
Evolutionary Art Revisited: Making the Process Fully Automated

ANDRÉS GÓMEZ DE SILVA GARZA and ARÁM ZAMORA LORES
Departamento Académico de Computación

Instituto Tecnológico Autónomo de México (ITAM)
Río Hondo #1, Colonia Tizapán-San Ángel, 01000—México, D.F.

MÉXICO

Abstract: - Many recent systems for computer artwork generation with evolutionary algorithms have been
interactive, relegating the task of evaluating new genotypes to their user(s). In contrast, we are interested in
fully automating the entire evolutionary cycle applied to artwork generation. In this paper we present an
evolutionary computer system that, without human intervention, generates artwork in the style of the Dutch
painter Piet Mondrian. Several implementation-related decisions that have to be made in order to program such
a system are then discussed. The most important issue that has to be considered when implementing this type
of system is the subroutine for evaluating the multiple potential artworks generated by the evolutionary
algorithm, and our method is discussed in detail. We also discuss our results in relation to other research into
the computer generation of artwork that fits particular styles existing in the real world with evolutionary
algorithms.

Key-Words: - Evolutionary art, case-based reasoning, computational representations of style

1 Introduction
Ever since computer use began to spread, people
started using computers to generate artwork. At first
printers and monitors could not display anything
other than text, so rough figures depicting cartoon
characters or everyday objects such as houses were
“painted” by displaying sequences of ASCII
characters that were designed to create an outline of
the desired figure (sometimes even incorporating
shading, when viewed from a distance, by using
different ASCII characters for different parts of the
figure to be depicted). Eventually colors and high-
resolution monitors and printers became available, so
computer art evolved into what it is today, able to
display a multitude of abstract or realistic figures and
textures in such detail that the results can now be
used in movies to create animation that is virtually
indistinguishable from the results of real
cinematography. Another approach to computer art,
rather than to try to reproduce the real world
virtually, is to try to get the computer to create its
own sense of style (or rather, its programmer’s) and
produce artwork in that style that people consider to
be aesthetically pleasing (usually an abstract
geometric style). Yet another approach is to try to
get the computer to create artwork that resembles (or
is indistinguishable from) the creations of human
artists.

It is this last approach that motivated the
research presented in this paper. Specifically, we set

out to produce a program that would generate
artwork in the style of the Dutch painter Piet
Mondrian, who was active mainly in the first half of
the 20th century. Like many other modern painters,
Mondrian started his career painting landscapes,
human figures, and other realistic subjects, but
eventually developed his own distinctive and abstract
style (called simply de stijl, which is Dutch for “the
style”). Paintings in Mondrian’s style typically
include vertical and horizontal black lines over a
white background, with some or all of the primary
colors (blue, red, and yellow), plus black, filling in
some of the square or rectangular regions (or parts of
the regions) separated out from the background by
the black lines. It is this style that our system tries to
emulate. Fig. 1 shows a typical Mondrian painting
in his distinctive style.

The method we have used for getting the
computer to generate different paintings is through
an evolutionary algorithm [1]. This type of
algorithm represents a generate-and-test, trial-and-
error, brainstorming-like approach [2]: many
possible paintings (populations of them) are
generated quickly, by using mainly random
decisions. Probably most of these paintings are of
quite low quality, but after being generated they are
then evaluated to determine how much they make
sense. In the context of our research, “making
sense” would imply being as close as possible to the
style of Mondrian. The best paintings (according to
the evaluation subroutine of the evolutionary

algorithm) are kept for future evolutionary
generations (a process known as elitism), and the
others are discarded (so as to keep the size of the
population of the algorithm constant across
generations). This process ensures a monotonic
increase in the average quality of the paintings in the
population between generations. Depending on what
is desired, either when this average quality or when
the quality of just one individual painting is good
enough according to the evaluation subroutine, the
process is terminated. The evaluation subroutine of
the evolutionary algorithm, therefore, is of critical
importance to the success of the approach.

Fig. 1. A typical Mondrian painting

Section 2 of this paper provides a discussion of

related work in computer artwork generation and
representation of style which serves to further frame
and provide motivation for our work. Section 3
briefly talks about our evolutionary algorithm, and
discusses some decisions we had to make in order to
implement it for the domain of Mondrian-style
artwork generation in particular. This
implementation has resulted in a system named
MONICA (MONdrian-Imitating Computer Artist).
Finally, Section 4 presents some of the results we
have obtained from running MONICA and provides
a general discussion of these results and possible
future work on the project.

2 Related Work
Just as generating artwork by computer is not a new
idea, neither is using evolutionary algorithms for this
task. Two recent surveys, published in book form, of
the use of evolutionary algorithms for design tasks in
general, are included for instance in [3] and [4], and
these include discussions of seven systems for
artwork generation. All of the systems described in
these books that create artwork ([5], [6], [7], [8], [9],
[10], and [11]) do so by using the evolutionary
operators of crossover and mutation. However, all of
these systems leave it to the user(s) to decide which
of the new paintings (or which of their features) to
keep for future evolutionary cycles, and/or how to
rank the new paintings according to their subjective
(and probably unconscious) aesthetic criteria. Thus,

the decisions on what is aesthetic or interesting, or
what paintings fit a particular style, are not made by
the systems. In contrast, MONICA is designed to be
a fully autonomous system requiring no user
feedback as its evolutionary algorithm proceeds.

In order for MONICA to be fully autonomous,
an evaluation procedure that captures and recognizes
the stylistic characteristics of Mondrian paintings
had to be programmed into its evolutionary
algorithm. Neither the relationship between
evolutionary algorithms and Mondrian, nor the
attempt to capture and automate the generation of
new creations in the style of given artists or
designers, is new either. However, the approach we
followed in implementing MONICA is different
from those that have been used in other projects that
have explored these issues.

A Mondrian Evolver (as well as an Escher
Evolver) is mentioned in [11]. However, the Internet
web-page cited does not seem to exist anymore, so
we have not been able to view the program. If it
works the same way as the Escher Evolver described
in the book chapter cited, then anyone who accesses
the Mondrian Evolver web-page can provide
feedback to the program in order to influence the
results of the next evolutionary cycles. Thus, the
system is again non-autonomous, unlike MONICA.
A Mondrian Applet [12] and a Mondrian Machine
[13] can be found on the Internet. The first one of
these two systems is completely autonomous, and the
second one semi-autonomous (because the user’s
clicks determine the positions of black lines in the
paintings which are then automatically generated,
with colors being randomly selected to fill some of
the spaces between the resulting lines). Both
systems have been programmed with certain rules
about how to generate artwork that looks like
Mondrian’s according to their programmer’s
understanding of de stijl. The difference with our
work is that generating new paintings in MONICA is
done completely at random through the evolutionary
operators of crossover and mutation, not by
following any pre-programmed generative rules. It
is only in the evaluation subroutine in MONICA’s
evolutionary algorithm that any knowledge of
Mondrian’s style (according to our understanding of
it) is programmed, and this knowledge in MONICA
is used for style recognition rather than generation or
emulation.

Returning to evolutionary algorithms, one of
these has in the past been applied to generating
Mondrian-like artwork, as reported by Schnier and
Gero in [14] and [15]. The genotype representation
used in these two publications is hierarchical (much
like that used in genetic programming [16]), and

relies on the observation that a large subset of
Mondrian’s paintings can be described by successive
recursive divisions of a “canvas” into rectangular
areas. It is the recursive subdivisions that are
embodied in the hierarchical aspects of the
representation. The fitness of new paintings
generated by this system is determined by measuring
the distance between them and the exemplars (cases)
of real Mondrian paintings used to initiate the
evolutionary process. The non-hierarchical genotype
representation used in MONICA provides much less
guidance to the system as to the structure that a
Mondrian-like painting should have in comparison to
the un-named system described in the two papers by
Schnier and Gero. Another difference is that
MONICA’s evaluation subroutine explicitly captures
stylistic characteristics used by Mondrian and
observed by the authors, whereas the evaluation
module in the system described by Schnier and Gero
does not. On the other hand, the use of real cases of
Mondrian paintings and the overall evolutionary
framework and attempt to obtain Mondrian-like
results create a close similarity between the two
projects.

Work into capturing the style of particular artists
or designers in the computer has often focused on
shape grammars [17] or semantic networks [18].
However, some work has also used evolutionary
algorithms to explore style. A system is described in
[19] that generates traditional Chinese architectural
facades after it infers a representation of their style.
The inference and subsequent learning is done with
an evolutionary algorithm which in the end obtains a
hierarchical genotype which represents a particular
style (by generalizing from the exemplars which
have been shown to it). As with the project
described by Schnier and Gero, here we have
exemplars and we have hierarchical genotypes.
However, in this project the genotype does not
describe a particular design, but rather an entire
design style. This is because the genes that compose
the hierarchical genotype embody syntactic and
semantic primitives that combine to describe a
particular style. The task of the system is to learn
this hierarchical genotype given the exemplars, and
the learning task is done through an evolutionary
algorithm. Recognizing whether a new design
matches a particular style involves matching its
features with the style representation embodied in
the hierarchical genotype. In contrast, in MONICA
style recognition is pre-programmed, not learned,
and forms part of the evaluation module of the
evolutionary algorithm that generates possible
Mondrian-like paintings, not part of the knowledge
captured in the genotype representation.

3 Evolutionary Algorithm
Implementation
Fig. 2 shows the flow of subtasks performed by our
evolutionary algorithm.

No

Expanded
Population

Evaluation
of Initial

Population
Crossover Mutation

Evaluation
of New

Individs.

Selection

Yes

Initial
Population

Final
Solution(s)

New Initial
Population

Good
Enough?

Fig. 2. Our evolutionary algorithm’s subtasks

Briefly, a population of potential solutions

(which in this case represent paintings) is kept
throughout the process. The makeup of the
population changes due to the evolutionary process.
New potential solutions are generated by the genetic
operators of crossover and mutation, which at
random combine and modify the features of old
potential solutions that are already in the population,
respectively. A temporarily expanded population is
created by adding these new potential solutions to
the original population. Each new potential solution
is evaluated and a fitness value assigned to it. The
fitness value in our system is a measure of how close
or how far the painting is from Mondrian’s style. If
one or more (as desired) of the new potential
solutions is already perfect (i.e., already fits the
desired style) according to the evaluation procedure,
the evolutionary process stops (or, alternatively, if
the search has gone on for too long without
successfully producing any Mondrian-like works of
art). Otherwise, a selection procedure sorts the
potential solutions in the temporarily expanded
population according to their fitness value, keeps the
best of them, and discards the rest. The individuals
that are kept become the initial population for the
next evolutionary cycle (which has been trimmed
down to be of the same size as the initial population
of the previous evolutionary cycles). This new
population may include both old and new potential
solutions (i.e., some carried over from previous
generations and some newly-generated ones), and
the process repeats itself.

The system we have programmed, MONICA,
implements an evolutionary algorithm like the one

described above on a Windows platform in C++ (for
the reasoning engine) with OpenGL (for the
graphical interface), and applies the algorithm to the
domain of Mondrian-style artwork generation. The
following subsections discuss some issues that arose
during the implementation of MONICA.

3.1 Makeup of the Initial Population
As can be seen from Fig. 2, the population of the
first cycle of the evolutionary algorithm must be
seeded in some way before starting the process. We
have considered several options in order to produce
this initial population. One option for this seeding
process is to use cases (in this situation, actual
Mondrian paintings) as the individuals in the initial
population. A process model for this approach, used
in the domain of residential floor plan design, is
presented and evaluated in [20] and [21]. The cases
used to seed the initial population include examples
of different things that Mondrian has done in his
paintings, and thus, when combined and modified
repeatedly, provide material for the evolutionary
algorithm to quickly produce new potential solutions
that contain Mondrian-like features. On the other
hand, the use of cases can bias the algorithm too
much towards creating paintings that only differ
from Mondrian’s in small details. We have gathered
55 cases of Mondrian paintings (pertaining to de stijl
and not including pieces representing stylistic
transitions or his rhomboidal “lozenges,” as they are
known) from several Internet sites, and from the
books [22] and [23]. Apart from having these cases
in JPG format, we have made them available to
MONICA by hand-coding them into our genotype
representation scheme (described below).

A different option for the seeding process is to
produce an initial population entirely at random.
This approach has the advantage that little prior bias
can be said to exist in the initial population, and thus
it is easier to claim that the computer itself really
evolved Mondrian-like paintings from nothing,
without any help. On the other hand, it may take too
long to start producing Mondrian-like artwork,
despite the bias that the evaluation procedure of the
evolutionary algorithm provides in that direction,
and thus may not really be a feasible approach. This
method of seeding the initial population is also
available to MONICA. The algorithm used in
MONICA in order to produce a random initial
population is based on randomly deciding the sizes,
coordinates, and colors of different rectangular
regions to be placed in a painting. Some slight bias
that considers aspects of Mondrian’s style, such as
limiting the total number of colored regions in each
individual to Mondrian-type numbers, was still

present in the “random” generation of the initial
population, but not much. In our algorithm, colored
regions that end up getting assigned very small
widths or heights end up being lines, but are not
treated any differently from square or rectangular
colored regions. There is nothing in the random
seeding algorithm to force colored regions not to
overlap, not to exceed the limits of the frame used
for the painting, or any other things that will
eventually have to happen, at the same time, for a
painting to be accepted as Mondrian-like by the
evaluation procedure.

A final option is to combine both cases and
random individuals in the initial population. The
question then becomes what the relative proportion
of cases and random individuals should be in the
initial population. For the purposes of being able to
produce Mondrian-like results, it doesn’t seem to
matter much, though there may be an effect on
convergence time. We are planning to perform some
experiments with MONICA in the future to measure
any possible effects. In addition, [24] uses a similar
approach, using cases combined with evolutionary
algorithms for electronic circuit design, and has
performed experiments having to do with seeding the
population with different proportions of cases and
random “solutions.” These experiments have
measured the effect of changing the relative
proportions of cases and random solutions on the
amount of exploration and exploitation present in an
evolutionary algorithm, and have come to the
conclusion that around 10% of cases is a good figure.
It will be interesting to see if our future experiments
validate these results or if the results are specific to
the domain and representation used in [24].

3.2 Genotype Representation
Fig. 3 shows how we have represented in MONICA
the individuals in the population of our evolutionary
algorithm as genotypes at the highest level. The
genotype is split into twenty regions, each of them
corresponding to one of twenty possible colored
regions permitted in a painting.

Fig. 3. Genotype representation used

Fig. 4 shows at an intermediate level how each

of the twenty genotype regions is split into five
sections in order to represent the color, width, height,
and x- and y-coordinates (of the center, as per
OpenGL standards) of each colored region. These

last four measurements are all limited to the same
range of values.

Fig. 4. Representation of each colored region

Fig. 5 shows, at the bit level, the internal details

of the representation of the color and one of the four
measurements shown in Fig. 4.

Fig. 5. Bit-encoding of the color and any one

measurement in the representation

3.3 Crossover and Mutation Operators
The genetic operators of crossover and mutation, in
their pure form, should make all their decisions at
random. For instance, crossover combines the
makeup of two original individuals by randomly
choosing which two individuals to combine and
randomly choosing the position within their
genotypes in which to cut and splice them.
However, this completely “blind” process can
produce a lot of senseless and time-wasting results,
including offspring genotypes that have the exact
genetic makeup as their parents. In MONICA, if a
particular painting has only four colored regions, for
example, and given the fact that all genotypes are of
the same length, the genes in the genotype
corresponding to colored regions 5-20 will just be
filled with zeroes. If the crossover point is randomly
chosen to fall in this region of the genotype for one
parent, and the same occurs with the other parent,
each one of the two resulting offspring genotypes
will be identical to one of their parents. Thus, we
would not have produced any new, and therefore
potentially good, results in the new generation. In
order to avoid this problem we have added some
“intelligence” to our implementation of both the
crossover and mutation operators in order to ensure
that any work done during evolution results in
something new.

We could also add some intelligence to
MONICA in order to avoid any useless results. For
instance, we only accept five possible colors in a

Mondrian-like painting, yet have three bits in which
to represent the value of the color gene within an
individual’s genotype (leading to eight possible
values). Because of this, the value of the left-most
bit position in the color gene will, most of the time,
be 0 in a good genotype, unless the two right-most
bits are 0’s, in which case the left-most one can be a
1. We could program the crossover and mutation
operators to take into account these factors when
making their “random” decisions about where to
cross or mutate genotypes, in order for all the genes
of offspring genotypes to get assigned values that
make sense. However, we feel that this would be
tampering too much with the way evolution is
supposed to happen, so we have not gone so far.
Again, any biasing of the population according to
how much the individuals in it resemble Mondrian’s
style we have left to the MONICA’s evaluation
procedure, and we did not want to distribute its
effects to other modules.

3.4 Evaluation of New Genotypes
The evaluation of new genotypes produced during
the course of evolution is the most important aspect
of an evolutionary algorithm, since it is where
domain knowledge is used to indirectly guide the
evolutionary search towards a particular objective.
In MONICA we assign a fitness value between 0 and
1 to each individual in the population, where a 0
would mean that the individual doesn’t satisfy any of
the evaluation rules used to determine how close it is
to fitting Mondrian’s style, and a 1 would represent a
perfect fit. We have implemented eight evaluation
rules, each of which assigns a “local” fitness value
between 0 and 1 (interpreted as above), and calculate
the total fitness of an individual by adding the eight
local fitness values and dividing the total by eight,
thus giving each rule an equal importance or weight.
The eight rules were articulated (and then
programmed) by the authors after examining the 55
cases of Mondrian paintings that we had access to,
and discussing the patterns that we seemed to
observe in these cases. We have shown in [25] that
most people agree with the results given by our
evaluation rules. The eight rules are the following:
1. EvaluateColor: Each colored region that is
contained in a genotype must have one of the five
valid colors.
2. EvaluateCoordinates: The height, width, x-
coordinate, and y-coordinate of each colored region
in a genotype must all fall between 0 and 3.9999.
3. EvaluateLineThickness: Up to two black colored
regions are allowed in a genotype that are not thin,
but all other black regions must be either vertically

or horizontally thin (and thus represent a line rather
than a rectangular region).
4. EvaluateNumberOfVerticalLines: A minimum of
two and a maximum of ten vertical lines must be
present in a genotype.
5. EvaluateNumberOfHorizontalLines: A minimum
of two and a maximum of ten horizontal lines must
be present in a genotype.
6. EvaluateLimits: Each colored region in a
genotype must be adjacent either vertically (both
above and below) or horizontally (both to the left
and to the right), or both, to another colored region
or to the edge of the frame (with some small
tolerance).
7. EvaluateFrame: All other colored regions in a
genotype must fall within the coordinates of the
frame, whose color is white by definition and whose
coordinates are represented just as any other colored
region’s are.
8. EvaluateNumberOfColoredRegions: There must
be at least one colored region represented in a
genotype, and at most 13, not counting lines. At
most one of them can be white (and represents the
frame).

4 Discussion and Results
Fig. 6 shows three Mondrian-like paintings which
were created by our system (which assigned a fitness
value of 1 to them) at different times. The fact that
MONICA has shown the capacity to create
Mondrian-like paintings on several occasions
validates the set of evaluation rules we programmed
into the system and also confirms the capacity to
create artwork by computer autonomously, without
the need for user feedback or intervention.

This kind of project helps contribute to several
interrelated research fields, notably design
computing, case-based reasoning, and evolutionary
algorithms. Most importantly, the notion of “style”
is still not well understood in a formal manner, even
though most people probably have an intuitive feel
for its meaning and can recognize different styles.
Computational models of style generation and/or
style recognition like the one used in MONICA help
to further our formal understanding of style in a way
that the artwork-generating systems described in [3]
and [4] can’t.

Future work on MONICA will focus on not
having to pre-program any style recognition
knowledge at all in order to create the evaluation
module of the evolutionary algorithm. Perhaps a
similar approach to the one presented in [19] can be
used, employing first a learning evolutionary
algorithm to evolve a representation of Mondrian’s
style, and then the current evolutionary algorithm to

create possible Mondrian-like paintings, but to
evaluate their fitness based on the learned
representation rather than using hand-coded rules for
this evaluation. Or perhaps a different method (e.g.,
we are considering neural networks) will be able to
capture Mondrian’s style in such a way that it can be
used by MONICA’s evolutionary algorithm, but
without having to program any of its evaluation or
recognition knowledge explicitly. For the moment,
pre-programming a particular style into the system
was not too difficult, given Mondrian’s geometric
and relatively simple style. However, applying the
same ideas used in MONICA in order to imitate
other painters’ styles in the computer (e.g., da Vinci)
might require a different approach!

Fig. 6. Three Mondrian-like paintings generated by

our system

References:
[1] M. Mitchell, An Introduction to Genetic

Algorithms (Complex Adaptive Systems Series),
MIT Press, Cambridge, Massachusetts, 1998

[2] C.H. Clark, Brainstorming: The Dynamic Way to
Create Successful Ideas, Doubleday, Garden
City, New York, 1958

[3] P. Bentley (ed.), Evolutionary Design by
Computers, Morgan Kaufmann Publishers, San
Francisco, California, 1999

[4] P. Bentley and D.W. Corne (eds.), Creative
Evolutionary Systems, Morgan Kaufmann
Publishers, San Francisco, California, 2002

[5] S. Todd and W. Latham, The Mutation and
Growth of Art by Computers, in P. Bentley (ed.),
Evolutionary Design by Computers, Morgan
Kaufmann Publishers, San Francisco, California,
pp. 221-250, 1999

[6] T. Witbrock and S. Neil-Reilly, Evolving Genetic
Art, in P. Bentley (ed.), Evolutionary Design by
Computers, Morgan Kaufmann Publishers, San
Francisco, California, pp. 251-259, 1999

[7] A. Rowbottom, Evolutionary Art and Form, in P.
Bentley (ed.), Evolutionary Design by
Computers, Morgan Kaufmann Publishers, San
Francisco, California, pp. 261-277, 1999

[8] S. Rooke, Eons of Genetically Evolved
Algorithmic Images, in P. Bentley and D.W.

Corne (eds.), Creative Evolutionary Systems,
Morgan Kaufmann Publishers, San Francisco,
California, pp. 339-365, 2002

[9] L. Pagliarini and H.H. Lund, Art, Robots, and
Evolution as a Tool for Creativity, in P. Bentley
and D.W. Corne (eds.), Creative Evolutionary
Systems, Morgan Kaufmann Publishers, San
Francisco, California, pp. 367-385, 2002

[10] P.J.B. Hancock and C.D. Frowd, Evolutionary
Generation of Faces, in P. Bentley and D.W.
Corne (eds.), Creative Evolutionary Systems,
Morgan Kaufmann Publishers, San Francisco,
California, pp. 410-423, 2002

[11] A.E. Eiben, R. Nabuurs, and I. Booij, The
Escher Evolver: Evolution to the People, in P.
Bentley and D.W. Corne (eds.), Creative
Evolutionary Systems, Morgan Kaufmann
Publishers, San Francisco, California, pp.425-
439, 2002

[12] C. Lendon, Mondrian Applet, http://www4.vc-
net.ne.jp/~klivo/soft/mondrian.htm, 1999

[13] M. Lewis, Mondrian Machine,
http://desires.com/2.1/Toys/Mondrian/mond-
fr.html and http://www.ptank.com/mondrian,
1996

[14] T. Schnier and J.S. Gero, J.S., Dominant and
Recessive Genes in Evolutionary Systems
Applied to Spatial Reasoning, in A. Sattar (ed.),
Advanced Topics in Artificial Intelligence (10th
Australian Joint Conference on Artificial
Intelligence AI-97 Proceedings), Springer-
Verlag, Heidelberg, Germany, pp. 127-136, 1997

[15] T. Schnier and J.S. Gero, From Frank Lloyd
Wright to Mondrian: Transforming Evolving
Representations, in I. Parmee (ed.), Adaptive
Computing in Design and Manufacture III,
Springer-Verlag, London, pp. 207-219, 1998

[16] J.R. Koza, Genetic Programming: On the
Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge,
Massachussets, 1992

[17] M.-Y. Cha and J.S. Gero, Style Learning:
Inductive Generalisation of Architectural Shape
Patterns, in A. Brown, M. Knight, and P.
Berridge (eds.), Architectural Computing from
Turing to 2000, eCAADe, University of
Liverpool, England, pp. 629-644, 1999

[18] J.R. Jupp and J.S. Gero, Feature Based
Qualitative Representation of Architectural
Plans, Proceedings of the Computer-Aided
Architectural Design Research in Asia
Conference (CAADRIA-03), Rangsit University,
Patumtani, Thailand, 2003

[19] L. Ding and J.S. Gero, The Emergence of the
Representation of Style in Design, Environment

and Planning B: Planning and Design, 28(5),
pp. 707-731, 2001

[20] A. Gómez de Silva Garza and M.L. Maher, A
Process Model for Evolutionary Design Case
Adaptation, in J.S. Gero (ed.), Artificial
Intelligence in Design ’00, Kluwer Academic
Publishers, Worcester, Massachusetts, pp. 393-
412, 2000

[21] A. Gómez de Silva Garza and M.L. Maher,
GENCAD: A Hybrid Analogical/Evolutionary
Model of Creative Design, in J. Gero and M.L.
Maher (eds.), Computational and Cognitive
Models of Creative Design V, Key Centre of
Design Computing and Cognition, University of
Sydney, Australia, pp. 141-171, 2001

[22] S. Deicher, Mondrian, Benedikt Taschen Verlag
GmbH, Cologne, Germany, 1999

[23] M. Bax, Complete Mondrian, Lund Humphries
(Ashgate Publishing), Aldershot, United
Kingdom, 2001

[24] S.J. Louis, Learning from Experience: Case
Injected Genetic Algorithm Design of
Combinatorial Logic Circuits, in I.C. Parmee
(ed.), Adaptive Computing in Design and
Manufacture V, Springer-Verlag, Berlin,
Germany, pp. 295-306, 2002

[25] A. Gómez de Silva Garza and A.Zamora Lores,
A Cognitive Evaluation of a Computer System
for Generating Mondrian-Like Artwork, in J.S.
Gero (ed.), Design Computing and Cognition
’04, Kluwer Academic Publishers, Dordrecht,
the Netherlands, pp. 79-96, 2004

http://www4.vc-net.ne.jp/~klivo/soft/mondrian.htm
http://www4.vc-net.ne.jp/~klivo/soft/mondrian.htm
http://desires.com/2.1/Toys/Mondrian/mond-fr.html
http://desires.com/2.1/Toys/Mondrian/mond-fr.html
http://www.ptank.com/mondrian/

