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Abstract:- The Software Testing Process (STP) raised many challenging issues in past decades of software 
development practice, several of which remain open. The System/Software under test (SUT) continually increases 
complexity of applied technology, software application domain model and corresponding process knowledge and 
experience. Today’s SUT have billions of possible inputs and outputs. How does one obtain adequate test coverage 
with reasonable or even optimal number of test events i.e. test cases? How does one measure test effectiveness, 
efficacy, benefits, risks (confidence) of project success, availability of resources, budget, time allocated to STP? 
How does one plan, estimate, predict, control, evaluate and choose “the best” test scenario among hundreds of 
possible (considered, available, feasible) number of test events (test cases)? How does one judge, decide if 
satisfied/not satisfied program behavior, Pass/Fail result , Go/Ngo decision after test run i.e. does have Test Oracle? 
This paper describes the major issues that are encountered while developing framework of Integrated and Optimized 
Software Testing Process (IOSTP). IOSTP framework combines few engineering and scientific areas such as: 
Design of Experiments, Modeling & Simulation, integrated practical software measurement, Six Sigma strategy, 
Earned (Economic) Value Management (EVM) and Risk Management (RM) methodology through simulation-based 
software testing scenarios at various abstraction levels of the SUT to manage stable (predictable and controllable) 
software testing process at lowest risk, at an affordable price and time. In order to significantly improve software 
testing efficiency and effectiveness for the detection and removal of requirements and design defects in our 
framework of IOSTP, during 3 years of  our IOSTP framework deployment to STP we calculated overall value 
returned on each dollar invested i.e. ROI of 100:1.   
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1  Introduction 
The increasing cost and complexity of software 
development is leading software organizations in the 
industry to search for new ways through process 
methodology and tools for improving the quality of the 
software they develop and deliver. However, the overall 
process is only as strong as its weakest link. This critical 
link is software quality engineering as an activity and as 
a process. Testing is the key instrument for making this 
process happen.  
Software testing has traditionally been viewed by many 
as a necessary evil, dreaded by both software developers 
and management alike, and not as an integrated and 
parallel activity staged across the entire software 
development life cycle. One thing is clear - by 
definition, testing is still considered by many as only a 
negative step usually occurring at the end of the 
software development process while others now view 
testing as a “competitive edge” practice and strategy.  
Solutions in software engineering are more complex-
interconnect in more and more intricate technologies 
across multiple operation environments. With the 
increasing business demand for more software coupled 
with the advent of newer, more productive languages 

and tools, more code is being produced in very short 
periods of time. 
In software development organizations, increased 
complexity of product, shortened development cycles, 
and higher customer expectations of quality proves that 
software testing has become extremely important 
software engineering activity. Software development 
activities, in every phase, are error prone so defects play 
a crucial role in software development. We usually think 
of testing in software development as something we do 
when we run out of time or after we have developed 
code. However, the fundamental approach as presented 
here focuses on testing as a fully integrated but 
independent activity with development that has a 
lifecycle all its own, and that the people, the process and 
the appropriate automated technology are crucial for the 
successful delivery of the software based system. 
Planning, managing, executing, and documenting testing 
as a key process activity during all stages of 
development is an incredibly difficult process. 
Software vendors typically spend 30 to 70 percent of 
their total development budget i.e. of an organization’s 
software development resources on testing. Software 
engineers generally agree that the cost to correct a defect 
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increase, as the time elapsed between error injection and 
detection increases several times depending on defect 
severity and software testing process maturity level 
[1,2]. 
Until coding phase of software development, testing 
activities are mainly test planning and test case design. 
Computer based Modeling and Simulation (M&S) is 
valuable technique in Test Process planning in testing 
complex Software/System under test (SUT) to evaluate 
the interactions of large, complex systems with many 
hardware, user, and other interfacing software 
components such are Spacecraft Software, Air Traffic 
Control Systems, in DoD Test and Evaluation (T&E) 
activities [4-6]. 
There is strong demand for software testing 
effectiveness and efficiency increases. Software/System 
testing effectiveness is mainly measured by percentage 
of defect detection and defect leakage (containment), i.e. 
late defect discovery. Software testing efficiency is 
mainly measured by dollars spent per defect found and 
hours spent per defect found. To reach ever more 
demanding goals for effectiveness and efficiency, 
software developers and testers should apply new 
techniques such as computer-based modeling and 
simulation - M&S [6-9]. 
The results of computer-based simulation experiments 
with a particular embedded software system, an 
automated target tracking radar system (ATTRS), are 
presented in our paper [6]. The aim is to raise awareness 
about the usefulness and importance of computer-based 
simulation in support of software testing.  
At the beginning of the software testing task the 
following question arises: how should the results of test 
execution be inspected in order to reveal failures? 
Testing by nature is measurement, i.e. test results must 
be analyzed and compared with desired behavior.  
This paper is contribution to software testing 
engineering by presenting challenges and corresponding 
methods implemented in Integrated and Optimized 
Software Testing Process framework (IOSTP). IOSTP 
framework combines few engineering and scientific 
areas such as: Design of Experiments, Modeling & 
Simulation, integrated practical software measurement, 
Six Sigma strategy, Earned (Economic) Value 
Management (EVM) and Risk Management (RM) 
methodology through simulation-based software testing 
scenarios at various abstraction levels of the SUT to 
manage stable (predictable and controllable) software 
testing process at lowest risk, at an affordable price and 
time [6-22]. In order to significantly improve software 
testing efficiency and effectiveness for the detection and 
removal of requirements and design defects in our 
framework of IOSTP, during 3 years of  our IOSTP 
framework deployment to STP of embedded-software 
critical system such as Automated Target Tracking 
Radar System [6,16,19], we calculated overall value 
returned on each dollar invested i.e. ROI of 100:1 .   

The paper begins with an outline of fundamental 
challenges in software testing in section 2, then the 
problems with software testing and Integrated and 
Optimized Software Testing Process framework state-
of-the-art methods implementation is described in 
section 3. The main contribution of M&S with 
illustrative details and experience of methods 
implemented in IOSTP are presented in section 4. In 
section 5, M&S as one effective and efficient test oracle 
solution is presented. Section 6 illustrate how M&S can 
be successfully exploited in Trade-Off Studies and 
Prioritization, Cost-Performance trade-offs i.e. as the 
IOSTP optimization model.  Finally in section 7, some 
concluding remarks are given. 
 
2 Software testing, as a part of software 
development process, is human intensive 
work with high uncertainty i.e. risks 
There are at list four domains of software engineering 
where uncertainty is evident: uncertainty in 
requirements analysis, uncertainty in the transition from 
system requirements to design and code, uncertainty in 
software re-engineering and uncertainty in software 
reuse [24]. Software testing, like other development 
activities, is human intensive and thus introduces 
uncertainties and obeys Maxim of Uncertainty in 
Software Engineering-MUSE [24]. Afore mentioned 
uncertainties may affect the development effort and 
should therefore be accounted for in the test plan. We 
identify three aspects of test planning where uncertainty 
is present: the artifacts under test, the test activities 
planned, the plans and their fulfillments themselves. 
According to MUSE, uncertainty permeates these 
processes and products. Plans to test these artifacts, 
therefore, will carry their uncertainties forward. In 
particular, many testing activities, such as test result 
checking, are highly routine and repetitious and thus are 
likely to be error-prone if done manually, which 
introduces additional uncertainty. Humans carry out test 
planning activities at an early stage of development, 
thereby introducing uncertainties into the resulting test 
plan. Also, test plans are likely to reflect uncertainties 
that are, as described above, inherent in software 
artifacts and activities. Care must be taken during test 
planning to decide on the method of results comparison. 
Oracles, also, are required for validation and the nature 
of an oracle depends on several factors under the control 
of the test designer and automation architect [14,20]. 
Different oracles may be used for a single automated test 
and a single oracle may serve many test cases. If test 
results are to be analyzed, some type of oracle is 
required: a) oracle that gives exact outcome for every 
program case, b) oracle that provides range of program 
outcome and c) oracle that can not provide program 
outcome for some test cases. 
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2.1 Estimating quality 
One of the reasons why projects are late and exceed 
their budgets is because they have so many defects that 
they cannot be released to users.  Many of these defects 
escape detection until late in the testing cycle when it is 
difficult to repair them easily.  Then, the testing process 
stretches out indefinitely.  The cost and effort for finding 
and fixing defects may be the largest identifiable IT 
system cost estimate, so defects cannot be ignored in the 
estimating process. 
Defect potentials are the sum of errors that occur 
because of: 

 Requirements errors 
 Design errors 
 Coding errors 
 User documentation errors 
 Bad fixes or secondary errors. 

 
Defect levels affect IT project costs and schedules.  The 
number and efficiency of defect removal operations can 
have major impacts on schedules, cost, effort, quality, 
and maintenance.  Quality estimates must consider 
defect potentials, defect removal efficiency, and 
maintenance.   
All system defects are not equally easy to remove.  
Requirements errors, design problems, and bad fixes 
tend to be the most difficult.  At the time of delivery, 
defects originating in requirements and design tend to 
far outnumber coding defects.  While a number of 
approaches can be used to help remove defects, formal 
design and code inspections have been found to have the 
highest defect removal efficiency.  
Typically, more than 50% of the global IT population is 
engaged in modifying existing applications rather than 
developing new applications.  Estimates are required for 
maintenance for initial releases to repair defects in 
software applications to correct errors and for 
enhancements to add new features to software 
applications.   
 
3 IOSTP framework state-of-the-art 
methods implementation 
Unlike conventional approaches to software testing (e.g. 
structural and functional testing) which are applied to 
the software under test without an explicit optimization 
goal, the IOSTP with embedded Risk Based Optimized 
STP (RBOSTP) approach designs an optimal testing 
strategy to achieve an explicit optimization goal, given a 
priori [6,22]. This leads to an adaptive software testing 
strategy. A non-adaptive software testing strategy 
specifies what test suite or what next test case should be 
generated, e.g. random testing methods, whereas an 
adaptive software testing strategy specifies what testing 
policy should be employed next and thus, in turn, what 
test suite or test case should be generated next in 
accordance with the new testing policy to maximize test 
activity efficacy and efficiency subject to time-schedule 

and budget constraints. The process is based on a 
foundation of operations research, experimental design, 
mathematical optimization, statistical analyses, as well 
as validation, verification, and accreditation techniques. 
The use of state-of-the-art methods and tools for 
planning, information, management, design, cost trade-
off analysis, and modeling and simulation, Six Sigma 
strategy significantly improves STP effectiveness.  
Figure 1 graphically illustrates a generic IOSTP 
framework [12]. 
The focus in this paper is description of IOSTP with 
embedded RBOSTP Approach to Testing Services that: 

• Integrate testing into the entire development 
process  

• Implement test planning early in the life cycle via 
Simulation based assessment of test scenarios 

• Automate testing, where practical to increase 
testing efficiency  

• Measure and manage testing process to maximize 
risk reduction 

• Exploit Design of Experiments techniques 
(optimized design plans, Orthogonal Arrays etc.) 

• Apply Modeling and Simulation combined with 
Prototyping  

• Continually improve testing process by pro-
active, preventive (failure mode analysis) Six 
Sigma DMAIC model  

• Continually monitor Cost-Performance Trade-
Offs (Risk-based Optimization model, Economic 
Value and ROI driven STP)   

 

Fig. 1 Integrated and optimized software testing process 
(IOSTP) framework [12] 

Framework models are similar to the structural view, but 
their primary emphasis is on the (usually singular) 
coherent structure of the whole system, as opposed to 
concentrating on its composition. IOSTP framework 
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model targeted specific software testing domains or 
problem classes described above. IOSTP is a systematic 
approach to product development (acquisition) which 
increases customer satisfaction through a timely 
collaboration of necessary disciplines throughout the life 
cycle. Successful definition and implementation of 
IOSTP can result in: 

 Reduced Cycle Time to Deliver a Product 
 Reduced System and Product Costs 
 Reduced Risk 
 Improved Quality 

  
4 Modeling, simulation, and design of 
experiments for software testing 
The IOSTP framework is a multi disciplinary integrated 
engineering solution to the testing process incorporating 
modeling and simulation, design of experiments, 
software measurement, and the Six Sigma approach to 
software test process quality assurance and control, as 
depicted in Figure 1 [12]. Unlike conventional 
approaches to software testing (e.g. structural and 
functional testing), which are applied to the software 
under test without an explicit optimization goal, the 
IOSTP approach designs an optimal testing strategy to 
achieve an explicit optimization goal, given a priori. 
This leads to an adaptive software testing strategy. A 
non-adaptive software testing strategy specifies what 
test suite or what next test case should be generated, e.g. 
random testing methods, whereas an adaptive software 
testing strategy specifies what testing policy should be 
employed next and thus, in turn, what test suite or test 
case should be generated next [6] in accordance with the 
new testing policy to maximize test activity efficacy and 
efficiency subject to time-schedule and budget 
constraints. The process is based on a foundation of 
operations research, experimental design, mathematical 
optimization, statistical analyses, as well as validation, 
verification, and accreditation techniques. 
The focus in this section of the paper is on the 
application of M&S and DOE to minimize test suite size 
dramatically through black box scenario testing for the 
ATTRS real-time embedded software application, and 
also on using M&S as a test oracle in this same case 
study. 
 
4.1 Model-based testing through simulation 
As far as this paper is concerned, computer-based 
simulation is “the process of designing a computerized 
model of a system (or process) and conducting 
experiments with this model for the purpose either of 
understanding the behaviour of the system or of 
evaluating various strategies for the operation of this 
system”[23,38]. Put simply, a simulation allows one to 
develop a logical abstraction (an object), and then 
examine how that object behaves under differing 
stimuli. Simulation can provide insights into the designs 

of, for example, processes, architectures, or product 
lines before significant time and cost have been 
invested, and can be of great benefit in support of the 
testing process and training therein. There are several 
distinct purposes for computer-based simulation. One is 
to allow the creation of a physical object or system such 
as the ATTRS, as a logical entity in code. It is practical 
(and faster) to develop a simulator for testing physical 
system design changes. Changes to the physical system 
can then be implemented, tested, and evaluated in the 
simulation. This is easier, cheaper, and faster than 
creating many different physical engines, each with only 
slightly different attributes. Because of these features, 
network-based simulation tools allow one to develop 
large detailed models quite rapidly. The focus thus 
becomes less on the construction of a syntactically 
correct model and more on the model’s semantic 
validity and the accuracy of its numerical driver. The 
simulation tools in today’s market place, such as SLAM 
II, SIMSCRIPT, SIMAN, GPSS, PowerSim, MATLAB, 
etc, are robust and reasonably inexpensive. 
Unfortunately, before a simulation can be of benefit, a 
model of the system must be developed that allows the 
simulation developer to construct the computer-based 
simulation. Modeling is the first step—the very 
foundation of a good simulation. If the model is valid, it 
provides an opportunity to study system phenomena in a 
controlled manner, which may be very difficult 
otherwise due to an inability to control the variables in a 
real system. 
However, parts of the simulation might not have well 
known interactions. In this case, one of the goals of 
simulation is to determine the real-world interactions. 
To make sure that only accurate interactions are 
captured, the best method is to start with a simple 
model, and ensure that it is correct and representative of 
the real world. Next, the interactions and complexity can 
be increased iteratively, validating the model after each 
increment. Additional interactions can be added until an 
adequate model is created that meets the desired needs. 
Unfortunately the previous description implies that 
clearly identified needs are available. This requires a 
valid statement of requirements. 
It also requires planning for validation of the model. As 
in creating any software product, requirements and 
needs must be collected, verified, and validated. These 
steps are just as important in a simulation as they are in 
any system. A system that has not been validated by 
field-testing against the real world could produce invalid 
results. Abstraction and validation are equally necessary 
to create a reliable model that correctly reflects the real 
world, and also contains all attributes necessary to make 
the model a useful tool for prediction. The steps of 
abstraction and validation are in themselves, however, 
not totally sufficient to create a valid and usable model. 
Other steps are necessary to create a model that is of 
sufficient detail to be useful. These steps that describe 
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the process of producing and using a dynamic 
simulation are described by Cristie [3]. 
One of the most important problems facing the 
developer of a real-world simulation is that of trying to 
determine whether the simulation model is an accurate 
representation of the actual system being studied. In 
M&S based systems acquisition, computer simulation is 
used throughout the development and deployment 
process, not just as an analysis tool, but also as a 
development, integration, test, verification and 
sustainment resource. Because of this, verification and 
validation (V&V) in the simulation development process 
are most important tasks. If the model is to be credible, 
and a predictor of future behaviour, it is critical that it is 
validated [3,6]. 
Modeling and simulation (M&S) techniques are a cost-
effective approach to reduce the time, resources and 
risks, and to improve the quality, of acquired systems.  
Validated M&S can support all phases of IOSTP, and 
should be appropriately applied throughout the software 
life cycle for requirements definition; program 
management; design and engineering; test and 
evaluation; and field operation and maintenance 
presented in our works [6-9, 14-22]. The model of SUT 
is designed to consider the system as a whole and to 
allocate resources to maximize the benefits and 
credibility of applied M&S class associated with the 
overall IOSTP with embedded RBOSTP program. 
Test engineers and operational evaluators play a key role 
in evaluating system/software performance throughout 
the life cycle. They identify: 

• The information needed and when it must be 
available. This includes understanding the 
performance drivers and the critical issues to be 
resolved. 
• The exact priority for what must be modeled 
first, then simulated, and then tested. This includes 
learning about the subcomponent level, the 
components, and the system level. 
• The analysis method to be used for each issue to 
be resolved. Timing may have a significant effect on 
this. The design function can use models before any 
hardware is available. It will always be more 
expedient to use models and simulations at the early 
stage of system design. However, the design itself 
may be affected by operational considerations that 
require examination of real tests or exercise data. It 
will, given the training and logistic information 
required of systems today, be prudent in the long run 
to develop appropriate models and simulations. 
• The data requirements and format for the 
analysis chosen. Included in this determination is the 
availability of instrumentation, not only for 
collecting performance data, but also for validating 
appropriate models and simulations. 

Models and simulations can vary significantly in size 
and complexity and can be useful tools in several 
respects. They can be used to conduct predictive 
analyses for developing plans for test activities, for 
assisting test planners in anticipating problem areas, and 
for comparison of predictions to collected data. 
Validated models and simulations can also be used to 
examine test article and instrumentation configurations, 
scenario differences, conduct what-if tradeoffs and 
sensitivity analyses, and to extend test results. 
Testing usually provides highly credible data, but 
safety, environmental, and other constraints can limit 
operational realism, and range cost and scheduling can 
be limiting factors. Modeling, especially credible model 
building may be very expensive although M&S can be 
available before hardware is ready to test. A prudent 
mix of simulation and testing is needed to ensure that 
some redesign is possible (based on M&S) before 
manufacturing begins. 
While developing the Software Test strategy, the 
program office with test-team must also develop a plan 
to identify and fund resources that support the 
evaluation. In determining the best source of data to 
support analyses, IOSTP with embedded RBOSTP 
considers credibility and cost. Resources for 
simulations and software test events are weighed 
against desired confidence levels and the limitations of 
both the resources and the analysis methods. The 
program manager works with the test engineers to use 
IOSTP with embedded RBOSTP to develop a 
comprehensive evaluation strategy that uses data from 
the most cost-effective sources; this may be a 
combination of archived, simulation, and software test 
event data, each one contributing to addressing the 
issues for which it is best suited. 
Success with IOSTP with embedded RBOSTP does not 
come easy, nor is it free. IOSTP with embedded 
RBOSTP, by integrating M&S with software testing 
techniques, provides additional sources of early data and 
alternative analysis methods, not generally available in 
software tests by themselves. It seeks the total 
integration of IOSTP with embedded RBOSTP 
resources to optimize the evaluation of system/software 
worth throughout the life cycle. The central elements of 
IOSTP with embedded RBOSTP are: the acquisition of 
information that is credible; avoiding duplication 
throughout the life cycle; and the reuse of data, tools, 
and information. 
 
4.2 Design of experiments for software testing 
A wide variety of approaches, methods, and analysis 
techniques, known collectively as design of 
experiments, has been around for many decades and is 
well documented in many books like those of Box et al. 
[44] or Montgomery [45]. One of the principal goals of 
experimental design is to estimate how changes in input 
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factors affect the results, or responses, of the 
experiment. 
While these methods were developed with physical 
experiments in mind (like agricultural or industrial 
applications), they can fairly easily be used in computer-
simulation experiments, and software testing as well 
[6,31]. Careful planning of how to experiment with a 
simulation model generally repays big dividends in 
terms of how effectively one can learn about the system 
and how one can exercise the model further. This 
section looks at such experimental design issues in the 
broad context of a simulation project. The term 
‘experimental design’ has specific connotations in its 
traditional interpretation, and some of these will be 
mentioned below. However, the issues of planning 
simulations will also be covered in a broader context, 
which considers the special challenges and opportunities 
one has when conducting a computer-based simulation 
experiment rather than a physical experiment. This 
includes questions of the overall purpose of the project, 
what the output performance measures should be, how 
to use the underlying random numbers, measuring how 
changes in the inputs might affect the outputs, and 
searching for some kind of optimal system 
configuration. Specific questions of this type might 
include: 

 What model configurations should be run? 
 How long should the runs be? 
 How many runs should be performed? 
 How should the output be interpreted and 

analyzed? 
 What is the most efficient way to perform the 

runs? 
These questions, among others, are what one has to deal 
with when trying to design simulation experiments. In a 
stochastic simulation like the ATTRS case study, one 
would really like to know all about the distributions of 
the output variables. Usually one has to settle for various 
summary measures of the output distributions. 
Traditionally, people have focused on estimating the 
expected value (or mean) of the output variable 
distribution and this can be of great interest. 
For people without statistical training, it can be difficult 
to organize information about the system under study in 
a way that aids the design of the experiment. To help 
clarify this process, the design task itself can be 
decomposed into five separate steps. 

1. Define the goals of the experiment. 
2. Identify and classify the independent and 

dependent variables. 
3. Choose a probability model for the behaviour of 

the simulation model. 
4. Choose an experiment design plan. 
5. Validate the properties of the chosen design. 

 
After defining the goals, an appropriate DOE plan 
should be chosen. One determines the number of distinct 

model settings to be run and the specific values of the 
factors for each of these runs. There are many strategies 
for selecting the number of runs and the factor settings 
for each run. These include random designs, 
combinatorial designs, mixture designs, sequential 
designs, factorial designs, and optimal designs (one of 
the latter is chosen in the ATTRS case study in this 
section). In this paper one particular method of 
experimental design applied to software testing is 
emphasized, i.e. orthogonal array-based robust testing 
(OART) [6,31], which is based on Taguchi robust 
design; it has a mathematical foundation in linear 
algebra (specifically, Galois field theory) and began with 
Euler as Latin squares. This method is exploited in 
ATTRS field testing [6]. Black-box testing of software 
components and systems is indispensable and requires 
test data for all input parameters. The number of test 
cases needed for exhaustive testing, i.e. for all possible 
combinations of input data is usually extremely large – 
almost always too large for the allocated testing 
resources that are always limited. The only solution is 
intelligent test case generation to cut down costs and 
improve the quality of testing. The OART method has 
been used to test software from many diverse industries, 
e.g., telecommunications, automotive, and 
electromechanical systems. The users have typically 
reported a factor of 2-to-1 or better productivity 
improvement compared to traditional testing methods 
[6]. The number of tests needed for this method is 
similar to the number of tests needed for the one-factor-
at-a-time method, and with a proper software tool, the 
effort to generate the test plan can be small. Its ability to 
find faults is much better than the one-factor-at-a-time 
method and approaches 100 percent, especially when 
used in conjunction with code coverage analysis tools. 
The test cases generated by this method have the highest 
effectiveness, measured in terms of the number of faults 
detected per test. As an illustration, consider a simple 
scenario consisting of a system under test with 4 
components (factors designated as A, B, C and D 
respectively) each of which has 3 possible elements 
(levels designated as 1, 2, 3): 
There were three input variables in the field tests of 
ATTRS in our case study: A - the target speed with three 
levels (1 was 0 m/s, 2 was 150 m/s, 3 was 300m/s), B - 
the radar probability of target detection with three levels 
(1 was 70%, 2 was 80%, 3 was 100%, although the latter 
cannot be controlled accurately), and C - the radial 
acceleration of target manoeuvre with three levels (1 
was 0g, 2 was 3g, 3 was 6g). The L9 orthogonal array 
algorithm was applied as shown in Table 1 (the last 
column from the original L9 has been omitted). Results 
of the field test and simulation-based experiments that 
were run afterwards are shown in Table 2. Mean and 
standard deviation error (µ, σ) of the differences 
between the simulation-based experiments and the field 
trials were compared and it was found that the 
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confidence interval of differences for β = 1-α = 0.95 
were in the range of field trial experimental error. If 
field testing is used as the comparative system, the 
calibration radar then has 10 times lower error in target 
position estimation. The results of both experiments 
verify that the required automatic target tracking quality 
of ATTRS was fulfilled. Some computer-base 
simulation experiments and field trial results are shown 
in Figure 2 and 3. An exhaustive testing suite would 
require the set of test cases to be executed for 34 = 81 
possible configurations using the one-factor-at-a-time 
method. The OART algorithm L9 [6] calculates only 9 
combinations that are already sufficient to cover all pair-
wise component interactions as shown in Table 1. The 
rows correspond to test cases; the columns correspond to 
the test parameters. Thus, the first test case comprises 
level 1 for each parameter, i.e. it represents the 
combination A1, B1, C1, D1. The second test case 
comprises combination A1, B2, C2, D2, etc. An 
orthogonal array (OA) has the balancing property that, 
for each pair of columns, all parameter-level 
combinations occur an equal number of times. In OA 
L9, there are nine parameter-level combinations for each 
pair of columns, and each combination occurs once. By 
applying the algorithm based on orthogonal arrays and 
covering arrays, the overall number of test cases can be 

dramatically reduced compared to exhaustive testing, yet 
with the certainty that test coverage of all pair-wise 
input parameter or software component (i.e. 
configuration) combinations is achieved as in the 
ATTRSt example. Suppose that another SUT has 13 
input parameters each with 3 input parameter domains. 
 
 
Table 1. L9 Orthogonal Array Design Experiment plan 
 

Test 

Case No. 

Test Parameters 

 A B C D 
1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 2. Simulation result of straight-line target attack: target speed v=150 [m/s], Pd=0.94, and parabolic-curvilinear 
trajectory: v=300 [m/s], Pd=1.0, manoeuvre 6g. 
  
Then exhaustive testing would require 313 = 1,594,323 
possible input parameter combinations. The OART 
algorithm calculates just 15 configurations that are 
sufficient to cover all pair-wise input parameter 

interactions. The OART method is applicable to unit 
testing, integration and system scenario black-box 
testing, configuration testing, interoperability testing, 
and web testing.  
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Fig. 3. Some field trial results with same conditions as in simulation cases shown on Fig. 2 
 
Table 2. L9 OART compared results 
 

Test Results N
o.
T Field test Simulation 
 µR 

[m] 
σR 

[m] 
µθ 

[mrad] 
     σθ 
 [mrad] 

µR 

[m] 
σR 

[m] 
µθ 

 [mrad]
σθ 

[mrad] 

1 105 70 20 10 95 65 16 8 

2 78 23 10 4 73 21 9 4 

3 77 21 9 3 72 20 7 3 

4 104 68 18 9 92 62 15 7 

5 82 41 13 8 80 40 12 7 

6 76 19 8 3 69 17 8 2 

7 102 72 17 9 91 61 15 7 

8 53 36 6 12 54 35 6 10 

9 43 34 3 11 42 31 4 11 

 
 
5 Using simulation as a test oracle  
There are many areas where simulation can be applied to 
support software development and acquisition. Such 
areas include requirements specification, process 
improvement, architecture trade-off analysis, and 
software testing. Of particular interest here is the use of 
simulation as a test oracle as described in our articles 
[6,12,14,20]. The term oracle may be used to mean 
several things in testing—the process of generating 
expected results, the expected results themselves, or the 
answer to whether or not the actual results are as 
expected. 
The testing process is typically systematic in test data 
selection and test execution. For the most part, however, 
the effective use of test oracles has been neglected, even 
though they are a critical component of an effective 
method for designing in software quality for testability 

that should include the concurrent development of test 
oracles in the testing process [6,12,42]. Oracle 
development can represent a significant effort, which 
may increase design and implementation costs; 
however; overall testing and maintenance costs should 
be reduced. Oracle development must therefore be 
carefully integrated into the software 
development/testing life cycle. Oracles must be 
designed, verified and validated for unit testing, through 
subsystems testing (integration testing) up to system 
testing in a systematic, disciplined and controlled 
manner. Test oracles prescribe acceptable behaviour for 
test execution. In the absence of judging test results with 
oracles, i.e. use of a reference system, testing does not 
achieve its goal of revealing failures or assuring correct 
behaviour in a practical manner – manual result 
checking is neither reliable nor cost-effective. 
In much of the research literature on software test case 
generation or test set adequacy, the availability of 
oracles is either explicitly or tacitly assumed, but 
applicable oracles are not described. In current industrial 
software testing practice, the oracle is often a human 
being. The most significant oracle characteristics are: 
Relying on a human to assess program behaviour has 
two evident drawbacks: accuracy and cost. While the 
human “eyeball oracle” has an advantage over more 
technical means in interpreting incomplete, natural-
language specifications, humans are prone to error when 
assessing complex behaviour or detailed, precise 
specifications, and the accuracy of the eyeball oracle 
drops precipitously with increases in the number of test 
runs to be evaluated. Automated test oracles are required 
for running large numbers of tests. An ideal test oracle 
would satisfy desirable properties of program 
specifications, such as being complete but avoiding 
over-specification, while also being efficiently 
checkable. These properties are in conflict, and many of 
the interesting issues and trade-offs in the design of test 
oracle systems come in various ways as those tensions 
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between desirable properties of specifications and 
necessary properties of implementations are resolved. 
When simulation is used as an oracle, it tends to take on 
more of the capabilities of a “real” specification 
language, or provides more powerful facilities for 
deriving run-time checks from external specifications. 
Approaches to bridging the gap usually involve some 
combination of restricting the language to what can be 
effectively or efficiently checked (e.g. disallowing 
quantification over infinite sets), mapping 
implementation entities to specification-level entities, 
and/or taking advantage of the peculiarities of particular 
application domains. 
The research literature on test oracles is a relatively 
small part of the entire research literature on software 
testing Weyuker has set forth some of the basic 
problems and argued that truly general test oracles are 
often unobtainable [43]. Some older proposals base their 
analysis either on the availability of pre-computed 
input/output pairs [42] or on a previous version of the 
same program, which is presumed to be correct. The 
latter hypothesis sometimes applies to regression testing, 
but is not sufficient in the general case. The former 
hypothesis is usually too simplistic: being able to derive 
a significant set of input/output pairs would imply the 
capability of analyzing the system outcome. Computer-
based simulation at various levels of SUT abstraction 
can serve as a test oracle, which is able to derive a 
significant set of input/output pairs. 
A simulation-centric development environment is a 
developer’s dream, especially in the development of 
embedded real-time systems. It directly provides the 
many advantages inherent to software over hardware, 
reducing costs, risk, and schedule. These advantages are 
now briefly enumerated. 
Control and early availability: The simulator can be 
executed a single-step at a time; it provides breakpoints 
triggered by expressions of arbitrary complexity; it can 
checkpoint everything while recording all intermediate 
variables that can serve as test cases for input variables 
or expected output variables depending on the simulated 
level of system abstraction; and it can be dramatically 
reconfigured in a matter of moments. The simulator 
generally has a shorter development cycle than hardware 
of comparable fidelity, and so can be available earlier in 
the project life cycle. Developers can begin work on a 
full-fidelity platform, rather than constructing ad hoc 
scaffolding for their individual areas of concern. 
Hardware/software design trade-offs can be explored 
before hardware is developed – no more tedious days 
with a logic analyzer trying to find an interrupt problem 
or race condition. This aspect of simulation satisfies 
several of the required characteristics of test oracles: 
predicting speed and short oracle execution time. 
Visibility: The full state of the system, at any instant, is 
easily examined, check-pointed, logged, or modified. 
Formal analysis for deadlock potential or race conditions 

is feasible. Cache patterns can be analyzed in detail. 
Abuse of the hardware (e.g. use of an uninitialized 
variable, or failure to save the entire state during an 
interrupt, or setting both of the “never set this bit and 
that bit at the same time” bits) can be detected online 
and in situ. 
Extensibility: The behaviour of the simulator is easily 
extended, especially with the use of modern scripting 
subsystems that give the sophisticated power-user access 
to the full feature set of the tool. This aspect of 
simulation satisfies the required characteristic of test 
oracle evolution through changes in the SUT. 
Automated control: Hands-off and repeatable testing is 
encouraged because it is easy and natural to control the 
execution of the simulator via other software. Nightly 
integration testing is reasonable. Testing staff and 
schedule can be greatly reduced. 
Modularity: A simulator can be constructed in a highly 
modular fashion, so that more urgently needed models 
are built first and available to the users before the entire 
simulator has been built and validated. 
 
6  Trade-Off Studies and Prioritization, 
Cost-Performance trade-offs i.e. IOSTP 
optimization model  
 
• Trade-Off Studies and Prioritization  

To fully leverage the IOSTP framework, design 
trade-offs that optimize system requirements vs. cost 
should be performed during the earliest phases of the 
software life cycle.  Product/process performance 
parameters can be traded-off against design, 
development, testing, operations and support, training 
requirements, and overall life cycle costs.  System 
attributes such as mission capability, operational safety, 
system readiness, survivability, reliability, testability, 
maintainability, supportability, interoperability and 
affordability also need to be considered.  Quality 
Function Deployment (QFD) is one technique for 
evaluating trade-off scenarios [13,18].  It is predicated 
on gaining an understanding of what the end user really 
needs and expects.  The QFD methodology allows for 
tracking/tracing trade-offs through various levels of the 
project hierarchy, from requirements analysis, through 
the software development process, to operational and 
maintenance support. Testing represents a significant 
portion of the software development efforts that must be 
integrated in parallel to QFD. Risk-Based Optimization 
of Software Testing Process i.e. RBOSTP is part of a 
proven and documented IOSTP [12,17] designed to 
improve the efficiency and effectiveness of the testing 
effort assuring the low project risk of developing and 
maintaining high quality complex software systems 
within schedule and budget constraints [21,22]. Basic 
considerations of RBOSTP are described in [21] article 
and some RBOSTP implementation issues, experience 
results are presented in [22]. In our article [22], we 
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describe how RBOSTP combines Earned (Economic) 
Value Management (EVM) and Risk Management (RM) 
methodology through simulation-based software testing 
scenarios at various abstraction levels of the 
system/software under test activities to manage stable 
(predictable and controllable) software testing process at 
lowest risk, at an affordable price and time. 
 
Predicting future outcomes 
Both EVM and RM attempt to predict the future 
outcome of the project, based on information currently 
known about the project. For EVM this is achieved 
using calculated performance indices, with a range of 
formulae in use for calculating Estimate at Completion 
(EAC). Most of these formulae start with the Actual 
Cost of Work Performed to date (ACWP, or Actual Cost 
AC), and add the remaining budget adjusted to take 
account of performance to date (usually using the Cost 
Performance Index CPI, or using a combined 
Performance Efficiency Factor based on both CPI and 
SPI). These calculations of the Estimate to Complete 
(ETC) are used to extrapolate the ACWP plot for the 
remainder of the project to estimate where the project 
might finally end (EAC), as shown in Fig. 4. However 
calculating EAC in this way does not take explicit 
account of the effect of future risks on project outcome. 
One simple way to do this is by adding an amount into 
the EAC calculation to account for risk-weighted 
contingency or management reserve. RM predicts a 
range of possible futures by analyzing the combined 
effect of known risks and unknown uncertainty on the 
remainder of the project. When an integrated covering 
the uncompleted portion of the project, as in Fig. 5. In 
the same way that the initial spend baseline should be 
determined using both risk and earned value data, the 
remaining element of the project should also be 
estimated using both sets of information. 
It is also possible to use risk analysis results to show the 
effect of specific risks (threats or opportunities) on 
project performance as measured by earned value. Since 
the risk analysis includes both estimating uncertainty 
and discrete risks, the model can be used to perform 
“what-if” scenario analysis showing the effect of 
addressing particular risks. For example, if a key threat 
is modelled using a probabilistic branch, a “what-if” 
analysis can set the probability of the threat occurring to 
zero, simulating the result if that risk is removed. 
Similarly the effect of capturing key opportunities can 
also be shown.  
 
• Cost-Performance trade-offs i.e. IOSTP 

optimization model  
Activity-Based Costing (ABC), which focuses on those 
activities that bring a product to fruition, is considered a 
valuable tool for IOSTP framework cost analysis.  Costs 
are traced from IOSTP activities to products, based on 
the consumption of each product of those activities. 

 
Fig. 4 Risk-Based cumulative spend model (BCWS or 
PV) 

 
Fig. 5 Risk-Based calculation of remaining project 
performance 
  
The cost of the product is measured as the sum of all 
activities performed, including overheads, capital costs, 
etc. Stakeholders are most interested in the benefits that 
are available and the objectives that can be achieved. 
The benefit-based test reports present this clearly. 
Project management is most interested in the risks that 
block the benefits and objectives. The benefits-based 
test reports focus attention on the blocking risks so that 
the project manager can push harder to get the tests that 
matter through [22].If testers present risk and benefits 
based test reports, the pressure on testers is simply to 
execute the outstanding tests that provide information on 
risk. The pressure on developers is to fix the faults that 
block the tests and the risks of most concern. Testers 
need not worry so much about justifying doing more 
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testing, completing the test plan or downgrading “high 
severity” incidents to get through the acceptance criteria. 
The case for completing testing is always self-evident: 
has enough test evidence been produced to satisfy the 
stakeholders’ need to deem the risks of most concern 
closed? The information required by stakeholders to 
make a release decision with confidence might only be 
completely available when testing is completed. 
Otherwise, they have to take the known risks of release. 
How good is our testing? Our testing is good if we 
present good test evidence. Rather than getting so 
excited about the number of faults we find, our 
performance as testers is judged on how clear is the test 
evidence that we produce. If we can provide evidence to 
stakeholders for them to make a decision at an 
acceptable cost and we can squeeze this effort into the 
time we are given, we are doing a good testing job. This 
is a different way of thinking about testing.  The 
definition of good testing changes from one based on 
faults found to one based on the quality of information 
provided. Consider what might happen if, during a test 
stage, a regression test detects a fault. Because the test 
fails, the risk that this test partially addresses becomes 
open again. The risk-based test report may show risks 
being closed and then re-opened because regression 
faults are occurring. The report provides a clear 
indication that things are going wrong – bug fixes or 
enhancements are causing problems. The report brings 
these anomalies directly to the attention of management. 
Main task is development of a versatile Optimization 
Model (OM) for assessing the cost and effectiveness of 
alternative test, simulation, and evaluation strategies. 
The System/Software under test and corresponding 
testing strategy-scenario make up a closed-loop 
feedback control system. At the beginning of software 
testing our knowledge of the software under test is 
limited. As the system/software testing proceeds, more 
testing data are collected and our understanding of the 
software under test is improved. Software development 
process parameters (e.g. software quality, defect 
detection rates, cost etc.) of concern may be estimated 
and updated, and the software testing strategy is 
accordingly adjusted on-line. The important ingredients 
in successful implementation of IOSTP with embedded 
RBOSTP are (1) a thoughtful and thorough evaluation 
plan that covers the entire life cycle process, (2) early 
identification of all the tools and resources needed to 
execute that software test and evaluation process plan 
and timely investment in those resources, (3) assuring 
the credibility of the tools to be employed, and (4) once 
testing is accomplished, using the resulting data to 
improve the efficacy of the test event, models and 
simulations. In order to provide stable (controlled and 
predictable) IOSTP we integrated two of the leading 
approaches: Earned (Economic) Value Management 
(EVM) and Risk Management (RM). These stand out 
from other decision support techniques because both 

EVM and RM can and should be applied in an 
integrated way across the organization that some authors 
[40,41], recently recognized as Value-Based Testing. 
Starting at the project level, both EVM and RM offer 
powerful insights into factors affecting project 
performance. While this information is invaluable in 
assisting the project management task, it can also be 
rolled up to portfolio, program, departmental or 
corporate levels, through the use of consistent 
assessment and reporting frameworks. This integration 
methodology operates at two levels with exchange of 
information. The higher, decision making level takes 
into account the efficacy and costs of models, 
simulations, and other testing techniques in devising 
effective programs for acquiring necessary knowledge 
about the system under test. The lower, execution level 
considers the detailed dimensions of the system 
knowledge sought and the attributes of the models, 
simulations, and other testing techniques that make them 
more or less suitable to gather that knowledge. The OM 
is designed to allow planners to select combinations of 
M&S and/or tests that meet the knowledge acquisition 
objectives of the program. The model is designed to 
consider the system as a whole and to allocate resources 
to maximize the benefits and credibility of applied M&S 
class associated with the overall IOSTP with embedded 
RBOSTP program [22]. 
 
• Risk Management implemented in IOSTP 
In order to implement RBOST we use one of favorite 
schedule risk software includes RISK+ from C/S 
Solutions, Inc an add-in to Microsoft Project at 
www.cs-solutions,com. We suggest, also, @RISK for 
Project Professional from Palisade Corporation, also 
an add-in to Project at www.palisade.com, Pertmaster 
from Pertmaster LTD (UK) at www.pertmaster.com 
reads MS Project and Primavera files and performs 
simulations. Pertmaster is substituting for an older 
product, Monte Carlo from Primavera Systems which 
links to Primavera Project Planner (P3) 
www.primavera.com . Risk+ User’s Guide provides a 
basic introduction to the risk analysis process. The risk 
analysis process is divided into following five steps, as 
depicted in Fig. 6. 

11..  The first step is to plan our IOSTP with 
embedded RBOSTP project. It is important to note that 
the project must be a complete critical path network to 
achieve meaningful risk analysis results. Characteristics 
of a good critical path network model are: 

  There are no constraint dates.  
  Lowest level tasks have both 

predecessors and successors.  
  Over 80% of the relationships are finish 

to start.  
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Fig. 6 The risk analysis process implemented in RBOSTP 

In the Risk + tutorial, we use the DEMO.MPP project 
file, which has the characteristics of a good critical path 
network model. Since the scheduling process itself is 
well covered in the Project manual we won't repeat it 
here. 
22..  The second step is to identify the key or high 
risk tasks for which statistical data will be collected. 
Risk + calls these Reporting Tasks. Collecting data on 
every task is possible; however, it adds little value and 
consumes valuable system resources. In this step you 
should also identify the Preview Task to be displayed 
during simulation processing. 
33..  The third step requires the entry of risk 
parameters for each non-summary task. For each non-
summary task enter a low, high, and a most likely 
estimate for duration and/or cost. Next, assign a 
probability distribution curve to the cost and duration 
ranges. The probability distribution curve guides Risk + 
in the selection of sample costs and durations within the 
specified range. See the section titled "Selecting a 
Probability Distribution Curve" in the Risk+ manual for 
more information on selecting a curve type. Update 
options such as "Quick Setup" and "Global Edit" can 
dramatically reduce the effort required to update the risk 
parameters. 
44..  The fourth step is to run the risk analysis. Enter 
the number of iterations to run for the simulation, and 
select the options related to the collection of schedule 
and cost data. For each iteration of the simulation, the 
Monte Carlo engine will select a random duration and 
cost for each task (based upon its range of inputs and its 
probability distribution curve), and recalculate the entire 
schedule network. Results from each iteration are stored 
for later analysis. 
55..  The final and fifth step is to analyze the 
simulation results. Depending on the options selected, 
Risk + will generate one or more of the following 
outputs: 

• Earliest, expected, and latest completion date for 
each reporting task  
• Graphical and tabular displays of the completion 
date distribution for each reporting task  
• The standard deviation and confidence interval 
for the completion date distribution for each 
reporting task  
• The criticality index (percentage of time on the 
critical path) for each task  
• The duration mean and standard deviation for 
each task  
• Minimum, expected, and maximum cost for the 
total project  
• Graphical and tabular displays of cost 
distribution for the total project  
• The standard deviation and confidence interval 
for cost at the total project level  

Risk + provides a number of predefined reports and 
views to assist in analyzing these outputs. In addition, 
you can use Project's reporting facilities to generate 
custom reports to suit your particular needs.  
Project cost and schedule estimates often seem to be 
disconnected. When the optimistic estimate of schedule 
is retained, in the face of the facts to the contrary, while 
producing an estimate of cost, cost is underestimated. 
Further, when the risk of schedule is disregarded in 
estimating cost risk, that cost risk is underestimated. In 
reality cost and schedule are related and both estimates 
must include risk factors of this estimating process 
because of uncertainty of test tasks’ cost and time 
estimation that RBOSTP optimization model testing 
includes and described by equation (1) with constraints 
in our article [22]. The strategy for integration of 
schedule and risk begins with an analysis of the risk of 
the schedule [21,22].  
 
• Critical path method scheduling - some 
important reservations     
 
The critical path method (CPM) is a key tool for 
managing project schedules. A schedule "network" 
represents the project strategy or plan.  CPM computes 
the shortest project completion duration and earliest 
completion date.  The longest path through the network 
is called the "critical path." According to CPM, any 
delay on the critical path will delay the project. On the 
one hand, CPM is traditional and well-accepted. It is 
essential for developing the logic of the project work 
and for managing the day-to-day project activities. On 
the other hand, the accuracy of CPM completion date 
forecast depends on  every task taking just as long as its 
duration estimate indicates – in short, CPM is accurate 
only if everything goes according to plan.  
Experienced project managers realize that real projects 
do not often go according to plan:  
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• The estimates of activity durations are at best 
careful estimates of future work and at worst 
just guesses or unrealistically short, calculated 
by how much time you have rather than how 
long the work takes.  

• Even if the activity durations are most likely 
estimates, the CPM completion date is not the 
most likely project completion date.  

• The path identified as the "critical path" may not 
be the one that will be most likely to delay the 
project and which may need management 
attention.  

Is there some method of analysis and planning that can 
improve the accuracy of our scheduling? Yes, there is, 
and it is schedule risk analysis in three steps. 
 
Case 1: Three Steps to a Successful Schedule Risk Analysis 
The three steps to a successful risk analysis are described. 
They are: (1) create the CPM schedule for the project, (2) 
estimate the uncertainty in the activity durations with low and 
high ranges, and (3) perform a risk analysis of the schedule, 
using a Monte Carlo simulation method. 
 
Step 1: A CPM Schedule 
Assume a simple project with two activities and a finish 
milestone. Suppose the durations are set at 40 working days 
for A101 and 70 working days for A102. If this project is 
scheduled to start on January 2, 2000, CPM shows that this 
simple project will take 110 working days (40 + 70 = 110) and 
complete on June 2, 2000 (see Figure 7, below) 
 
Step 2: The Activity Duration Ranges 
To do a risk analysis we need to estimate duration ranges for 
each activity which are based on the low (optimistic) and high 
(pessimistic) scenarios for the work on the activity.  High 
ranges, for instance, can be determined by examining the 
various things that could go wrong such as technical 
problems, site conditions, supplier delays, and permitting 
issues -- factors which are often called "risk drivers."  
These duration ranges are determined by searching interviews 
of the project manager and the staff who made the estimates, 
will manage the project and are familiar with the possible 
problems. The ranges of pessimistic (Max Rdur) and 
optimistic (Min Rdur) durations for the two-activity schedule 
are shown in Fig. 7.  
Step 3: Simulate the Project Schedule 
Once the activities' duration ranges and distributions have 
been determined, the schedule risk analysis can determine 
how risky the entire project schedule is.  

• How likely we to overrun the completion are date of 
June 2, 2000?  Is June 2 even the "most likely" date 
for this simple project?  If not, what completion date 
is most likely?  

• How many days are needed for a contingency to 
reduce the overrun risk exposure to an acceptable 
level?  

• Which activities are the most likely to delay the 
project?  

 

Fig. 7 Test events duration distribution 

The most common method of determining schedule overrun 
risk is to simulate the project by solving (or iterating) it 
hundreds or thousands of times on the computer. This is called 
Monte Carlo simulation, and it combines the distributions of 
uncertain duration accurately. 
Suppose that the risk analyst determines that 2,500 iterations 
will be sufficient for the accuracy needed. The result of that 
simulation is a cumulative likelihood distribution that 
represents the likelihood of the project completing on or 
before each possible date.  This distribution is shown in Fig. 8 
below: 
 

 

Fig. 8 The result of simulation of a cumulative likelihood 
distribution of completion date 

From the risk analysis we can see: 

• The CPM completion date of June 2, 2000 is 
between 10% and 15% likely to be adequate for this 
simple project. Placing confidence in completion by 
June 2 is very likely to get the contractor and 
customer in trouble.  

• The most likely completion date is close to June 19, 
not June 2 as predicted by CPM. The common sense 
notion, that adding "most likely" durations along 
a critical path will result in the most likely project 
completion date, is simply wrong, in all cases.  

• The average completion date is June 23, 2000.  If this 
simple project were done 100 times, its average 
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completion would be about a 3-week overrun of the 
CPM duration, providing for the holidays.  

• The results show that July 11, 2000 has an 80% 
likelihood of success.  This is a level of protection 
from overruns that might be required for a 
conservative contractor or owner/customer. Hence, a 
6-week contingency is needed to reduce the risk of 
overrun to an acceptable level for this conservative 
company.  

The CPM project end-date of June 2 is highly optimistic. Any 
owner, customer or contractor who agrees to that date is in 
trouble now on this project. Without a risk analysis, the 
existence or degree of trouble is unknown.  

Risk Analysis Topics - the Merge Bias 
This is only a 2-activity project. Real life projects are 
subject to more risk than this. 
Most projects have activities planned simultaneously 
along parallel paths. At the end of the project, and often 
at important internal milestones, these paths converge.  
Examples include; (a) piping, duct, framing and 
electrical work must be completed before an inspection 
can be conducted, or (b) several components that must 
be finished before systems integration and testing can be 
done. Most project overrun risk occurs at path 
convergence (or merge) points because projects can be 
delayed because a delay on any one of the paths will 
delay the work. This is the "merge bias" at work. To 
see the merge bias, consider expanding the simple 
schedule above to a 2-path project where the second 
path is exactly the same as the one in Figure 1 above.  
Clearly, CPM analysis shows that this project, too, will 
finish at the same time as the one-path schedule does, 
June 2, 2000. When we analyze the risk of this two-path 
schedule, however, we see that it is riskier because 
either path can cause an overrun.  Compare Fig. 9 results 
to those in Fig. 8 above. 

• The average completion date is now July 6, 2000, not 
June 23.  

• The CPM date of June 2, 2000 is now less than 5% 
likely, not 10 – 15%.  

• The 80th percentile is now July 20, 2000 rather than 
July 11.  

These results reflect the working of the merge bias when 
parallel paths converge. 

• The role of the Six Sigma strategy in software 
development/testing process 

In order to assure controlled and stable (predictive) 
testing process in time, budget and software quality 
space we need to model, measure and analyze software-
testing process by applying Six Sigma methodology 
across the IOSTP solution as presented in our works 
[15-19]. 

Fig. 9 Two-path schedule cumulative likelihood 
distribution of completion date simulation result 

The name, Six Sigma, derives from a statistical measure 
of a process’s capability relative to customer 
specifications.  Six Sigma is a mantra that many of the 
most successful organizations in the world swear by and 
the trend is getting hotter by the day. Six Sigma insists 
on active management engagement and involvement, it 
insists on financial business case for every 
improvement, it insists on focusing on only the most 
important business problems, and it provides clearly 
defined methodology, tools, role definitions, and metrics 
to ensure success. So, what has this to do with software? 
The key idea to be examined in this article is the notion 
that estimated costs, schedule delays, software 
functionality or quality of software projects are often 
different than expected based on industry experience. 
Six Sigma tools and methods can reduce these risks 
dramatically i.e. Six Sigma (6σ) deployment in 
SDP/STP called DMAIC for “Define, Measure, 
Analyze, Improve, and Control”, because it organizes 
the intelligent control and improvement of existing 
software test process [15-16]. Experience with 6σ has 
demonstrated, in many different businesses and industry 
segments that the payoff can be quite substantial, but 
that it is also critically dependent on how it is deployed. 
The main contribution of our [15-19] works is mapping 
best practices in Software Engineering, Design of 
Experiments, Statistical Process Control, Risk 
Management, Modeling & Simulation, Robust Test and 
V&V etc. to deploy Six Sigma to the STP. In order to 
significantly improve software testing efficiency and 
effectiveness for the detection and removal of 
requirements and design defects in our framework of 
IOSTP with deployed Six Sigma strategy, during 3 years 
of our 6σ deployment to STP we calculated overall 
value returned on each dollar invested i.e. ROI of 100:1.   
 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp650-665)



 15

7 Conclusions 
In software development organizations, increased complexity 
of product, shortened development cycles, and higher 
customer expectations of quality proves that software testing 
has become extremely important software engineering 
activity. Software development activities, in every phase, are 
error prone so defects play a crucial role in software 
development. At the beginning of software testing task we 
encounter the question: How to inspect the results of 
executing test and reveal failures? What is risk to finish 
project within budget, time and reach required software 
performance i.e. quality? How does one measure test 
effectiveness, efficacy, benefits, risks (confidence) of project 
success, availability of resources, budget, time allocated to 
STP? How does one plan, estimate, predict, control, evaluate 
and choose “the best” test scenario among hundreds of 
possible (considered, available, feasible) number of test events 
(test cases)? IOSTP framework solved these issues combining 
few engineering and scientific areas such as: Design of 
Experiments, Modeling & Simulation, integrated practical 
software measurement, Six Sigma strategy, Earned 
(Economic) Value Management (EVM) and Risk 
Management (RM) methodology through simulation-based 
software testing scenarios at various abstraction levels of the 
SUT to manage stable (predictable and controllable) software 
testing process at lowest risk, at an affordable price and time. 
In order to significantly improve software testing efficiency 
and effectiveness for the detection and removal of 
requirements and design defects in our framework of IOSTP, 
during 3 years of  our IOSTP framework deployment to STP 
we calculated overall value returned on each dollar invested 
i.e. ROI of 100:1.   
 
Lessons Learned 
It is our dream that software engineering will become as much 
of an engineering discipline as the others; users will have just 
as much confidence that their software is as defect free as 
their cars, highway bridges, and aircraft. Test should be used 
to certify that the software components implement their 
designs, and that these designs satisfy their requirements. 
Analyzing testing requirements should be done in parallel 
with analyzing the software components' requirements. Tests 
should be designed in parallel with designing the components. 
Test implementation should occur in parallel with 
implementing the components, and developing integration 
tests should be done in parallel with integration. The source of 
software defects is a lack of discipline in proper requirements 
analysis, design, and implementation processes. Testing must 
physically occur after implementation, so reliance on it to 
detect defects delays their correction. Until software defects 
are attacked at their source, software will continue to be 
developed as if it were an art form rather than a craft, 
engineering discipline, or a science. 
Treating software testing as a discipline is a more useful 
analog than treating it as an art or a craft. We are not artists 
whose brains are wired at birth to excel in quality assurance. 
We are not craftsmen who perfect their skill with on-the-job 
practice. If we are, then it is likely that full mastery of the 
discipline of software testing will elude us. We may become 
good, indeed quite good, but still fall short of achieving black 
belt - status. Mastery of software testing requires discipline 
and training.  

A software testing training regime should promote 
understanding of fundamentals. I suggest three specific areas 
of pursuit to guide anyone’s training: 
First and foremost, master software testers should understand 
software. What can software do? What external resources 
does it use to do it? What are its major behaviors? How does it 
interact with its environment? The answers to these questions 
have nothing to do with practice and everything to do with 
training. One could practice for years and not gain such 
understanding.  
Second, master software testers should understand software 
faults. How do developers create faults? Are some coding 
practices or programming languages especially prone to 
certain types of faults? Are certain faults more likely for 
certain types of software behavior? How do specific faults 
manifest themselves as failures?  
Third, master software testers should understand software 
failure. How and why does software fail? Are there symptoms 
of software failure that give us clues to the health of an 
application? Are some features systemically problematic? 
How does one drive certain features to failure?  
Understanding software, faults and failures is the first step to 
treating software testing as a discipline. Treating software as a 
discipline is the first step toward mastering software quality. 
And there is more, always more to learn. Discipline is a 
lifelong pursuit. If you trick yourself into thinking you have 
all the answers, then mastery will elude you. But training 
builds knowledge so the pursuit itself is worthwhile whether 
or not you ever reach the summit. 
Perhaps we need to embrace Tester Pride and let the world 
know about the contributions we make.  
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