The final and fifth step is to analyze the
simulation results. Depending on the options selected,
Risk + will generate one or more of the following
outputs:

• Earliest, expected, and latest completion date for
each reporting task
• Graphical and tabular displays of the completion
date distribution for each reporting task
• The standard deviation and confidence interval
for the completion date distribution for each
reporting task
• The criticality index (percentage of time on the
critical path) for each task
• The duration mean and standard deviation for
each task
• Minimum, expected, and maximum cost for the
total project
• Graphical and tabular displays of cost
distribution for the total project
• The standard deviation and confidence interval
for cost at the total project level

Risk + provides a number of predefined reports and
views to assist in analyzing these outputs. In addition,
you can use Project's reporting facilities to generate
custom reports to suit your particular needs.
Project cost and schedule estimates often seem to be
disconnected. When the optimistic estimate of schedule
is retained, in the face of the facts to the contrary, while
producing an estimate of cost, cost is underestimated.
Further, when the risk of schedule is disregarded in
estimating cost risk, that cost risk is underestimated. In
reality cost and schedule are related and both estimates
must include risk factors of this estimating process
because of uncertainty of test tasks’ cost and time
estimation that RBOSTP optimization model testing
includes and described by equation (1) with constraints
in our article [22]. The strategy for integration of
schedule and risk begins with an analysis of the risk of
the schedule [21,22].

• Critical path method scheduling - some
important reservations

The critical path method (CPM) is a key tool for
managing project schedules. A schedule "network"
represents the project strategy or plan. CPM computes
the shortest project completion duration and earliest
completion date. The longest path through the network
is called the "critical path." According to CPM, any
delay on the critical path will delay the project. On the
one hand, CPM is traditional and well-accepted. It is
essential for developing the logic of the project work
and for managing the day-to-day project activities. On
the other hand, the accuracy of CPM completion date
forecast depends on every task taking just as long as its
duration estimate indicates – in short, CPM is accurate
only if everything goes according to plan.
Experienced project managers realize that real projects
do not often go according to plan:

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 13

• The estimates of activity durations are at best
careful estimates of future work and at worst
just guesses or unrealistically short, calculated
by how much time you have rather than how
long the work takes.

• Even if the activity durations are most likely
estimates, the CPM completion date is not the
most likely project completion date.

• The path identified as the "critical path" may not
be the one that will be most likely to delay the
project and which may need management
attention.

Is there some method of analysis and planning that can
improve the accuracy of our scheduling? Yes, there is,
and it is schedule risk analysis in three steps.

Case 1: Three Steps to a Successful Schedule Risk Analysis
The three steps to a successful risk analysis are described.
They are: (1) create the CPM schedule for the project, (2)
estimate the uncertainty in the activity durations with low and
high ranges, and (3) perform a risk analysis of the schedule,
using a Monte Carlo simulation method.

Step 1: A CPM Schedule
Assume a simple project with two activities and a finish
milestone. Suppose the durations are set at 40 working days
for A101 and 70 working days for A102. If this project is
scheduled to start on January 2, 2000, CPM shows that this
simple project will take 110 working days (40 + 70 = 110) and
complete on June 2, 2000 (see Figure 7, below)

Step 2: The Activity Duration Ranges
To do a risk analysis we need to estimate duration ranges for
each activity which are based on the low (optimistic) and high
(pessimistic) scenarios for the work on the activity. High
ranges, for instance, can be determined by examining the
various things that could go wrong such as technical
problems, site conditions, supplier delays, and permitting
issues -- factors which are often called "risk drivers."
These duration ranges are determined by searching interviews
of the project manager and the staff who made the estimates,
will manage the project and are familiar with the possible
problems. The ranges of pessimistic (Max Rdur) and
optimistic (Min Rdur) durations for the two-activity schedule
are shown in Fig. 7.
Step 3: Simulate the Project Schedule
Once the activities' duration ranges and distributions have
been determined, the schedule risk analysis can determine
how risky the entire project schedule is.

• How likely we to overrun the completion are date of
June 2, 2000? Is June 2 even the "most likely" date
for this simple project? If not, what completion date
is most likely?

• How many days are needed for a contingency to
reduce the overrun risk exposure to an acceptable
level?

• Which activities are the most likely to delay the
project?

Fig. 7 Test events duration distribution

The most common method of determining schedule overrun
risk is to simulate the project by solving (or iterating) it
hundreds or thousands of times on the computer. This is called
Monte Carlo simulation, and it combines the distributions of
uncertain duration accurately.
Suppose that the risk analyst determines that 2,500 iterations
will be sufficient for the accuracy needed. The result of that
simulation is a cumulative likelihood distribution that
represents the likelihood of the project completing on or
before each possible date. This distribution is shown in Fig. 8
below:

Fig. 8 The result of simulation of a cumulative likelihood
distribution of completion date

From the risk analysis we can see:

• The CPM completion date of June 2, 2000 is
between 10% and 15% likely to be adequate for this
simple project. Placing confidence in completion by
June 2 is very likely to get the contractor and
customer in trouble.

• The most likely completion date is close to June 19,
not June 2 as predicted by CPM. The common sense
notion, that adding "most likely" durations along
a critical path will result in the most likely project
completion date, is simply wrong, in all cases.

• The average completion date is June 23, 2000. If this
simple project were done 100 times, its average

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 14

completion would be about a 3-week overrun of the
CPM duration, providing for the holidays.

• The results show that July 11, 2000 has an 80%
likelihood of success. This is a level of protection
from overruns that might be required for a
conservative contractor or owner/customer. Hence, a
6-week contingency is needed to reduce the risk of
overrun to an acceptable level for this conservative
company.

The CPM project end-date of June 2 is highly optimistic. Any
owner, customer or contractor who agrees to that date is in
trouble now on this project. Without a risk analysis, the
existence or degree of trouble is unknown.

Risk Analysis Topics - the Merge Bias
This is only a 2-activity project. Real life projects are
subject to more risk than this.
Most projects have activities planned simultaneously
along parallel paths. At the end of the project, and often
at important internal milestones, these paths converge.
Examples include; (a) piping, duct, framing and
electrical work must be completed before an inspection
can be conducted, or (b) several components that must
be finished before systems integration and testing can be
done. Most project overrun risk occurs at path
convergence (or merge) points because projects can be
delayed because a delay on any one of the paths will
delay the work. This is the "merge bias" at work. To
see the merge bias, consider expanding the simple
schedule above to a 2-path project where the second
path is exactly the same as the one in Figure 1 above.
Clearly, CPM analysis shows that this project, too, will
finish at the same time as the one-path schedule does,
June 2, 2000. When we analyze the risk of this two-path
schedule, however, we see that it is riskier because
either path can cause an overrun. Compare Fig. 9 results
to those in Fig. 8 above.

• The average completion date is now July 6, 2000, not
June 23.

• The CPM date of June 2, 2000 is now less than 5%
likely, not 10 – 15%.

• The 80th percentile is now July 20, 2000 rather than
July 11.

These results reflect the working of the merge bias when
parallel paths converge.

• The role of the Six Sigma strategy in software
development/testing process

In order to assure controlled and stable (predictive)
testing process in time, budget and software quality
space we need to model, measure and analyze software-
testing process by applying Six Sigma methodology
across the IOSTP solution as presented in our works
[15-19].

Fig. 9 Two-path schedule cumulative likelihood
distribution of completion date simulation result

The name, Six Sigma, derives from a statistical measure
of a process’s capability relative to customer
specifications. Six Sigma is a mantra that many of the
most successful organizations in the world swear by and
the trend is getting hotter by the day. Six Sigma insists
on active management engagement and involvement, it
insists on financial business case for every
improvement, it insists on focusing on only the most
important business problems, and it provides clearly
defined methodology, tools, role definitions, and metrics
to ensure success. So, what has this to do with software?
The key idea to be examined in this article is the notion
that estimated costs, schedule delays, software
functionality or quality of software projects are often
different than expected based on industry experience.
Six Sigma tools and methods can reduce these risks
dramatically i.e. Six Sigma (6σ) deployment in
SDP/STP called DMAIC for “Define, Measure,
Analyze, Improve, and Control”, because it organizes
the intelligent control and improvement of existing
software test process [15-16]. Experience with 6σ has
demonstrated, in many different businesses and industry
segments that the payoff can be quite substantial, but
that it is also critically dependent on how it is deployed.
The main contribution of our [15-19] works is mapping
best practices in Software Engineering, Design of
Experiments, Statistical Process Control, Risk
Management, Modeling & Simulation, Robust Test and
V&V etc. to deploy Six Sigma to the STP. In order to
significantly improve software testing efficiency and
effectiveness for the detection and removal of
requirements and design defects in our framework of
IOSTP with deployed Six Sigma strategy, during 3 years
of our 6σ deployment to STP we calculated overall
value returned on each dollar invested i.e. ROI of 100:1.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 15

7 Conclusions
In software development organizations, increased complexity
of product, shortened development cycles, and higher
customer expectations of quality proves that software testing
has become extremely important software engineering
activity. Software development activities, in every phase, are
error prone so defects play a crucial role in software
development. At the beginning of software testing task we
encounter the question: How to inspect the results of
executing test and reveal failures? What is risk to finish
project within budget, time and reach required software
performance i.e. quality? How does one measure test
effectiveness, efficacy, benefits, risks (confidence) of project
success, availability of resources, budget, time allocated to
STP? How does one plan, estimate, predict, control, evaluate
and choose “the best” test scenario among hundreds of
possible (considered, available, feasible) number of test events
(test cases)? IOSTP framework solved these issues combining
few engineering and scientific areas such as: Design of
Experiments, Modeling & Simulation, integrated practical
software measurement, Six Sigma strategy, Earned
(Economic) Value Management (EVM) and Risk
Management (RM) methodology through simulation-based
software testing scenarios at various abstraction levels of the
SUT to manage stable (predictable and controllable) software
testing process at lowest risk, at an affordable price and time.
In order to significantly improve software testing efficiency
and effectiveness for the detection and removal of
requirements and design defects in our framework of IOSTP,
during 3 years of our IOSTP framework deployment to STP
we calculated overall value returned on each dollar invested
i.e. ROI of 100:1.

Lessons Learned
It is our dream that software engineering will become as much
of an engineering discipline as the others; users will have just
as much confidence that their software is as defect free as
their cars, highway bridges, and aircraft. Test should be used
to certify that the software components implement their
designs, and that these designs satisfy their requirements.
Analyzing testing requirements should be done in parallel
with analyzing the software components' requirements. Tests
should be designed in parallel with designing the components.
Test implementation should occur in parallel with
implementing the components, and developing integration
tests should be done in parallel with integration. The source of
software defects is a lack of discipline in proper requirements
analysis, design, and implementation processes. Testing must
physically occur after implementation, so reliance on it to
detect defects delays their correction. Until software defects
are attacked at their source, software will continue to be
developed as if it were an art form rather than a craft,
engineering discipline, or a science.
Treating software testing as a discipline is a more useful
analog than treating it as an art or a craft. We are not artists
whose brains are wired at birth to excel in quality assurance.
We are not craftsmen who perfect their skill with on-the-job
practice. If we are, then it is likely that full mastery of the
discipline of software testing will elude us. We may become
good, indeed quite good, but still fall short of achieving black
belt - status. Mastery of software testing requires discipline
and training.

A software testing training regime should promote
understanding of fundamentals. I suggest three specific areas
of pursuit to guide anyone’s training:
First and foremost, master software testers should understand
software. What can software do? What external resources
does it use to do it? What are its major behaviors? How does it
interact with its environment? The answers to these questions
have nothing to do with practice and everything to do with
training. One could practice for years and not gain such
understanding.
Second, master software testers should understand software
faults. How do developers create faults? Are some coding
practices or programming languages especially prone to
certain types of faults? Are certain faults more likely for
certain types of software behavior? How do specific faults
manifest themselves as failures?
Third, master software testers should understand software
failure. How and why does software fail? Are there symptoms
of software failure that give us clues to the health of an
application? Are some features systemically problematic?
How does one drive certain features to failure?
Understanding software, faults and failures is the first step to
treating software testing as a discipline. Treating software as a
discipline is the first step toward mastering software quality.
And there is more, always more to learn. Discipline is a
lifelong pursuit. If you trick yourself into thinking you have
all the answers, then mastery will elude you. But training
builds knowledge so the pursuit itself is worthwhile whether
or not you ever reach the summit.
Perhaps we need to embrace Tester Pride and let the world
know about the contributions we make.

References:
[1] Boehm B. Software Risk Management. IEEE Computer
Society Press, Los Alamitos California, 1989.
[2] Burstein I. at all. Developing a testing maturity model,
Part II. Illinois Institute of Technology, Chicago, 1996.
[3] Cristie A. Simulation: An enabling technology in software
engineering. CrossTalk the Journal of Defense Software
Engineering, April 1999.
[4] http://www.acq.osp.mil. URLs cited were accurate as of
April 2002.
[5] http://www.msosa.dmso.mil. URLs cited were accurate as
of May 2001.
[6] Lazić, Lj., Velašević, D., Applying simulation to the
embedded software testing process, SOFTWARE TESTING,
VERIFICATION AND RELIABILITY, Volume 14, Issue 4,
257-282, John Willey & Sons, Ltd., 2004.
[7] Lazić, Lj., Automatic Target Tracking Quality Assesment
using Simulation, 8th Symposium on Measurement -
JUREMA, 29-31 October, Kupari-Yugoslavia, 1986.
[8] Lazić, Lj., Computer Program Testing in Radar System,.
Masters thesis, University of Belgrade, Faculty of Electrical
Engineering, Belgrade, Yugoslavia, 1987.
[9] Lazić, Lj., Method for Clutter Mup Alghoritm Assesment
in Surveilance Radar, 11th Symposium on Measurement -
JUREMA, April, Zagreb-Yugoslavia, 1989.
[10] Lazić, Lj., Software Testing Methodology, YUINFO’96,
Brezovica, Serbia&Montenegro, 1996.
[11] Lazić, Lj., Velašević, D., Integrated and optimized
software testing process based on modeling, simulation and
design of experiment, 8th JISA Conference, Herceg Novi,
Serbia&Montenegro, June 9-13, 2003

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

 16

[12] Lazić, Lj., Velašević, D. i Mastorakis, N., A framework
of integrated and optimized software testing process, WSEAS
TRANSACTIONS on COMPUTERS, Issue 1, Volume 2, 15-
23, January 2003.
[13] Lazić, Lj., Medan, M., SOFTWARE QUALITY
ENGINEERING versus SOFTWARE TESTING PROCESS,
TELFOR 2003(Communication Forum), 23-26 November,
Beograd, 2003.
[14] Lazić, Lj., Velašević, D. i Mastorakis, N., The Oracles-
Based Software Testing: problems and solutions”, WSEAS
MULTICONFERENCE PROGRAM, 3rd WSEAS Int.Conf.
on SOFTWARE ENGINEERING, PARALLEL &
DISTRIBUTED SYSTEMS (SEPADS 2004), February 13-
15, Salzburg, Austria, 2004, also in WSEAS Transactions on
Computers, Issue 4, Volume 3, p 1026-1036, October 2004.
[15] Lazić, Lj., Velašević, D. i Mastorakis, N., Software
Testing Process Management by Applying Six Sigma,
WSEAS Joint Conference program, MATH 2004, IMCCAS
2004, ISA 2004 and SOSM 2004, Miami, Florida, USA, April
21-23, 2004.
[16] Lazić, Lj., Velašević, D., Software Testing Process
Improvement by Applying Six Sigma, 9th JISA Conference,
Herceg Novi, Serbia & Montenegro, June 9-13, 2004.
[17] Lazić, Lj., Integrated and Opitimized Software Testing
Process, TELFOR 2004 (Communication Forum), 23-26
November, Beograd, 2004.
[18] Lazić, Lj. SOFTWARE TESTING versus SOFTWARE
MAINTENANCE PROCESS, Simpozijum Infoteh-Jahorina,
23-25 March, 2005.
[19] Lazić, Lj., Mastorakis, N., Software Testing Process
Improvement to achieve a high ROI of 100:1, 6th WSEAS Int.
Conf. On MATHEMATICS AND COMPUTERS IN
BUSINESS AND ECONOMICS (MCBE’05), March 1-3,
Buenos Aires, Argentina 2005.
[20] Lazić, Lj., Mastorakis, N., Applying
Modeling&Simulation to the Software Testing Process – One
Test Oracle solution, 4th WSEAS Conference on Automatic
Control, Modeling and Simulation (ACMOS 2005),
TELEINFO 2005, and AEE 2005 WSEAS MultiConference,
Prague, Czech Republic, March 13-15, 2005
[21] Lazić, Lj., Mastorakis, N., RBOSTP: Risk-based
optimization of software testing process Part 1, accepted in
WSEAS Proceedings + JOURNAL in the 9th WSEAS
International on COMPUTERS Vouliagmeni, Athens, Greece,
July 2005
[22] Lazić, Lj., Mastorakis, N., RBOSTP: Risk-based
optimization of software testing process Part 2, accepted in
WSEAS Proceedings + JOURNAL in the 9th WSEAS
International on COMPUTERS Vouliagmeni, Athens, Greece,
July 2005
[23] DoD Integrated Product and Process Development
Handbook, August 1998
[24] H. Ziv and D.J. Richardson, Constructing Bayesian-
network Models of Software Testing and Maintenance
Uncertainties, International Conference on Software
Maintenance, Bari, Italy, September 1997.
[25] Humphrey, W. S., Making Software Manageable,
CrossTalk, December 1996, pp. 3-6.
[26] Baber, R. L., The Spine of Software: Designing Provably
Correct Software: Theory and Practice, John Wiley & Sons
Ltd., Chichester, United Kingdom, 1987.
[27] Daich, G. T., Emphasizing Software Test Process
Improvement, Crosstalk, June 1996, pp. 20-26, and Daich,

Gregory T., Letters to the Editor, CrossTalk, September 1996,
pp. 2-3, 30.
[28] Burnstein, I.; Suwannasart, T.; and Carlson, C.R.,
Developing a Testing Maturity Model: Part I, CrossTalk,
August 1996, pp. 21-24; Part II, CrossTalk, September 1996,
pp. 19-26.
[29] Paulk, M. C.; Curtis, B.; Chrissis, M. B.; and Weber, C.
V., Capability Maturity ModelSM for Software, Version 1.1,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, February 1993.
[30] Hausler, P. A.; Linger, R. C.; and Trammel, Adopting
Cleanroom Software Engineering with a Phased Approach,
IBM Systems Journal, volume 33, number 1, 1994, p. 95.
[31] Bernstein, L.; Burke Jr., E. H.; and Bauer, W. F.,
Simulation- and Modeling-Driven Software Development,
CrossTalk, July 1996, pp. 25-27.
[32] Page-Jones, M., What Every Programmer Should Know
About Object-Oriented Design, Dorset House Publishing,
New York, New York, 1995.
[33] Linger, R.C., Cleanroom Software Engineering:
Management Overview, Cleanroom Pamphlet, Software
Technology Support Center, Hill Air Force Base, Utah, April
1995.
[34] Capability Maturity Model Integration (CMMI), Version
1.1, Software Engineering Institute, CMU/SEI-2002-TR-011,
TR-012, March 2002
[35] Schulmeyer, G. G., Zero Defect Software, McGraw-Hill,
Inc., New York, New York, 1990.
[36] Martin, J., System Design from Provably Correct
Constructs, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1985.
[37] C/S Solutions, Inc., Risk+ User’s Guide, 2002
[38] DoD Defense Acquisition Deskbook -- Compendium of
Acquisition-Related mandatory and discretionary guidance,
including risk management (http://www.deskbook.osd.mil)
[39] Carleton, Anita D., Park, Robert E., Goethert, Wolfhart
B., Florac, Willliam A., Bailey, Elizabeth K., & Pfleeger,
Shari Lawarence. Software Measurement for DoD Systems:
Recommendations for Initial Core Measures (CMU/SEI-92-
TR-19). Software Engineering Institute, Carnegie Mellon
University, September 1992.
Available online:
www.sei.cmu.edu/publications/documents/92.reports/92.tr.01
9.html
[40] Le K., Phongpaibul M., and Boehm B., Value-Based
Verification and Validation Guidelines, CSE University
Southern California, TR UC-CSE-05-502, February 2005
[41] Hillson D., Combining Earned Value Managment and
Risk Management to create synergy, found at www.risk-
doctor.com, reached April 2005.
[42] Richardson DJ. TAOS: Testing with analysis and oracle
support, Proceedings of the 1994 International Symposium on
Software Testing and Analysis (ISSTA ‘94), Seattle, WA,
August 1994; ACM Press, New York; 138-153.
[43] Weyuker EJ. On testing non-testable programs. The
Computer Journal 1982; 25(4): 465-470.
[44] Box GEP, Hunter WG, Hunter JS. Statistics for
Experimenters: An Introduction to Design, Data Analysis, and
Model Building. Wiley, New York, 1978.
[45] Montgomery DC. Design and Analysis of Experiments.
4th ed., Wiley, New York, 1997.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)

