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Abstract: - Many recent systems for computer artwork generation with evolutionary algorithms have been 
interactive, relegating the task of evaluating new genotypes to their user(s).  In contrast, we are interested in 
fully automating the entire evolutionary cycle applied to artwork generation.  In this paper we present an 
evolutionary computer system that, without human intervention, generates artwork in the style of the Dutch 
painter Piet Mondrian.  Several implementation-related decisions that have to be made in order to program such 
a system are then discussed.  The most important issue that has to be considered when implementing this type 
of system is the subroutine for evaluating the multiple potential artworks generated by the evolutionary 
algorithm, and our method is discussed in detail.  We also discuss our results in relation to other research into 
the computer generation of artwork that fits particular styles existing in the real world with evolutionary 
algorithms. 
 
Key-Words: - Evolutionary art, case-based reasoning, computational representations of style 

 
1  Introduction 
Ever since computer use began to spread, people 
started using computers to generate artwork.  At first 
printers and monitors could not display anything 
other than text, so rough figures depicting cartoon 
characters or everyday objects such as houses were 
“painted” by displaying sequences of ASCII 
characters that were designed to create an outline of 
the desired figure (sometimes even incorporating 
shading, when viewed from a distance, by using 
different ASCII characters for different parts of the 
figure to be depicted).  Eventually colors and high-
resolution monitors and printers became available, so 
computer art evolved into what it is today, able to 
display a multitude of abstract or realistic figures and 
textures in such detail that the results can now be 
used in movies to create animation that is virtually 
indistinguishable from the results of real 
cinematography.  Another approach to computer art, 
rather than to try to reproduce the real world 
virtually, is to try to get the computer to create its 
own sense of style (or rather, its programmer’s) and 
produce artwork in that style that people consider to 
be aesthetically pleasing (usually an abstract 
geometric style).  Yet another approach is to try to 
get the computer to create artwork that resembles (or 
is indistinguishable from) the creations of human 
artists. 

It is this last approach that motivated the 
research presented in this paper.  Specifically, we set 

out to produce a program that would generate 
artwork in the style of the Dutch painter Piet 
Mondrian, who was active mainly in the first half of 
the 20th century.  Like many other modern painters, 
Mondrian started his career painting landscapes, 
human figures, and other realistic subjects, but 
eventually developed his own distinctive and abstract 
style (called simply de stijl, which is Dutch for “the 
style”).  Paintings in Mondrian’s style typically 
include vertical and horizontal black lines over a 
white background, with some or all of the primary 
colors (blue, red, and yellow), plus black, filling in 
some of the square or rectangular regions (or parts of 
the regions) separated out from the background by 
the black lines.  It is this style that our system tries to 
emulate.  Fig. 1 shows a typical Mondrian painting 
in his distinctive style. 

The method we have used for getting the 
computer to generate different paintings is through 
an evolutionary algorithm [1].  This type of 
algorithm represents a generate-and-test, trial-and-
error, brainstorming-like approach [2]: many 
possible paintings (populations of them) are 
generated quickly, by using mainly random 
decisions.  Probably most of these paintings are of 
quite low quality, but after being generated they are 
then evaluated to determine how much they make 
sense.  In the context of our research, “making 
sense” would imply being as close as possible to the 
style of Mondrian.  The best paintings (according to 
the evaluation subroutine of the evolutionary 



algorithm) are kept for future evolutionary 
generations (a process known as elitism), and the 
others are discarded (so as to keep the size of the 
population of the algorithm constant across 
generations).  This process ensures a monotonic 
increase in the average quality of the paintings in the 
population between generations.  Depending on what 
is desired, either when this average quality or when 
the quality of just one individual painting is good 
enough according to the evaluation subroutine, the 
process is terminated.  The evaluation subroutine of 
the evolutionary algorithm, therefore, is of critical 
importance to the success of the approach. 
 

 
Fig. 1.  A typical Mondrian painting 

 
Section 2 of this paper provides a discussion of 

related work in computer artwork generation and 
representation of style which serves to further frame 
and provide motivation for our work.  Section 3 
briefly talks about our evolutionary algorithm, and 
discusses some decisions we had to make in order to 
implement it for the domain of Mondrian-style 
artwork generation in particular.  This 
implementation has resulted in a system named 
MONICA (MONdrian-Imitating Computer Artist).  
Finally, Section 4 presents some of the results we 
have obtained from running MONICA and provides 
a general discussion of these results and possible 
future work on the project. 

 
2  Related Work 
Just as generating artwork by computer is not a new 
idea, neither is using evolutionary algorithms for this 
task.  Two recent surveys, published in book form, of 
the use of evolutionary algorithms for design tasks in 
general, are included for instance in [3] and [4], and 
these include discussions of seven systems for 
artwork generation.  All of the systems described in 
these books that create artwork ([5], [6], [7], [8], [9], 
[10], and [11]) do so by using the evolutionary 
operators of crossover and mutation.  However, all of 
these systems leave it to the user(s) to decide which 
of the new paintings (or which of their features) to 
keep for future evolutionary cycles, and/or how to 
rank the new paintings according to their subjective 
(and probably unconscious) aesthetic criteria.  Thus, 

the decisions on what is aesthetic or interesting, or 
what paintings fit a particular style, are not made by 
the systems.  In contrast, MONICA is designed to be 
a fully autonomous system requiring no user 
feedback as its evolutionary algorithm proceeds. 

In order for MONICA to be fully autonomous, 
an evaluation procedure that captures and recognizes 
the stylistic characteristics of Mondrian paintings 
had to be programmed into its evolutionary 
algorithm.  Neither the relationship between 
evolutionary algorithms and Mondrian, nor the 
attempt to capture and automate the generation of 
new creations in the style of given artists or 
designers, is new either.  However, the approach we 
followed in implementing MONICA is different 
from those that have been used in other projects that 
have explored these issues. 

A Mondrian Evolver (as well as an Escher 
Evolver) is mentioned in [11].  However, the Internet 
web-page cited does not seem to exist anymore, so 
we have not been able to view the program.  If it 
works the same way as the Escher Evolver described 
in the book chapter cited, then anyone who accesses 
the Mondrian Evolver web-page can provide 
feedback to the program in order to influence the 
results of the next evolutionary cycles.  Thus, the 
system is again non-autonomous, unlike MONICA. 
A Mondrian Applet [12] and a Mondrian Machine 
[13] can be found on the Internet.  The first one of 
these two systems is completely autonomous, and the 
second one semi-autonomous (because the user’s 
clicks determine the positions of black lines in the 
paintings which are then automatically generated, 
with colors being randomly selected to fill some of 
the spaces between the resulting lines).  Both 
systems have been programmed with certain rules 
about how to generate artwork that looks like 
Mondrian’s according to their programmer’s 
understanding of de stijl.  The difference with our 
work is that generating new paintings in MONICA is 
done completely at random through the evolutionary 
operators of crossover and mutation, not by 
following any pre-programmed generative rules.  It 
is only in the evaluation subroutine in MONICA’s 
evolutionary algorithm that any knowledge of 
Mondrian’s style (according to our understanding of 
it) is programmed, and this knowledge in MONICA 
is used for style recognition rather than generation or 
emulation. 

Returning to evolutionary algorithms, one of 
these has in the past been applied to generating 
Mondrian-like artwork, as reported by Schnier and 
Gero in [14] and [15].  The genotype representation 
used in these two publications is hierarchical (much 
like that used in genetic programming [16]), and 



relies on the observation that a large subset of 
Mondrian’s paintings can be described by successive 
recursive divisions of a “canvas” into rectangular 
areas.  It is the recursive subdivisions that are 
embodied in the hierarchical aspects of the 
representation.  The fitness of new paintings 
generated by this system is determined by measuring 
the distance between them and the exemplars (cases) 
of real Mondrian paintings used to initiate the 
evolutionary process.  The non-hierarchical genotype 
representation used in MONICA provides much less 
guidance to the system as to the structure that a 
Mondrian-like painting should have in comparison to 
the un-named system described in the two papers by 
Schnier and Gero.  Another difference is that 
MONICA’s evaluation subroutine explicitly captures 
stylistic characteristics used by Mondrian and 
observed by the authors, whereas the evaluation 
module in the system described by Schnier and Gero 
does not.  On the other hand, the use of real cases of 
Mondrian paintings and the overall evolutionary 
framework and attempt to obtain Mondrian-like 
results create a close similarity between the two 
projects. 

Work into capturing the style of particular artists 
or designers in the computer has often focused on 
shape grammars [17] or semantic networks [18].  
However, some work has also used evolutionary 
algorithms to explore style.  A system is described in 
[19] that generates traditional Chinese architectural 
facades after it infers a representation of their style.  
The inference and subsequent learning is done with 
an evolutionary algorithm which in the end obtains a 
hierarchical genotype which represents a particular 
style (by generalizing from the exemplars which 
have been shown to it).  As with the project 
described by Schnier and Gero, here we have 
exemplars and we have hierarchical genotypes.  
However, in this project the genotype does not 
describe a particular design, but rather an entire 
design style.  This is because the genes that compose 
the hierarchical genotype embody syntactic and 
semantic primitives that combine to describe a 
particular style.  The task of the system is to learn 
this hierarchical genotype given the exemplars, and 
the learning task is done through an evolutionary 
algorithm.  Recognizing whether a new design 
matches a particular style involves matching its 
features with the style representation embodied in 
the hierarchical genotype.  In contrast, in MONICA 
style recognition is pre-programmed, not learned, 
and forms part of the evaluation module of the 
evolutionary algorithm that generates possible 
Mondrian-like paintings, not part of the knowledge 
captured in the genotype representation. 

 
3  Evolutionary Algorithm 
Implementation 
Fig. 2 shows the flow of subtasks performed by our 
evolutionary algorithm. 
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Fig. 2.  Our evolutionary algorithm’s subtasks 

 
Briefly, a population of potential solutions 

(which in this case represent paintings) is kept 
throughout the process.  The makeup of the 
population changes due to the evolutionary process.  
New potential solutions are generated by the genetic 
operators of crossover and mutation, which at 
random combine and modify the features of old 
potential solutions that are already in the population, 
respectively.  A temporarily expanded population is 
created by adding these new potential solutions to 
the original population.  Each new potential solution 
is evaluated and a fitness value assigned to it.  The 
fitness value in our system is a measure of how close 
or how far the painting is from Mondrian’s style.  If 
one or more (as desired) of the new potential 
solutions is already perfect (i.e., already fits the 
desired style) according to the evaluation procedure, 
the evolutionary process stops (or, alternatively, if 
the search has gone on for too long without 
successfully producing any Mondrian-like works of 
art).  Otherwise, a selection procedure sorts the 
potential solutions in the temporarily expanded 
population according to their fitness value, keeps the 
best of them, and discards the rest.  The individuals 
that are kept become the initial population for the 
next evolutionary cycle (which has been trimmed 
down to be of the same size as the initial population 
of the previous evolutionary cycles).  This new 
population may include both old and new potential 
solutions (i.e., some carried over from previous 
generations and some newly-generated ones), and 
the process repeats itself. 

The system we have programmed, MONICA, 
implements an evolutionary algorithm like the one 



described above on a Windows platform in C++ (for 
the reasoning engine) with OpenGL (for the 
graphical interface), and applies the algorithm to the 
domain of Mondrian-style artwork generation.  The 
following subsections discuss some issues that arose 
during the implementation of MONICA. 
 
3.1  Makeup of the Initial Population 
As can be seen from Fig. 2, the population of the 
first cycle of the evolutionary algorithm must be 
seeded in some way before starting the process.  We 
have considered several options in order to produce 
this initial population.  One option for this seeding 
process is to use cases (in this situation, actual 
Mondrian paintings) as the individuals in the initial 
population.  A process model for this approach, used 
in the domain of residential floor plan design, is 
presented and evaluated in [20] and [21].  The cases 
used to seed the initial population include examples 
of different things that Mondrian has done in his 
paintings, and thus, when combined and modified 
repeatedly, provide material for the evolutionary 
algorithm to quickly produce new potential solutions 
that contain Mondrian-like features.  On the other 
hand, the use of cases can bias the algorithm too 
much towards creating paintings that only differ 
from Mondrian’s in small details.  We have gathered 
55 cases of Mondrian paintings (pertaining to de stijl 
and not including pieces representing stylistic 
transitions or his rhomboidal “lozenges,” as they are 
known) from several Internet sites, and from the 
books [22] and [23].  Apart from having these cases 
in JPG format, we have made them available to 
MONICA by hand-coding them into our genotype 
representation scheme (described below). 

A different option for the seeding process is to 
produce an initial population entirely at random.  
This approach has the advantage that little prior bias 
can be said to exist in the initial population, and thus 
it is easier to claim that the computer itself really 
evolved Mondrian-like paintings from nothing, 
without any help.  On the other hand, it may take too 
long to start producing Mondrian-like artwork, 
despite the bias that the evaluation procedure of the 
evolutionary algorithm provides in that direction, 
and thus may not really be a feasible approach.  This 
method of seeding the initial population is also 
available to MONICA.  The algorithm used in 
MONICA in order to produce a random initial 
population is based on randomly deciding the sizes, 
coordinates, and colors of different rectangular 
regions to be placed in a painting.  Some slight bias 
that considers aspects of Mondrian’s style, such as 
limiting the total number of colored regions in each 
individual to Mondrian-type numbers, was still 

present in the “random” generation of the initial 
population, but not much.  In our algorithm, colored 
regions that end up getting assigned very small 
widths or heights end up being lines, but are not 
treated any differently from square or rectangular 
colored regions.  There is nothing in the random 
seeding algorithm to force colored regions not to 
overlap, not to exceed the limits of the frame used 
for the painting, or any other things that will 
eventually have to happen, at the same time, for a 
painting to be accepted as Mondrian-like by the 
evaluation procedure. 

A final option is to combine both cases and 
random individuals in the initial population.  The 
question then becomes what the relative proportion 
of cases and random individuals should be in the 
initial population.  For the purposes of being able to 
produce Mondrian-like results, it doesn’t seem to 
matter much, though there may be an effect on 
convergence time.  We are planning to perform some 
experiments with MONICA in the future to measure 
any possible effects.  In addition, [24] uses a similar 
approach, using cases combined with evolutionary 
algorithms for electronic circuit design, and has 
performed experiments having to do with seeding the 
population with different proportions of cases and 
random “solutions.”  These experiments have 
measured the effect of changing the relative 
proportions of cases and random solutions on the 
amount of exploration and exploitation present in an 
evolutionary algorithm, and have come to the 
conclusion that around 10% of cases is a good figure.  
It will be interesting to see if our future experiments 
validate these results or if the results are specific to 
the domain and representation used in [24]. 
 
3.2  Genotype Representation 
Fig. 3 shows how we have represented in MONICA 
the individuals in the population of our evolutionary 
algorithm as genotypes at the highest level.  The 
genotype is split into twenty regions, each of them 
corresponding to one of twenty possible colored 
regions permitted in a painting. 
 

 
Fig. 3.  Genotype representation used 

 
Fig. 4 shows at an intermediate level how each 

of the twenty genotype regions is split into five 
sections in order to represent the color, width, height, 
and x- and y-coordinates (of the center, as per 
OpenGL standards) of each colored region.  These 



last four measurements are all limited to the same 
range of values. 
 

 
Fig. 4.  Representation of each colored region 

 
Fig. 5 shows, at the bit level, the internal details 

of the representation of the color and one of the four 
measurements shown in Fig. 4. 

 
Fig. 5.  Bit-encoding of the color and any one 

measurement in the representation 
 
3.3  Crossover and Mutation Operators 
The genetic operators of crossover and mutation, in 
their pure form, should make all their decisions at 
random.  For instance, crossover combines the 
makeup of two original individuals by randomly 
choosing which two individuals to combine and 
randomly choosing the position within their 
genotypes in which to cut and splice them.  
However, this completely “blind” process can 
produce a lot of senseless and time-wasting results, 
including offspring genotypes that have the exact 
genetic makeup as their parents.  In MONICA, if a 
particular painting has only four colored regions, for 
example, and given the fact that all genotypes are of 
the same length, the genes in the genotype 
corresponding to colored regions 5-20 will just be 
filled with zeroes.  If the crossover point is randomly 
chosen to fall in this region of the genotype for one 
parent, and the same occurs with the other parent, 
each one of the two resulting offspring genotypes 
will be identical to one of their parents.  Thus, we 
would not have produced any new, and therefore 
potentially good, results in the new generation.  In 
order to avoid this problem we have added some 
“intelligence” to our implementation of both the 
crossover and mutation operators in order to ensure 
that any work done during evolution results in 
something new. 

We could also add some intelligence to 
MONICA in order to avoid any useless results.  For 
instance, we only accept five possible colors in a 

Mondrian-like painting, yet have three bits in which 
to represent the value of the color gene within an 
individual’s genotype (leading to eight possible 
values).  Because of this, the value of the left-most 
bit position in the color gene will, most of the time, 
be 0 in a good genotype, unless the two right-most 
bits are 0’s, in which case the left-most one can be a 
1.  We could program the crossover and mutation 
operators to take into account these factors when 
making their “random” decisions about where to 
cross or mutate genotypes, in order for all the genes 
of offspring genotypes to get assigned values that 
make sense.  However, we feel that this would be 
tampering too much with the way evolution is 
supposed to happen, so we have not gone so far.  
Again, any biasing of the population according to 
how much the individuals in it resemble Mondrian’s 
style we have left to the MONICA’s evaluation 
procedure, and we did not want to distribute its 
effects to other modules. 
 
3.4  Evaluation of New Genotypes 
The evaluation of new genotypes produced during 
the course of evolution is the most important aspect 
of an evolutionary algorithm, since it is where 
domain knowledge is used to indirectly guide the 
evolutionary search towards a particular objective.  
In MONICA we assign a fitness value between 0 and 
1 to each individual in the population, where a 0 
would mean that the individual doesn’t satisfy any of 
the evaluation rules used to determine how close it is 
to fitting Mondrian’s style, and a 1 would represent a 
perfect fit.  We have implemented eight evaluation 
rules, each of which assigns a “local” fitness value 
between 0 and 1 (interpreted as above), and calculate 
the total fitness of an individual by adding the eight 
local fitness values and dividing the total by eight, 
thus giving each rule an equal importance or weight.  
The eight rules were articulated (and then 
programmed) by the authors after examining the 55 
cases of Mondrian paintings that we had access to, 
and discussing the patterns that we seemed to 
observe in these cases.  We have shown in [25] that 
most people agree with the results given by our 
evaluation rules.  The eight rules are the following: 
1. EvaluateColor: Each colored region that is 
contained in a genotype must have one of the five 
valid colors. 
2. EvaluateCoordinates: The height, width, x-
coordinate, and y-coordinate of each colored region 
in a genotype must all fall between 0 and 3.9999. 
3. EvaluateLineThickness: Up to two black colored 
regions are allowed in a genotype that are not thin, 
but all other black regions must be either vertically 



or horizontally thin (and thus represent a line rather 
than a rectangular region). 
4. EvaluateNumberOfVerticalLines: A minimum of 
two and a maximum of ten vertical lines must be 
present in a genotype. 
5. EvaluateNumberOfHorizontalLines: A minimum 
of two and a maximum of ten horizontal lines must 
be present in a genotype. 
6. EvaluateLimits: Each colored region in a 
genotype must be adjacent either vertically (both 
above and below) or horizontally (both to the left 
and to the right), or both, to another colored region 
or to the edge of the frame (with some small 
tolerance). 
7. EvaluateFrame: All other colored regions in a 
genotype must fall within the coordinates of the 
frame, whose color is white by definition and whose 
coordinates are represented just as any other colored 
region’s are. 
8. EvaluateNumberOfColoredRegions: There must 
be at least one colored region represented in a 
genotype, and at most 13, not counting lines.  At 
most one of them can be white (and represents the 
frame). 
 
4  Discussion and Results 
Fig. 6 shows three Mondrian-like paintings which 
were created by our system (which assigned a fitness 
value of 1 to them) at different times.  The fact that 
MONICA has shown the capacity to create 
Mondrian-like paintings on several occasions 
validates the set of evaluation rules we programmed 
into the system and also confirms the capacity to 
create artwork by computer autonomously, without 
the need for user feedback or intervention. 

This kind of project helps contribute to several 
interrelated research fields, notably design 
computing, case-based reasoning, and evolutionary 
algorithms.  Most importantly, the notion of “style” 
is still not well understood in a formal manner, even 
though most people probably have an intuitive feel 
for its meaning and can recognize different styles.  
Computational models of style generation and/or 
style recognition like the one used in MONICA help 
to further our formal understanding of style in a way 
that the artwork-generating systems described in [3] 
and [4] can’t. 

Future work on MONICA will focus on not 
having to pre-program any style recognition 
knowledge at all in order to create the evaluation 
module of the evolutionary algorithm.  Perhaps a 
similar approach to the one presented in [19] can be 
used, employing first a learning evolutionary 
algorithm to evolve a representation of Mondrian’s 
style, and then the current evolutionary algorithm to 

create possible Mondrian-like paintings, but to 
evaluate their fitness based on the learned 
representation rather than using hand-coded rules for 
this evaluation.  Or perhaps a different method (e.g., 
we are considering neural networks) will be able to 
capture Mondrian’s style in such a way that it can be 
used by MONICA’s evolutionary algorithm, but 
without having to program any of its evaluation or 
recognition knowledge explicitly.  For the moment, 
pre-programming a particular style into the system 
was not too difficult, given Mondrian’s geometric 
and relatively simple style.  However, applying the 
same ideas used in MONICA in order to imitate 
other painters’ styles in the computer (e.g., da Vinci) 
might require a different approach! 
 

 
Fig. 6.  Three Mondrian-like paintings generated by 

our system 
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