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Abstract: - This paper addresses on the estimating dynamic parameters of robot manipulators. A new
identification scheme is proposed. It is based on Hamiltonian dynamic model. An experimental evaluation
is presented of three identification schemes such as: Energy and filtered power models vs proposed scheme
on a direct drive robot pendulum.
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1 Introduction

Parameter identification techniques are particu-
larly attractive to determine the dynamic param-
eter of robot manipulators. The usefulness of the
dynamic parameters arise in implementation of ad-
vanced model-based controllers such as PD+ and
Computed torque [1].

There are several identification schemes used in
Robotics. Dynamics and Filtered Dynamics mod-
els. We also can mention to Energy and Potency
models [2] [3] [4]. These models are based on recog-
nition that combinations of dynamic parameters
appear linearly in all the models. This property
allows the estimation of dynamical parameters by
standard least-squares techniques [3] [5].

The dynamic model suffers of a practical draw-
back; the joint acceleration is needed in the re-
gressor; therefore the filtered dynamic model was
proposed [6]. Additional to this drawback, also it
yields a vector prediction error . On the other hand,
the energy regression model proposed in [4] does
not require the joint acceleration and it yields a
scalar predicition. However, the energy model in-
volves the integral of the power which produces in

zero frequency a infinity gain. The filtered power
regression model overcomes this drawback for in-
cluding a low-pass filter.

In this paper we introduce a new Based–
Hamiltonian regression model which produces a
scalar prediction...

The contribution of this paper is to show that
new Hamilton regressor scheme and its perfor-
mance, as well as to present a experimental eval-
uation of three identification schemes on a robot-
pendulum. We have used a identification scheme
based on recursive least squares. The estimated
parameters obtained from Hamiltonian regressor
scheme were validated with simulated response us-
ing the direct-drive robot-pendulum model incor-
porating the identified parameters.

2 Robot Dynamics

The dynamics of a serial n-link rigid robot can be
written as [7] [8]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + f(q̇, τ ) = τ (1)

where q is the n×1 vector of joint displacements; q̇
is the n× 1 vector of joint velocities; τ is the n× 1



vector of input torques; M(q) is the n × n sym-
metric positive definite manipulator inertia matrix,
C(q, q̇) is the n×n matrix of centripetal and Cori-
olis torques; g(q) is the n×1 vector of gravitational
torques obtained as the gradient of the robot po-
tential energy due to gravity and f(q̇, τ ) is the n×1
vector for the friction torques. The vector f(q̇, τ )
is decentralized in the sense that f(q̇, τ ) depends
only on q̇i and τ i; that is,

f(q̇, τ ) =

⎡
⎢⎢⎢⎣

f1(q̇1, τ 1)
f2(q̇2, τ 2)

...
fn(q̇n, τn)

⎤
⎥⎥⎥⎦ .

The friction torques f(q̇, τ ) are assumed to be
dissipate energy at all non-zero velocities, and
therefore, their entries are bounded within the first
and third quadrants. This feature allows to con-
sider the common Coulomb and viscous friction
models. At zero velocities, only static friction is
present satisfying

fi(0, τ i) = τ i − gi(q)

for -̄fi ≤ τ i − gi(q) ≤ f̄i, with f̄i being the limit on
the static friction torques for joint i [9] [10].

It is assumed that the robot links are joined to-
gether with revolute joints. Although the equation
of motion (1) is complex, it has several fundamen-
tal properties which can be exploited to facilitate
control system design. For the new controller, the
following important property is used:
Property 1: Linearity in the parameters of the
robot dynamic.

Since the model (1), could be relationated with
the applied torques at each joint with the regressor
matrix and the parameter unknown vector it take
us to the dynamic regression model [2][4]:

Y(fq, q̇, q̈)θ = τ (2)

where Y(fq, q̇, q̈) is a n × m matrix and θis a m x
1 vector stand the dynamic parameters.
Property 2: Linearity in the parameters of the
robot total energy.

The total energy E(q, q̇) of robot manipulators
is given by the sum of kinetic energy K(q, q̇) plus

potential energy U(q):

E(q, q̇) = K(q, q̇) + U(q)

where q̇ stands the vector of position joints and q̇
is the vector of velocity joints.

The kinetic and potential energy can be written
as a linear function of the dynamic parameters [4]:

K(q, q̇) = φk(q, q̇)
Tθk (3)

U(q) = φu(q)Tθu (4)

where φk and φu are p1 × 1 and p2 × 1 vector func-
tions, θk and θu stand for p1×1 and p2×1 vectors
which contain the dynamic parameters of the robot
such as masses, moments of inertia and centers of
gravity.

The total energy can be written as a linear re-
gression in the following form:

E(q, q̇) = φE(q, q̇)TθE

where

φE = [φk(q, q̇) φu(q)] (5)
θE = [θk θu] . (6)

The Coulomb and viscous friction can be pre-
sented as a linear regressor in the following equa-
tion:

f(q̇) = φF (q̇)TθF

where φF is an n × 2n matrix function and θF
stands 2n× 1 vector, which contains Coulomb and
viscous friction coefficients.

3 Least-Squares Algorithm

The least-squares method is a basic technique for
parameter identification. This method is particu-
larly simple if the system model has the property
of being linear in the parameters. It is well known
that recursive least-squares is given by:

θ(k) = θ(k − 1) +
P (k − 1)ψ(k)e(k)

1 +ψ(k)T P (k − 1)ψ(k)

P (k) = P (k − 1) − P (k − 1)ψ(k)ψ(k)T P (k − 1)
1 +ψ(k)T P (k − 1)ψ(k)



where ψ(k) is the p × 1 regressor vector of known
functions, and θ(k) is the p × 1 vector of unknown
parameters. This model is indexed by variable k,
which denotes the sampling time. P (k) ∈ IRn×n is
the covariance matrix; and e(k) is the prediction
error defined as:

e(k) = y(k) −ψ(k)Tθ(k − 1)

y(k) is the robot response.

4 Identification Schemes

In this section, we present the identification
schemes such as: supplied energy and filtered power
regresion models. As well as the new regressor
scheme based on Hamiltonian-dynamics.

The prediction error for the supplied energy re-
gression model is defined as [4]:

e(k) =
∫ kh

0
τ (σ)T q̇dσ − [φE(q,q)(k) (7)

∫ kh

0
q̇(σ)TφF (q̇)dσ

]
θ(k − 1)

The prediction error for the filtered power regres-
sion model is defined as [2]:

e(k) =
λ

λ+ s
(τT q̇(k)) (8)

−
[

λ

λ + s
(ψE(q, q̇)T (k)

λ

λ+ s
(q̇TψF (q̇))

]
θ(k − 1)

The prediction error for the Hamiltonian-based
regressor model is given by next equation:

e(k) = τ −
[
ṗ+

∂pT M(q)−1p

∂q
+ g(q) + f(p)

]
(9)

The Dynamic model is well kown [6] [1] [2] and
for this reason we dont written.

5 Experimental Set-Up

An experimental system for research of robot con-
trol algorithms has been designed and built at The
Universidad Autnoma de Puebla, Mxico; it is a
direct–drive robot pendulum (see Figure 1). The

experimental robot consists of a link made of 6061
aluminum actuated by brushless direct drive servo
actuator from Parker Compumotor to drive the
joint without gear reduction. Advantages of this
type of direct-drive actuator includes freedom from
backslash and significantly lower joint friction com-
pared with actuators composed by gear drives. The
motor used in the experimental robot are listed in
Table 1.

Table 1: Servo actuators of the experimental pen-
dulum.

Link Model Torque [Nm] p/rev
Pendulum DM1015B 15 1,024,000

The servo is operated in torque mode, so the mo-
tors act as a torque source and they accept an ana-
log voltage as a reference of torque signal. Position
information is obtained from incremental encoder
located on the motor. The standard backwards dif-
ference algorithm applied to the joint position mea-
surements was used to generate the velocity signals.
The manipulator workspace is a circle with a radius
of 0.45 m.

Besides position sensors and motor drivers, the
robot also includes a motion control board man-
ufactured by Precision MicroDynamic Inc., which
is used to obtain the joint positions. The control
algorithm runs on a Pentium–II (333 Mhz) host
computer.

Figure 1: Experimental robot.



6 Experimental Results

To support our theoretical developments, this Sec-
tion presents an experimental comparison of differ-
ent models for parameter identification on a pen-
dulum robot. For all the case the algorithm were
developed with the the P(0) = diag(10E6) co-
variance matrix meanwhile θ(0) = 0 at their initial
values. The persistent excitation was the same for
each model in their amplituds and with the follow-
ing structure τ = 3sin(12.07+ ran1)+3sin(2.25+
ran2) where rani are random values. The filter
applied to the signals in the regressors was 31.83
Hz, it let work with the low frequencies and re-
ject high frequencies and noise. These frequency
was obtained from the biggest frequency compo-
nent at the velocity. The Hamiltonian models pro-
posed need the inverse inertial matrix in order to
obtain the momentums , these situation came from
their definition (8) for the experiment we consid-
ered the inertial found at the Dynamic Models.

The figures 2, 3, depicts the evolution in time for
the Dynamic and Filtered Dynamic Models where
we can see the convergence. Both models differ very
few, the filtered is more smooth than the dynamic.

Figure 2: Dynamic Model

The parameter obtained from each model are
show in the table 2, the value for θ3 belongs to
the viscous friction has the greater difference 6.5%
meanwhile the others stand with less than 0.8%.

The figure 4 depicts the performance of the re-
gressor for the energy model and their values are in
the Tabla 2. Owing to the different concept of the

Figure 3: Filter Dynamic Model.

regressor the graphics are different but the param-
eter θ1 θ2 are closer to the dynamic model with a
variation between 4% meanwhile the others θ3 θ4

are ± 21% and this is a considerable value.

Figure 4: Energy Model.

The figure 5 depicts the evolution in time for
Filtered power model, their values are in the Ta-
ble 2. The estimate parameter θ are in the range
obtained until now, at these case the parameter ob-
tained are closer to the energy model. However the
performance at the convergence is better than the
other methods.

At the figure 6 depicts the changes in estimate
parameters trough the time for the first regressor
proposed, the Hamiltonian model, we observed a
bigger transitory than the previous models, it is
longer but we can observer the parameter conver-
gence.

The estimate parameter θ obtained from the



Figure 5: Filtered Power Model.

Figure 6: Hamiltonian Model.

Hamiltonian regressor are in the table 2, the inertia
is obtained form the first one, the other parameter
are practically the same that were obtained at the
dynamic model.

The figure 7 show the estimate parameter perfor-
mance for the Filtered Hamiltonian regressor, the
graphic is practically the same that the least one.
However the values are in the table 2 and they are
practically the same that filtered dynamic modelo.

These two new regressor had been work with the
momentum and their graphics for the estimate pa-
rameter are practically the same that the Dynamic
an Filtered dynamic models respectily.

The θ vector for us pendulum is defined by
θ = [I ,mglc , b, fc ]T where I stand the inertia, m
is the total mass , b is the viscous friction and fc is
the coulomb friction. The values obtained for each
model are resumed in the table 2.

Figure 7: Filtered Hamiltonian Model.

Table 2: Experimental results for a pendulum.

Method θ1 θ2 θ3 θ4

Dynamic 0.0895 2.0100 0.3638 0.9163
Filtered Dyn 0.0903 2.0171 0.3874 0.9229

Energy 0.0937 1.9496 0.3291 1.1109
Filtered Pw 0.0911 1.9335 0.3299 1.1201
Hamiltonian 2.0100 0.3638 0.9163

Filtered Ham. 2.0171 0.3874 0.9229

At this point we had obtained the global param-
eter for us system and we can test it and our mod-
els. We applied a signal to the system in open loop,
for the simulation with the data report in table 2
we observed the position simulated will follow to
the experimental. The figure 8 show the case for
using the parameter obtained with the Hamilto-
nian model, it‘s very important to say that all the
models simulated had a good performance,they are
similar to this graphic.

Figure 8: A)Following trayectory B)Torque applied

According to (1), where we employed the values
from table II through the different techniques iden-
tification, we can obtain the torque applied there-



fore we can compare these one with the measure
torque and we can observe that they are very sim-
ilar with the same shape. The calculate torque
present some peak, they are possible originated for
errors introduced by the encoders, measure instru-
ments, that generate this noise. The figure 8 show
this situation for Hamiltonian Model and it is sim-
ilar for the other models. In the same way the
velocity obtained from a simulation is closer to the
experimental for all models with a little deviations
for the same reason that the torque. Let us ap-
plied the norm L2 [12], which is defined as (10) to
the calculated and experimental torque so we can
obtained a reference for the performance of each
model. The results are depicted in figure 9.

L2 =

√
1

t − t0

∫ t

to

xTxdt (10)

Figure 9: Norma L2 for all models.

7 Conclusions

The electronics an computation are advancing ev-
ery day, with better equip and instrument to im-
prove the different techniques for parameter identi-
fication according to specific requirement. All the
models present here converge, the results from sim-
ulation have a good matching with the experimen-
tal ones and the θ4 parameter, it stand the viscous
friction, had a stranger performance. The two new
regressor proposed presented a good performance
with the same results obtained trough the Dynam-
ics model. The norm L2 shows that the best perfor-
mance is the dynamic model and the Hamiltonian.
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