Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp120-125)

Speeding up Dirac’s Entropy Coder

HENDRIK EECKHAUT BENJAMIN SCHRAUWEN
JAN VAN CAMPENHOUT
Parallel Information Systems (PARIS)
Electronics and Information Systems (ELIS)
Ghent University (UGent)

St.-Pietersnieuwstraat 41, 9000 Gent, Belgium

MARK CHRISTTAENS

Abstract: The Dirac codec is a new prototype video coding algorithm from BBC R&D based on wavelet
technology. Compression-wise the algorithm is broadly competitive with the state-of-the-art video codecs
but computational-wise the execution time is currently poor. One of the large bottlenecks is the arithmetic
coder. Hence we took this part under investigation and replaced it with a faster variant, the M-coder,
that is also used in the H.264/AVC codec. The resulting coder is substantially faster. We reached a
convincing speedup. Thanks to an intelligent tuning of initialisation and adaption parameters the impact

of the compression performance is very limited.

Key-Words:
1 Introduction

In January 2003, BBC R&D produced a prototype
video coding algorithm, “Dirac” [1], based on wavelet
technology. The algorithm originally targeted high
definition video but has been further developed to
optimise it for Internet streaming resolutions and
seems broadly competitive with state-of-the-art video
codecs. The main philosophy behind the Dirac codec
is ‘keep it simple’ which is an ambitious aim since
video codecs, particularly those with state-of-the-art
performance, tend to be fearsomely complex.

The Dirac codec has been developed as a research
tool, not a product, as a basis for further develop-
ments. An experimental version of the code, written
in C4++, was released under an Open Source licence
agreement on 11th March 2004. For our experiments
we used the source code of version 0.5.1 of the Dirac
codec; the most recent version at the time of writing.

Dirac’s weakest point is currently its execution
time. Real time decoding is limited to smaller res-

Dirac video codec, arithmetic coding, M-coder

olutions, even for the latest processors. In this paper
we focus on the entropy coding part of the algorithm
which is responsible for a large portion of the decod-
ing time. Certainly for higher bit rates the arithmetic
coder is an obstinate bottleneck. Hardware accel-
eration with FPGAs could solve this [2], but is for
the time being not a general applicable solution. We
solve the problem by equipping Dirac with a less com-
putationally intense coder, a modified version of the
arithmetic coder also used in H.264/AVC [3], which

resulted in a much shorter execution ime.

This paper is organized as follows: In Section 2
we introduce the Dirac codec and describe its main
parts. In Section 3 we describe the arithmetic coder
of the Dirac codec. We pinpoint its main problem,
the arithmetic coder is to computationally expensive,
and we propose another arithmetic coder and report
on the benefits and disadvantages. Section 4 presents
the compression and timing results of the new coder
versus the original version. Finally Section 5 summa-
rizes our findings and concludes this work.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp120-125)

+ r\ Transform,
scaling and
N quantisation l
Scaling and
inverse
transform
WAL \
%

Entropy
coding

Motion
compensation

Motion
estimation

Motion vector
data

Figure 1: High-level overview of the Dirac en-
coder [1].

2 The Dirac Algorithm

Overall, the Dirac codec is a wavelet-based motion-
compensated codec. The coder has the architecture
shown in Figure 1, whilst the decoder performs the
inverse operations. There are four main elements or
modules to the coder:

Transform, scaling and quantisation:
Transform and scaling involves taking frame
data and applying a wavelet transform and
scaling the coefficients to perform quantisation.
For quantisation a rate distortion optimisation
algorithm is used to strip information from
the frame data that results in as little visual
distortion as possible.

Entropy Coding (EC): EC is illustrated in Fig-
ure 2 and consists of three stages: binarization,
context modeling and arithmetic coding (AC).
The purpose of the first stage is to provide a bit
stream with easily analysable statistics that can
be encoded using AC, which can adapt to those
statistics, reflecting any local statistical features.
The context modelling in Dirac is based on the
principle that whether a coefficient is small (or
zero, in particular) or not is well-predicted by
its neighbours and its parents. AC performs
lossless compression and is further elaborated in

Z' 1 N Context
"] modelling
Y
Binarization o| Arithmetic >
" N—-Nx0+1 coding

Figure 2: Entropy coding block diagram [1].

Section 3. The same infrastructure is applied to
quantised transform coefficients and to motion
vector (MV) data.

Motion estimation (ME): ME exploits temporal

redundancy in video streams by looking for sim-
ilarities between adjacent frames. Dirac imple-
ments hierarchical motion estimation and de-
fines three types of frame. Intra (I) frames
are coded without reference to other frames in
the sequence. Level 1 (L1) frames and Level
2 (L2) frames are both inter frames, that is
they are coded with reference to other previ-
ously coded frames. The difference between L1
and L2 frames is that L1 frames are also used
as temporal references for other frames, whereas
L2 frames are not.

Dirac uses Overlapped Block-based Motion
Compensation (OBMC) to avoid block-edge ar-
tifacts which would be expensive to code us-
ing wavelets. Dirac also provides Sub-pixel Mo-
tion Compensation with motion vectors to 1/8th
pixel accuracy.

Motion compensation (MC): MC is the inverse

operation of ME. It involves using the motion
vectors to predict the current frame in such a
way as to minimise the cost of encoding the
residual data (the difference between the actual
and the motion estimated frame). A trade off
is made between accuracy and motion vector bit
rate.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp120-125)

3 Arithmetic Coding

Arithmetic coding is an entropy coding technique
which assigns fractional length code words to the in-
put symbols provided that a good estimate of the
input distribution function (IDF) of each successive
input symbol is available. An arithmetic encoder
reaches its optimal compression ratio when the esti-
mated IDF equals the actual IDF. In fact, with per-
fect estimates, it is possible to reach the Shannon
entropy limit of coding efficiency (with an infinite
precision arithmetic coder).

3.1 Dirac’s Arithmetic Coder

A traditional technique to estimate the IDF of each
input symbol is to use a frequency table. Each
time an input symbol takes on a certain value, the
frequency count corresponding to that value is in-
creased. The probability that the next symbol will
take on a certain value is then estimated by its rela-
tive occurrence in the frequency table. The frequency
table is renormalised at regular intervals to prevent
overflow and to allow the tracking of non-stationary
IDF's. This technique is used in the Dirac codec.

To improve the IDF estimation, context mod-
elling is used: the symbol stream is split in several
sub streams with similar statistical properties which
improves estimation performance. For example in
Dirac, motion vectors and the various wavelet sub-
bands types are coded separately. In the Dirac codec
all context IDF estimates are initialized with equal
probability for 1 and 0.

Dirac’s AC implementation [1, 2] is computation-
ally very expensive since, in order to obtain an esti-
mate for the probability of a value, a division oper-
ation is to be performed. Also the AC itself uses a
multiplication to construct the fractional code words.
The decoding speed of the Dirac codec is currently
the most critical point to be considered, we will
thus focus on solving the computational issue without
compromising the compression performance to much.

3.2 A Faster Arithmetic Coder

Because Dirac is currently too slow, we have replaced
the Dirac AC with an AC which introduces several

approximations (which will degrade the compression
performance) but which has a much better computa-
tional performance.

The arithmetic codec used by H.264/AVC [3] (also
called M-coder) was inspired by the Q-coder [4, 5, 6]
and MQ-coder [7] but is faster and achieves bet-
ter compression than state-of-the-art MQ-coders [8|
(used for example in JPEG2000 [7]). It avoids the
overhead incurred by frequency counting by estimat-
ing the IDF using a finite state machine (FSM). The
state of the FSM is updated each time a new input
symbol arrives. With this state an estimate for the
IDF of the next input symbol is associated. The M-
coder is multiplication-free due to the use of precal-
culated tables and quantisation.

We used an in house developed, rigorous technique
which allows the M-coder to be tuned® to optimally
operate on a input stream with predefined character-
istics. The technique is based on a Markov model of
the IDF estimating FSM. It takes into account the
expected input stream and optimizes the estimated
IDF's such that an optimal compression is attained.
We are thus able to plug in the M-coder in Dirac and
tune it so that it optimally operates on the charac-
teristic symbol stream of Dirac. The optimization is
done by generating a trace file of all processed sym-
bols for a large benchmark movie and then generat-
ing a non-stationary statistical model for the various
contexts. Using these models the parameters of the
M-coder are tuned.

We also improved the context modelling: we intro-
duced many more context models and we initialised
the estimated IDFs for each of these context models
so that as little as possible warm-up time is needed.
As stated in [9], the gain of correctly initialising the
AC is modest but since the cost is almost zero — the
AC has to be initialised anyway — it is a welcome
improvement.

We introduced a total of 482 context models which
are almost the same models as those from original
Dirac algorithm: 50 models for motion vector data
and 16 models for subband data. But now the sub-
band models are also dependent on the color channel

#Only the estimated IDF table is changed. This table asso-
ciates an estimated IDF to each of the states of the FSM. The
FSM itself is left unchanged.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp120-125)

PSNR (mobile, CIF, 102 frames@25Hz)

52.5
504+ ™ psnr_orig
475—— \ psnr_new

e
425
m 40
2375 ,
g s
P 325 -
30
275
25

225

0 5000000 10000000

bits/s

15000000 20000000

Figure 3: PSNR wvs.
the “mobile” sequence.

bitrate for 102 CIF-frames of

(Y, U, V), the frame type (I, L1, L2) and the wavelet
band type (DC, LF, others). Note that only 16 of
them are used simultaneously; these are the 16 con-
texts used in this color channel, frame and wavelet
band type. A context model thus has become one
of the 16 old Dirac models plus an estimated IDF
initialisation which is dependent on color, frame and
band type.

4 Results

In Figure 3 we plotted the average PSNR for decoding
102 frames of the “foreman” sequence (CIFQ25Hz) at
different bit rates. The PSNR of each frame is calcu-
lated as follows. If Y; ;, U; j and V; j and Y/ ;, U] ; and
VZ’ ; are resp. the luminance and the two chrominance
channels of the original and reconstructed frame of

h x w pixels, then the PSNR is defined as follows:

2552%hw
V=Y -UF SV -V
1
The PSNR of the original and the new algorithm
is almost the same. The original AC is slightly better
but the difference is never larger than 0.5 dB. We also
measured the decoding time per frame for the same
bit rates as Figure 3 in Figure 4. The measurements
were done on a AMD Athlon 64 3500+ processor. As

10 10g10

Decoding time
(mobile, CIF, 102 frames@25Hz)

0.18

| |* decodingtime_orig

0.16

X decodingtime_new

@ 014
© /
£ o0.12
= /
()]
2 od //
-8 0.08
8 M',/'
© 0.06 M Mlﬂx/x/x/x/x/f/xf
0.04 — ITTEE
0.02
0 5000000 10000000 15000000 20000000

bits/s

Figure 4: Decoding time per frame vs. bitrate for 102
CIF-frames of the “mobile” sequence.

can be seen in Figure 4, the original algorithm never
reached real-time decoding (< 0.04s/frame). The
M-coder is real-time for bit rates up to 10 million bits
per second (~ 43 dB PSNR). Notice the exponential
behaviour of the original implementation versus the
linear behaviour of the M-coder. This is easily ex-
plained by the fact that the original algorithm needs
a multiplication and a division for each symbol. The
new version only uses lookups, additions and shift
operations.

We repeated the same experiment for 49 frames of
another sequence with a larger resolution (720 x 576
pixels): the “snowboard” sequence, that is available
on the Dirac website. The difference in PSNR is now
smaller. The difference in decoding time on the con-
trary is still much better for the new arithmetic coder.
It is more than two times faster for most bit rates.

Finally we also measured the coding performance
and decoding time for a high definition sequence
(“snowboard”) of 1280 by 720 pixels. The two PSNR-
curves of Figure 7 are now nearly indistinguishable.
The new decoder is again at least two times faster for
most bit rates, which confirms the previous conclu-
sions.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp120-125)

PSNR
(snowboard, 720x576, 49 frames@25Hz)

57.577 . psnr_orig
AN psnr_new

0 25000000 50000000 75000000
bits/s

PSNR
(snowboard, 1280x720, 27 frames@25Hz)
575
55T psnr_orig
52577\ psnr_new
—~ 501+
B 475
= s
Z 425
P w
375
35
325 /
307
275
0 25000000 50000000 75000000 100000000 125000000 150000000

bits/s

Figure 5: PSNR wvs. bitrate for 47 (720 x 576)-frames Figure 7: PSNR vs. bitrate for 27 (1280x720)-frames
of the “smowboard” sequence.

of the “smowboard” sequence.

Decoding time
(snowboard, 720x576, 49 frames@25Hz)

0.5
* decodingtime_ori
0.457] gtime._ong ad

X decodingtime_new

T 04 /
@ 035

£

= 03

2 /

5 025 /

o 0.2

© o015

0.1 / /
o.oséé:ﬂ/x/x/k

25000000 50000000 75000000
bits/s

decoding time (s)

Decoding time
(snowboard, 1280x720, 27 frames@25Hz)

1.2

1.144* decodingtime_orig ad
144X decodingtime_new /

0.9 //

0.8 /

0.7 /

06 /

05 — P—

0.4 M /

0.3 Mx/x/x/x,/x/

02 é«

o 0 50000000 100000000 150000000

bits/s

Figure 6: Decoding time per frame vs. bitrate for 47 Figure 8: Decoding time per frame vs. bitrate for 27

(720 x 576)-frames of the “snowboard” sequence.

(1280 x 720)-frames of the “snowboard” sequence.

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp120-125)

5 Conclusions

Replacing the original arithmetic coder algorithm of
the Dirac algorithm with an accurate configured M-
coder resulted in a much faster video codec. The
speedup is all the clearer as more symbols are de-
coded; for very high bit rates the new AD is three
times faster. Because we initialised the different con-
text models and perfected the different lookup-tables,
we were able to almost retain the original compres-
sion performance even though significant approxima-
tions were introduced in the AC.

Acknowledgement This research is supported by
LW.T. grant 020174, F.W.O. grant G.0021.03, by GOA
project 12.51B.02 of Ghent University.

References

[1] Davies T. The Dirac Algorithm.
http://dirac.sourceforge.net/documentation/algorithm/,
2005.

[2] Bleackley P.J. Hardware for Arithmetic Cod-
ing. Tech. rep., BBC R&D, 2005. URL

http://www.bbc.co.uk/rd/pubs/whp/whp112.shtml.

[3] Marpe D., Schwarz H., and Wiegand T. Context-
Based Adaptive Binary Arithmetic Coding in the
H.264/AVC Video Compression Standard. IEEE
Transactions on Clircuits and Systems for Video Tech-
nology, vol. 13(7), July 2003, pp. 620-636.

[4] Pennebaker W.B., Mitchell J.L., Langdon G.G.J., and
Arps R.B. An overview of the basic principles of the Q-
Coder adaptive binary arithmetic coder. IBM Journal
of Research and Development, vol. 32(6), November
1988, pp. 717-726.

[5] Pennebaker W.B. and Mitchell J.L. Probability Esti-
mation for the Q-Coder. IBM Journal of Research and
Development, vol. 32(6), November 1988, pp. 737-752.

[6] Mitchell J.L. and Pennebaker W.B. Optimal hardware
and software arithmetic coding procedures for the Q-
Coder. IBM Journal of Research and Development,
vol. 32(6), November 1988, pp. 727-736.

[7] Taubman D.S. and Marcellin M.W. JPEG2000, Image
Compression Fundamentals, Standards and Practice.
No. ISBN 0-7923-7519-X. Kluwer Academic Publish-
ers, Kluwer Academic Publishers Group Distribution
Centre Post Office Box 322 3300 AH Dordrecht The
Netherlands, 2002.

[8] Marpe D., Schwarz H., Blattermann G., Heising G.,
and Wiegand T. Context-Based Adaptive Binary
Arithmetic Coding in JVT/H.26L. Proc. IEEFE Inter-
national Conference on Image Processing (ICIP’02),
vol. 2, September 2002, pp. 513-516.

[9] Langdon G. and Rissanen J. Compression of black-
white images with arithmetic coding. IEEE Trans.
Commaunications, vol. 89(6), 1981, pp. 858-867.

