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Abstract

In this work, we apply the Generalized Hamiltonian forms
and observer approach to synchronize time-delay-feedback
Chua’s circuits to transmit confidential information. We
show by means of two communication schemes the quality
of the recovered information, and at the same time, we
have enhance the level of encryption security.
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1 Introduction

Chaos synchronization has attracted much attention in re-
cent years see e.g., [1-6]. This property is supposed to have
interesting applications in different fields, particularly to
design secure communication systems. Data encryption
using chaotic dynamics was reported in the early 1990s as a
new approach for encoding. Different techniques have been
developed in order to hide information using chaos syn-
chronization, such as chaotic masking, chaotic switching,
and chaotic parameter modulation. However, it has been
shown see e.g., [7] that encrypted signals by means of com-
paratively simple chaos with only one positive Lyapunov
exponent does not ensure a sufficient level of security. For
higher security the hyperchaotic systems characterized by
more than one positive exponents are advantageous over
simple chaotic systems. Two factors of primordial impor-
tance in security considerations related to chaotic commu-
nication are: the dimensionality of the chaotic attractor,
and the effort required to obtain the necessary parameters
for the matching of a receiver dynamics.
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On the basis of these considerations, one way to en-
hance the level of encryption security is by applying proper
cryptographic techniques to the information [8, 9]. An-
other way is to encode information by using high dimen-
sional chaotic attractors, or hyperchaotic attractors, which
take advantage of the increased randomness and unpre-
dictably of the higher dimensional dynamics. In such op-
tion, one generally encounters multiple positive Lyapunov
exponents. However, the hyperchaos synchronization is a
much more difficult problem (see e.g. [10-12 ] and [13 ] for
discrete-time context). Most of the previous work done
on hyperchaos synchronization has been concentrated on
finite-dimensional systems described by ordinary differen-
tial equations. Thus, the number of positive Lyapunov
exponents is limited by dimension of the state space.

As alternative way of constructing synchronized hyper-
chaotic systems can be based on delay differential equa-
tions, such systems have an infinite-dimensional state
space and can produce hyperchaos with an arbitrarily
large number of positive Lyapunov exponents. It has been
known that even a very simple first-order oscillator with
a time-delay can produce extremely complex hyperchaotic
behaviors [14-15 ]. This property has stimulated the de-
sign of secure communication systems which claimed to
have low detectability [16, 17].

The objective of this work is to use the Generalized
Hamiltonian forms and observer approach developed in [5]
to synchronize time-delay-feedback Chua’s circuits. More-
over, we apply this approach to transmit confidential infor-
mation. A similar idea was used in [18] with the substan-
tial differences: the modified communication scheme used
here, is such that the sent information can be recovered
faithfully, and effects of noise in channel are considered.

2 Review of synchronization

Consider the dynamical system described by

ẋ = f (x, x (t− τ)) , (1)
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where x (t) ∈ Rn is the state vector, f is a nonlinear func-
tion, and τ is a time-delay. The system (1) provides an ex-
ample of infinite-dimensional oscillator with multiple pos-
itive Lyapunov exponents (generating extremely complex
hyperchaotic signals). Following the approach developed
in [5], it was reported in [18] that the time-delay oscillator
(1) can be written in Generalized Hamiltonian canonical
form,

ẋ = J (x)∂H
∂x
+S (x) ∂H

∂x
+F(x, x (t− τ)), x ∈ Rn, (2)

H (x) denotes a smooth energy function which is globally
positive definite in Rn. The gradient vector of H, de-
noted by ∂H/∂x, is assumed to exist everywhere. We use
quadratic energy function H (x) = 1/2 xTMx with M
being a, constant, symmetric positive definite matrix. In
such case, ∂H/∂x =Mx. The matrices, J (x) and S (x)
satisfy, for all x ∈ Rn, the following properties, which
clearly depict the energy managing structure of the sys-
tem, J (x) + J T (x) = 0, and S (x) = ST (x). The vector
field J (x) ∂H/∂x exhibits the conservative part of the sys-
tem and it is also referred to as the workless part, or work-
less forces of the system; and S (x) depicting the working
or nonconservative part of the system. For certain sys-
tems, S (x) is negative definite or negative semidefinite.
Thus, the vector field is addressed to as the dissipative
part of the system. If, on the other hand, S (x) is posi-
tive definite, positive semidefinite, or indefinite, it clearly
represents, respectively, the global, semi-global, and local
destabilizing part of the system. In the last case, we can
always (although nonuniquely) descompose such an indef-
inite symmetric matrix into the sum of a symmetric neg-
ative semidefinite matrix R (x) and a symmetric positive
semidefinite matrix N (x). Finally, F(x, x (t− τ)) repre-
sents a locally destabilizing vector field.

In the context of observer design, we consider a special
class of Generalized Hamiltonian systems with destabiliz-
ing vector field and linear output map , y (t), given by

ẋ = J (y)∂H
∂x

+ (I + S) ∂H
∂x

+F(y, y (t− τ)), x ∈ Rn

y = C ∂H
∂x

, y ∈ Rm, (3)

S is a constant symmetric matrix, not necessarily of def-
inite sign. The matrix I is a constant skew symmetric
matrix , and C is a constant matrix.
We denote the estimate of the state vector x (t) by ξ (t),

and consider the Hamiltonian energy function H(ξ) to be
the particularization of H in terms of ξ (t). Similarly, we
denote by η (t) the estimated output, computed in terms
of the estimated state ξ (t). The gradient vector ∂H(ξ)/∂ξ
is, naturally, of the form Mξ with M being a, constant,
symmetric positive definite matrix.

A nonlinear state observer for the Generalized Hamil-
tonian form (3) is given by

ξ̇ = J (y)∂H
∂ξ

+ (I + S) ∂H
∂ξ

+F(y, y (t− τ)) +K(y − η),

η = C ∂H
∂ξ

, (4)

ξ ∈ Rn and K is the observer gain.
The state estimation error, defined as e (t) = x (t)−ξ (t)

and the output estimation error, defined as ey (t) = y (t)−
η (t), are governed by

ė = J (y)∂H
∂e

+ (I + S −KC) ∂H
∂e

, e ∈ Rn (5)

ey = C ∂H
∂e

, ey ∈ Rm

where the vector, ∂H/∂e actually stands, with some abuse
of notation, for the gradient vector of the modified energy
function, ∂H(e)/∂e = ∂H/∂x−∂H/∂ξ =M(x−ξ) =Me.
We set, when needed, I + S =W.
Remark 1 Note that the error state dynamics described
by Eq. (5) is independent of time-delay τ , i.e. Eq. (5) is
a simple linear ordinary differential equation.

Definition 1 Synchronization: We say that the slave
(4) synchronizes with the master (3), if

lim
t→∞ kx (t)− ξ (t)k = 0, (6)

no matter which initial conditions x (0) and ξ (0) have.
Where the state estimation error e (t) = x (t) −
ξ (t) represents the synchronization error.

3 Synchronization of time-delay-
feedback Chua’s circuit

Time-delay-feedback Chua’s circuit considered in this
work is shown in Figure 1, and can be described by [19]:

C1ẋ1 = G (x2 − x1)− F (x1) ,

C2ẋ2 = G (x1 − x2) + x3, (7)

Lẋ3 = −x2 −R0x3 − w (x1 (t− τ)) ,

with F (x1) given by

F (x1) = bx1+
1

2
(a− b) (|x1 + 1|−|x1 − 1|) , a, b < 0, (8)

and where the time-delay term is taken as

w (x1 (t− τ)) = ε sin (σ x1 (t− τ)) , (9)
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Figure 1: Time-delay-feedback Chua’s circuit.

with ε and σ positive constants, and τ is a time-delay. The
maximum amplitude of the time-delay term is

|w (x1 (t− τ))| ≤ ε. (10)

For arbitrarily given ε > 0, the time-delay-feedback
Chua’s circuit (7)-(8) can be hyperchaotic for sufficiently
large σ and τ . To facilitate our discussion, we will resort to
the normalized version of the time-delay feedback Chua’s
circuit [18]:

ẋ1 = α (x2 − x1 − f (x1)) ,

ẋ2 = x1 − x2 + x3, (11)

ẋ3 = −βx2 − γx3 − β ε sin (σx1 (t− τ)) ,

with nonlinear function

f (x1) = bx1 +
1

2
(a− b) (|x1 + 1|− |x1 − 1|) . (12)

The time-delay-feedback Chua’s circuit (11)-(12) in
Hamiltonian canonical form (master circuit) is given by

 ẋ1ẋ2
ẋ3

=
 0 0 0
0 0 β
0 −β 0

 ∂H

∂x
(13)

+

−α2 α 0
α −1 0
0 0 −γβ

 ∂H

∂x
+

 −αf (x1)
0

−β sin (σx1 (t− τ))


taking as the Hamiltonian energy function

H (x) =
1

2

·
1

α
x21 + x22 +

1

β
x23

¸
and gradient vector as

∂H

∂x
=

 1
α 0 0
0 1 0
0 0 1

β

 x1
x2
x3

 =
 1

αx1
x2
1
βx3

.

The destabilizing vector field evidently calls for x1 (t)
to be used as the output, y (t), of the master circuit (13).
The matrices C, S, and I, are given by

C=£α 0 0
¤
, S=

−α2 α 0
α −1 0
0 0 −γβ

, I=
 0 0 0
0 0 β
0 −β 0

.
The pair (C,S) is neither observable nor detectable.

However, the pair (C,W) is observable. The system lacks
damping in the x3 (t) state, and either in the x1 (t) or the
state x2 (t) state as inferred from the negative semi-definite
nature of the dissipation structure matrix, S. If x1 (t) is
used as output, then the output error injection term can
enhance the dissipation in the error state dynamics. The
state observer for (13) (slave circuit) is designed as

 ξ̇1ξ̇2
ξ̇3

=
 0 0 0
0 0 β
0 −β 0

∂H
∂ξ

+

−α2 α 0
α −1 0
0 0 −γβ

∂H
∂ξ

(14)

+

 −αF (y)
0

−β sin (σy (t− τ))

+
 k1

k2
k3

 ey,
K = (k1, k2, k3)

T is chosen in order to guarantee the
asymptotic exponential stability to zero of the state recon-
struction error trajectories (synchronization error e (t)).
From (13) and (14) the synchronization error dynamics is
governed by

 ė1ė2
ė3

 =
 0 k2α

2
k3α
2

−k2α
2 0 2β

−k3α
2 −2β 0

 ∂H

∂e
(15)

+

 −α(α+ k1
2 ) α

¡
1− k2

2

¢ −k3α
2

α
¡
1− k2

2

¢ −1 0
−k3α

2 0 −σβ

 ∂H

∂e
.

4 Stability of synchronization

We examine the stability of the synchronization error (15)
between (13) and (14).
A necessary and sufficient condition for global asymp-

totic stability to zero of the estimation error is given by
the following theorem.

Theorem 1 (5) The state x (t) of the nonlinear system
(13) can be globally, exponentially, asymptotically esti-
mated, by the state ξ (t) of the observer (14) if and only if
there exists a constant matrix K such that the symmetric
matrix

[W −KC] + [W −KC]T = [S −KC] + [S −KC]T

= 2

·
S−1

2

¡
KC + CTKT

¢¸
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Figure 2: Synchronization between master (13) and slave
(14) Chua’s circuits.

is negative definite.

In particular, for time-delay-feedback Chua’s circuit,
2
£S − 1

2

¡
KC + CTKT

¢¤
is given by −2 ¡α2 + k1
¢
2α− k2 −k3

2α− k2 −2 0
−k3 0 −2γβ


which is negative definite, if we choose k1, k2, and k3 such
that

k1 ≥ 0 , (16)

k2 < 2α+

µ
1

γβ
k23 + 4k1 + 4α

2

¶ 1
2

,

k3 < 2
¡
γβ
¡
k1 + α2

¢¢ 1
2 .

Figure 2 shows the synchronization between master (13)
and slave (14) circuits, when the choice: α = 10, β =
19, γ = 0.1636, a = −1.4325, b = −0.7831, and σ =
3, ε = 0.5, and τ = 5.23 was used. k1 = k2 = k3 = 5
satisfy the stability (synchronization) condition (16), and
x (0) = (−1,−0.1, 1) and ξ (0) = (0, 0, 0). In the sequel,
the same set of values will be used to obtain the numerical
results.

5 Communicating with a single
transmission channel

Figure 3 illustrates the communication scheme using a
single transmission channel proposed in [20]. mo(t) de-
notes the confidential information and mr(t) the recov-
ered information. x1(t) is a hyperchaotic state of (13),

Figure 3: Hyperchaotic masking with a single transmission
channel.

Figure 4: Transmission of confidential information using
hyperchaotic encryption with a single transmission chan-
nel: mo (t) = 0.1 sin (151t) and mr (t) the recovered infor-
mation.

and is used to encrypt mo(t). So, the transmitted hy-
perchaotic signal to the receiver through a public channel
is s(t) = x1(t) + mo(t). At the receiver end, we obtain
the signal ξ1(t), however ξ1(t) ≈ x1(t) so, the synchro-
nization error is e1(t) = ξ1(t) − x1(t) 6= 0, and as result
mr(t) = mo (t) + e1(t).
We use as master/transmitter and slave/receiver to (13)

and (14), respectively. Figure 4 shows the secure trans-
mission using this communication scheme. We use like
a confidential information a sinusoidal signal mo (t) =
0.1 sin (151t); x1 (t) is the hyperchaotic signal from (13)
to encrypt mo (t); s(t) = x1(t) + mo(t) the transmitted
hyperchaotic signal, and mr (t) the recovered information.
Note the evident error between signals mo (t) and mr (t).

6 Modified Communication
scheme with a single trans-
mission channel

The main problem with previous chaotic masking scheme
is as follows. When the encrypted information is sent
through s (t), the states ξ(t) of (14) do not synchronize
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Figure 5: Modified hyperchaotic masking with a single
transmission channel.

Figure 6: Transmission and exact recovery of confiden-
tial information mo (t) = 0.1 sin (151t) by usisng modified
scheme.

with the corresponding states x (t) of (13). Thus, the con-
fidential information is not recovered faithfully at the re-
ceiver end, and it is necessary a stage of low-pass filtering
[20]; this is because the information mo (t) directly affects
the dynamics of (14), and it is necessary thatmo (t) be too
small (in amplitude), such that, an approximate synchro-
nization exists, because of that the additive information
acts like an external perturbation in s (t). While smaller
it is, will be more possibilities of recovering the informa-
tion. However, if additive noise is considered in the trans-
mission channel, will be a difficult if not impossible task if
the amplitude of s (t) (including mo (t)) is not large with
respect to the noise level. We use the modified communi-
cation scheme shown in Fig. 5 proposed in [21, 22], here
the sent information can be recovered faithfully without a
of low-pass filtering stage, if there is not an additive noise
present in the transmission channel, and it is not necessary
that the information be too small to recovered process. If
it is possible, then we can consider a noise level in the
transmission channel, and to use a low-pass filter at the
receiver end with the purpose to eliminate the noise effects
only.

Due to transmitted signal s(t) = y (t) + mo(t), it is
clear that mo (t) affects the dynamics of slave/receiver
(14). From slave described by (3) the slave/receiver is

Figure 7: Transmission and recovery of confidential infor-
mation mo (t) = 0.1 sin (151t) through a noisy channel (by
using modified scheme).

now

ξ̇=J (s)∂H
∂ξ
+W ∂H

∂ξ
+F(s, s (t− τ))+K(s− η), (17)

η = C ∂H

∂ξ
.

If we need exact synchronization, i.e., ξ(t) = x (t) as
t → ∞ for exact recovery of mo (t), then is necessary to
modify the dynamics of the master (4). It is possible by
feedback of mo(t) in the master (4). So, mo(t) also affects
the dynamics of master in the same way that to receiver.
Thus, from (4) the modified master/slave is described by

ẋ=J (s)∂H
∂x
+W ∂H

∂x
+F(s, s (t− τ))+K(s− y), (18)

y = C ∂H

∂x
.

For time-delay-feedback Chua’s circuit (11)-(12) with
output x1(t); mo(t) = 0.1 sin (151t), and s(t) = x1(t) +
mo(t). We have that the master/transmitter is de-
scribed by

 ẋ1ẋ2
ẋ3

=
 0 0 0
0 0 β
0 −β 0

 ∂H

∂x
(19)

+

−α2 α 0
α −1 0
0 0 −γβ

 ∂H

∂x
+

 −αf (s)
0

−β sin (σs (t− τ))


5



Figure 8: Hyperchaotic masking with two transmission
channels.

and the corresponding slave/receiver given by

ξ̇1ξ̇2
ξ̇3

=
 0 0 0
0 0 β
0 −β 0

∂H
∂ξ

+

−α2 α 0
α −1 0
0 0 −γβ

∂H
∂ξ

(20)

+

 −αF (x1)
0

−β sin (σx1 (t− τ))

+
 k1k2
k3

 e1.

Figure 6 shows the transmission of confidential infor-
mation mo (t) = 0.1 sin (151t) using the modified scheme.
The transmitted signal s(t) = x1(t)+mo(t). The recovered
informationmr(t), Due to exact synchronization, it is pos-
sible faithfully recovering of mo (t), after synchronization
time i.e., em(t) = mo(t)−mr(t) = 0.
Figure 7 shows the communication of mo (t) through

noisy channel. The hyperchaotic signal x1(t), n (t) is a
noise signal presents in the transmission channel. Trans-
mitted signal s(t) = x1(t) +mo(t) + n(t). Recovered in-
formation mr(t). After a filtering stage we can obtain
em(t) = mo(t)−mr(t) = 0.

7 Communicating with two trans-
mission channels

With this scheme, we obtain faster synchronization and
higher privacy; one channel is used to send the hy-
perchaotic synchronizing signal x1 (t) from transmitter
(13), with no connection with the confidential informa-
tion mo (t). While other channel is used to transmit
hidden information mo (t) which is recovered at the re-
ceiver end by means of the comparison between the signals
s (t) = x2 (t) +mo (t) and ξ2 (t). Figure 8 shows the hy-
perchaotic secure communication system with two trans-
mission channels. Figure 9 illustrates the secure commu-
nication of confidential information mo (t) hidden through
hyperchaotic signal x2 (t) from (19), the transmitted hy-
perchaotic signal s (t), the recovered information mr (t) at
the receiver end which is obtained after a short transient
behavior, and the error between mo (t) and mr (t), i.e.,
em(t) = mo(t)−mr(t) = 0.

Figure 9: Transmission of mo (t) = 0.1 sin (151t) by using
two transmission channels.

Figure 10 illustrates the transmission of mo (t) =
0.1 sin (151t) through a noisy channel. The hyperchaotic
signal x2(t) encrypts mo(t); n (t) is a noise signal presents
in the transmission channel . Transmitted signal s(t) =
x2(t)+mo(t)+n(t). The recovered information mr(t) can
be equal to original informationmo (t) after filtering stage.

8 Conclusions

We have synchronized two time-delay-feedback Chua’s cir-
cuits through the Generalized Hamiltonian forms and ob-
server approach. Based on this synchronization property
it is achieved secure transmission of confidential informa-
tion. In addition, it is shown with two communication
schemes the quality of the recovered information, and at
the same time, we have increased the level of encryption
security. The proposed communication schemes effectively
repair the security flaws reported in the literature.
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