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Abstract: We consider discrete optimization problems with the objective functions which can be defined
as a response to a controllable real-time process, or obtained through computer simulation. To solve the
problems, a random search algorithm and its parallel implementation are developed. A performance
analysis of both serial and parallel algorithms is given, and related numerical results are discussed.
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1 Introduction

Together with other global optimization tech-
niques [1, 2, 3, 4], including Simulated Anneal-
ing, evolutionary algorithms, and the Tunneling
method, random search presents a powerful ap-
proach to solving discrete optimization problems
when the objective function is too complex to ob-
tain the solution analytically, or does not have
an appropriate analytical representation. One
can consider the functions with their values being
obtained as a response from a controllable real-
time process, or being evaluated through com-
puter simulation. The optimization problems be-
come even more difficult to solve if the evaluation
of the function presents a very time-consuming
procedure as is normally the case when the func-
tion is determined via computer simulation.

To solve the difficult optimization problems
above, we propose a random search technique
based on the Branch and Probability Bound
(BPB) approach introduced in [5] and further de-
veloped in [6, 4, 7]. The BPB approach actu-
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ally combines the usual branch and bound search
scheme with statistical procedures of parameter
estimation based on random sampling.

The key feature of the BPB approach is that it
allows one to examine several regions within a fea-
sible set concurrently in a natural way. Therefore,
when solving multiextremal optimization prob-
lems, BPB algorithms normally offer an advan-
tage over the other global optimization techniques
that concentrate the search only on a single feasi-
ble region, and so could easily miss the solution.

If the sampling procedure including evaluation
of the objective function at the sample points
takes much more time than the core part of a
search algorithm, it is quite natural to arrange
the procedure so that it could work in parallel.

In this paper, we present a BPB random search
algorithm together with its parallel implementa-
tion. A performance analysis of the parallel im-
plementation is given based on solution of some
test problems. As our computational experience
shows, the parallel algorithm has a quite good po-
tential to speedup the solution time when evalua-
tion of the objective function is time-consuming.



2 Problem and Solution Approach
We consider the problem of finding

z = argmin f(z),

where X is a discrete feasible set, and f is a real-
valued function. As examples of X, one can con-

sider the set of integer vectors = = (z1,...,2y)
with their components z; € {1,...,m} for each
1 =1,...,n, or the set of all permutations from

the permutation group of order n.

In order to solve the problem, we propose a
global random search algorithm based on the BPB
approach. As with many other adaptive random
search techniques, the algorithm actually employs
random sampling with both the feasible set and
the sample probability distribution over the set
being modified with each new iteration designed
to exploit information about the function behav-
ior, obtained in the course of the previous search.

The BPB approach offers an efficient technique
of reducing the feasible set and rebuilding the
sample distribution. It involves the partitioning
of the feasible set into subsets followed by a statis-
tical procedure which estimates the prospective-
ness of each subset for further consideration. The
procedure evaluates a criterion based on sample
data, which has a two-fold implementation. It
allows one to reduce the feasible set by removing
the subsets that have a low criterion, and so could
hardly contain the solution.

On the other hand, evaluation of the criterion
plays the key role in rebuilding the sample dis-
tribution. In fact, the new distribution is defined
in such a way that it provides for more intensive
sampling resulting in more promising subsets with
higher values of the prospectiveness criterion.

3 Basic Components of the Algorithm
3.1 Prospectiveness Criterion

Evaluation of prospectiveness of a subset for fur-
ther search provides the basis of BPB algorithms.
Consider a prospectiveness criterion introduced in
[5] (see also [4, 7]).

Let Z C X be a subset of the feasible set X,
= ={x1,...,2x} be a sample from a probability
distribution P(dz) over X, and y, is the mini-
mum value of the function f over =:

Y = min f(z).

TEE
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Assuming that =N Z # (), one can evaluate
y = f(z) for each z € EN Z to obtain a sample
T ={y1,...,yn}, where N =|=N Z| is the car-
dinality of 2N Z, and define y(1) < --- < y(y) to
be the ordered statistics associated with Y.

The prospectiveness criterion for the subset Z
is defined as

v=2)= (1- (W))k 1)

where k is an integer, and « is a parameter.

As it has been shown in [5], the criterion has a
natural statistical interpretation. If £ — oo and
k?/N — 0 as N — oo, then p=(Z) converges to
the probability that

. <.
min f(z) < y.

In practice, the value of k can be taken ac-

cording to the following conditions. If N > 10,

then
o — [N/10], if N < 100,
10, if N> 100;

otherwise, one has to expand the sample = until
N =|2nZ| > 10, and then to try to evaluate the
criterion once again.

The parameter « is actually determined by
the behavior of the function f on the entire fea-
sible set X, and it is normally unknown. To es-
timate «, suppose that Yy < -+ < Y(n) are or-
dered statistics corresponding to the entire sample
= over X. It can be shown [5], that the estimate

a=1n5 /ln Yk41) 7 YW 2)
Ym+1) — Y1)

converges to «, if k — oo, k*/N — 0, and
m/k — 0.2 as N — oo. To evaluate &, one
normally takes k=10, m =2, and N > 100.

3.2 Representation of the Feasible Set

At each iteration of the algorithm, the current fea-
sible set X is represented as X = Z; U---U Z,
where Z;, j =1,...,k, are subsets of a common
simple structure. The basic subset type, hyper-
balls or hypercubes with respect to a metric p are
normally taken to provide for efficient partitioning
and sampling procedures. Since for some discrete
spaces (e.g., permutation groups), the concept of
a hypercube is not appropriate, we restrict our-
selves to hyperballs B,(z,p) = {z|p(z,z) < r},
where r is the radius, and z is a center.



Starting with a hyperball Z = B,(z,p) of ara-
dius r = R, where R is large enough to cover the
initial set X at the first iteration, the algorithm
consecutively decrements the radius of hyperballs
with every new iteration so as to allow for reduc-
tion of the feasible set and thereby concentrating
the search on more promising subsets.

3.3 Reduction and Partition of the Sets
The reduction procedure is based on the parti-
tioning of the current feasible set X into a sub-
set Z and its complement X \ Z. In order to
decide, if the complement can be removed, the
procedure first evaluates its related criterion (1)
to get v = po(X \ Z), where © is the set of all
sample points currently available. If the value of
~ appears to be less than the fixed low bound J,
which determines the lowest level for subsets to be
considered as candidates for further search, then
the complement is removed.

The procedure actually combines reduction of
the feasible set and partition of the reduced set
into subsets, and can be described in more detail
as follows. Suppose that r is the common ra-
dius of hyperballs, and ¢ is the low bound for the
criterion (1). Let us define

21 :argminf(:v), A :BT(ZDP)?
€O
and consider the value of v; = (X \ Z1).

If v1 < 0, then the subset X \ Z; can be
removed since it has a very low prospectiveness
level. Otherwise, when -1 > 4, the procedure has
to be continued. Now we take

zp =arg min f(z), Zy = Br(22,p).

€O\ Z1

After evaluation of v = pe (X \(Z1UZ3)) the
procedure may be continued or ended depending
on the value of ~s. If continued, the procedure is
repeated as long as there is a subset to remove.

It may appear that there are not enough sam-
ple points available to evaluate the criterion. In
this case, one has to stop the procedure, go back
to extend the sample ©, and then start the pro-
cedure from the beginning.

Suppose that the procedure is repeated k&
times before meeting the condition of removing
a subset. Upon completion of the procedure, we
have the current feasible set X reduced to the
union ZyU---UZg, and the current set of sample
points © reduced to ©N (Z; U---U Zy).
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3.4 Sample Probability Distribution
To make a decision on how to reduce the current
feasible set, the algorithm implements a statistical
criterion based on random sampling over the set.
This makes the sampling procedure a key compo-
nent of the algorithm. The procedure applies a
probability distribution, which is first set to the
uniform distribution over the initial feasible set
X, and then modified with each new iteration.
Suppose that the current set X is formed by
k subsets (hyperballs): X = Z; U---U Z. The
distribution P(dz) over X can be defined as a
superposition of a probability distribution over
the set of hyperballs and the uniform distribu-
tion over each hyperball. With a probability p;
assigned to the hyperball Z;, we have

k
P(dr) = p;Q;(dx),
j=1

where Qj(dzr) denotes the uniform distribution
over Zj, j=1,...,k.

The algorithm sets probabilities pi,...,pg to
be proportional to the criterion (1) determined by
their related hyperballs. In this case, the prob-
abilities actually control the search, allowing the
algorithm to put more new sample points into the
hyperballs with higher probabilities.

To get the probabilities, one can evaluates
q; = pe(Z;) foreach j=1,... k, and then take

k
pj = Qj/ > tm.
m=1

Note that there may be not enough sample
points available when evaluating ¢; for some j.
In this case, it is quite natural to set ¢; = d. If
it appears that all g; equal 0, we set ¢; =1 for
every j=1,... k.

4 Random Search BPB Algorithm

Now we summarize the ideas described above in
the presentation of the entire search algorithm.
The algorithm actually offers both global and
local search capabilities. With each new iteration
of the global search, the algorithm decrements
the radius of the hyperballs by 1 until the ra-
dius achieves 1. All further iterations are per-
formed with the radius fixed at 1 until a local
minimum is found. We consider the best sample



point found as a local minimum if all its nearest
neighbors have already been examined, and are
so included in the current set of sample points.

Algorithm 1.

Step 1. Fix values for K, R and §. Set ¢ = 1,
ro =R, Tp =10, X1 =X, and Py(dx) to
be the uniform distribution over Xj.

Step 2. Get a sample Z; = {xgi), e ,:L‘g?} from
P;(dz). For each x € Z;, evaluate f(z).
Step 3. Set ©;, =T';,_1 UZ,;, and find
(#)

o (i) _ :
y»' =min f(x), 2. =argmin f(z).

Step 4. If ¢ =1, then evaluate a with (2).
Step 5. Put r; = max{r;_1 —1,1}.

Step 6. If r;, = 1 and Bl(ajgf),p) C ©;, then
STOP.

Step 7. Set k=1, Uéi) = 0.

Step 8. Find z,gi) =arg min f(z).
CEE@Z‘\UIS:Z_)I
Step 9. Set Z,gi) = Bri(z](f),p), U]gi) = Ulgi)luzlgi),

Step 10. If |©; N (X; \ U,ff))! > 10, then evaluate
71(;) = vo,(Xi \ Uk(f)). Otherwise, replace
I';_1 with ©;, and go to Step 2.

Step 11. If ’y,(:) > 0, then replace k with k + 1,
and go to Step 8.

Step 12. Set X;11 = U,gi).
Step 13. Set I'; = ©; N Ulgi).
Step 14. For each j =1,...,k, evaluate

/0 — er,(2), if ;0 2] > 10,
J J, otherwise.

Step 15. For each j =1,...,k, evaluate

k
Step 16. Set Pry1(dz) = > p\'Q\ (da).
j=1

Step 17. Replace ¢ with ¢+ 1, and go to Step 2.
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5 Parallel Version of the Algorithm

In many practical situations, generating of sample
points and/or evaluation of the objective function
at the points are a time-consuming task. At the
same time, the sampling procedure can normally
be split into independent subprocedures each pro-
ducing its own part of the sample. Therefore,
when a sampling procedure takes sufficiently more
time than the other steps of the algorithm, one
can get higher performance by rearranging the
procedure to work in parallel.

To investigate the performance, both serial
and parallel versions of the algorithm were coded
in C4++ under the Linux RedHat 8.0 operating
system. The parallel code is based on LAM 6.5.9.
implementation [8] of the Message Passing Inter-
face (MPI) communication standard [9)].

The parallel application consists of two mod-
ules; first one intended to run on the master com-
puter, and the second designed to support slave
computers. The code running on the master con-
trols the communication with the slaves, and per-
forms all the steps of the algorithm except for the
sampling procedure.

The master computer starts operating by es-
tablishing connections and broadcasting some
general information, including the parameters n
and m of the feasible set, among the slave com-
puters. At each iteration of the algorithm, it
sends requests to all slaves to produce samples.
The request to a particular slave includes the cur-
rent radius of hyperballs, and its own list of hy-
perball centers accompanied by the numbers of
points to be generated in each hyperball.

The sample points and their related values of
the function are sent back to the master. Upon
completion of the current iteration, the next iter-
ation is initiated until the stop condition is met.

The software was tested on a cluster of Intel
Pentium II/ 500MHz/ 128Mb RAM/ 10Gb HDD
computers with 100BaseTX 100Mbit LAN.

6 Test Problems

To test the algorithm, simple unimodal and mul-
timodal functions are considered (see, e.g., [3] for
more examples). We assume them to be defined
on the set X of integer vectors x = (x1,...,zy)
with z; € {1,...,m} for each i = 1,...,n, pro-
vided that m is even, and m < n.

First, we consider an integer analog of the De



Jong’s function:

n

fla) = (xi —m/2)% (3)

=1

The function is unimodal with f(z,) = 0 at
the point z,. = (m/2,...,m/2).

The following integer function is of the Rast-
rigin type:

f(z) =nm+ Z(mz —m/2)?
i=1
—mecos(km(x; —m/2)/m), (4)

where k is an integer parameter. If k = 0, the
function coincides with De Jong’s function, and
it is unimodal. As k increases, the function be-
comes multimodal. It has the global minimum
f(zx) =0, where z, = (m/2,...,m/2).

The function

n n—1
f(z) = Z |z —m/2] + Z |zi — @ig1]
i=1 i=1
+ |xp —x1| (5)

has the local minimum f(:cgf)) = nli —m/2| at
:a(f) = (4,...,1), i =1,...,m; and the global min-
imum f(z,) =0 at z. = (m/2,...,m/2).

7 Serial Algorithm Tests

We begin with the results of testing a serial ver-
sion of the algorithm code, which actually does
not include any MPI support. A series of test runs
were performed with the test functions defined on
the feasible set X with n = 200, m = 50. The
low bound ¢ was set to 0.1, the sample size K
and the initial radius of hyperballs R were both
uniformly varied from 50 to 150 by 10.

Let S be the time spent generating the sam-
ples and evaluating the function (sampling time),
and A be the time the algorithm takes to utilize
the samples (algorithm time). The total solution
time of the algorithm can be represented as

Tg =S+ A. (6)

Finally, let us denote the total number of sam-
ple points examined by the algorithm during so-
lution process, as N, and define S; = S/N and
A1 = A/N to represent average sampling and al-
gorithm time for one sample point.
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In Table 1, we present a brief summary of the
test results for the serial algorithm for each test
function. The summary actually includes the av-
erage times and numbers of examined points, cal-
culated over the entire series of test runs.

Test Run time Point time
func- N (sec.) (msec.)
tion Ts S A S Ay

(3) | 132994 | 212 | 147 | 66 | 1.10 | 0.50
(4) | 129270 | 675 | 554 | 121 | 4.29 | 0.94
(5) | 199244 | 914 | 343 | 570 | 1.72 | 2.86

Table 1: Summary results for the test runs.

8 Parallel Algorithm Analysis

The total time the parallel algorithm takes to get
the solution can be written as

Tp = S/p+ A+C, (7)

where p is the number of slaves, C' is the time the
master spends on transmission of control/sample
data to/from slaves (communication time).

Clearly, with (6) and (7) the speedup the par-
allel algorithm can achieve using one master and
p > 1 slave computers, can be represented as

Ts S+ A

) = S S AT O

Let us denote the average data transmission
time for one sample point as C7. Assuming the
amount of control data the master sends to be well
below that of the sample data it receives, one can
expect C; ~ C/N. Now we can write

S1+ A
o(p) ~ Si/p+A1+Cr ®

With (8) one can examine the conditions re-
quired for the parallel algorithm to achieve a true
speedup, and estimate actual speedup in partic-
ular problems. Specifically, in order to get a
speedup o > 1, one should have

S
_S. p
C; p—1
If the algorithm time A; appears to be much

less than both the sampling time 57 and the com-
munication time C4, we have the speedup

T

S rp

TS /p+Ci rip

a(p)



Since at a fixed r it holds that o(p) — r
as p — 00, one can conclude that r presents
the maximum asymptotic speedup of the parallel
algorithm. Note, however, that actual speedup
can be much lower than the upper bound r.

To evaluate expected speedup, we need an es-
timate of the communication time for one sample
C1. Our computational experience shows that the
average time to transmit the point data is approx-
imately equal to 1 millisecond.

With C; = 1, and parameters S; and A;
taken from Table 1, one can apply (8) to evaluate
the speedup for any p > 1 (see Fig. 1).

Speedup
20 | //’—— _____
I (5)
R RS —
. (3)
0.0 A
I I I I I
0 5 10 15 20

Number of Slaves

Fig. 1: Predicted speedup for the test functions.

As it easy to see, one can expect an actual
speedup only for the function (4) having the best
value of r = S;/C; ~ 4.29. For the other
functions, any sufficient speedup can hardly be
achieved because of the low level of r = 1.10 for
(3), and a high magnitude of A; = 2.86 for (5).

In order to evaluate actual speedup for func-
tion (4), several series of test runs were performed
for each K = 50,100,150, and p = 1,2,3,4,5.
One series involves a particular run for every value
of R wvaried from 50 to 150 by 10. The average
total solution times over the values of R for each
series is represented in Fig. 2, where p = 0 cor-
responds to the serial version of the algorithm.

One can see that the best speedup achieved
was about 1.6-1.7 when using one master and 3
slave computers. Although the speedup appears
to be relatively small, it does demonstrate the po-
tential of parallelization. Since evaluation of the
functions involves only a few operations, the sam-
pling procedure does not take much time to pro-
duce samples. As the performance analysis shows,
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Fig. 2: Average total solution time.

if this procedure is time-consuming, one can ex-
pect to achieve even greater efficiency.
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