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Abstract

A recent Cellular Automaton model (CA) with variable anticipation to simulate microscopic traffic flow for one-
lane is modified. In this type of models, based on methods from statistical physics, vehicles follow a reduced set of
rules. This allows simulation of large traffic networks with a reasonable computational effort.The goal is to obtain
a quantitative agreement of the flux versus density relation in comparison with other existing CA models. For
this purpose a very simple modification to the deceleration procedure is proposed. Simulation results show both a
qualitative and quantitative coincidence of the relation derived from the density/flow curve with values taken from
real traffic measurements for all density regimes. This modified model preserves the computational simplicity of CA
models and the different flow phases observed in the CA model with anticipation of the velocity.
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1 Introduction

In recent years, micro-simulation of traffic has be-
come more popular as it can reproduce a large variety
of phenomena observed in traffic. There is a recent
trend on taking advantage of models developed orig-
inally in other research areas such as physics, math-
ematics, and computer science and applying them to
traffic flow micro-simulation. In this address, Cellu-
lar Automata (CA) models [1, 2], that originated in
statistical physics in the study of particle behavior,
have shown the ability to capture the basic phenom-
ena in real traffic flow [3]. Cellular automata are dy-
namic models in which space, time and state variables
are discrete. When applied to traffic research, CA use
cellular states to describe the position and velocity of
each car, update every cell state with rules deduced
from practical traffic experiences, and get the whole

system’s dynamical evolvement and final steady re-
sult. Compared with continuum models, CA traffic
models are much simpler and more convenient for
computer simulation. The most important aspect is
that CA models can model the complexities of non-
linear characters in traffic problems, and offer more
intuitive physical images. Now, almost eleven years
after the introduction of the first CA models[1], they
have proved to be a realistic description of vehicular
traffic in dense networks [4, 5].

One of the main characteristics of the driving be-
havior is the fact that drivers anticipate the maneu-
vers of the predecessor driver, and this is the most
important fact in automatized driving. This last an-
ticipation feature in automatized traffic model was
introduced in the past [6]. Recently, a new single-
lane probabilistic model based on the first CA model
of Nagel and Schreckenberg [1] to describe the ef-
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fects of several anticipation schemes in traffic flow
was introduced [7]. In this model (hereafter cited as
the LRS model) a new parameter in the deceleration
process, so called anticipatory driving parameter, to
estimate the velocity of the precedent vehicle is in-
troduced [7]. This estimation, plus the real spatial
distance to the leading vehicle, establishes a safe dis-
tance among vehicles. The addition of this param-
eter has been proved to be useful to describe differ-
ent traffic situations of non-automated, automated,
and mixed traffic. According to simulation results
from the LRS model [7, 8], the parameters can be ad-
justed to reproduce empirical fundamental diagrams
(flow vs. density curves) of real non-automated traf-
fic. However, this fundamental diagram does not re-
produce quantitatively well the characteristic curve
obtained from empirical data for all density regimens.
This problem is shared with other CA models. Thus,
as in many other branches of the physics where the
precise description of details is appreciated, some ef-
forts have been addressed to modify several rules in
order to describe quantitatively the fundamental di-
agram [9] [10].
In this paper, we study a modified LRS model aiming
at a quantitative improvement of the fundamental di-
agram obtained. For that purpose we have developed
through a deep understanding of the driver behavior
a simple modification in the deceleration process of
the LRS model. Concerning our simulation results,
we want to claim that the suggested model variant
agree with real data not only in a qualitative, but
also in a quantitative form for all density regimes.
Furthermore, the modified model still obey the ”sim-
plicity law” of CA modeling.
In section 2 of this paper a short review of the basic
model is given and some limitations are discussed.
Section 3 introduces our modification to the LRS
model and gives results from our investigations. We
focus on the shape of the fundamental diagram for
non-automated traffic as obtained by CA simulations.
Our aim is to achieve quantitative coincidence with
empirical data of non-automated traffic instead of
qualitative only. Finally, in section 4 we present the
conclusions of our investigations.

2 The basic LRS model and some results

In this section a short review of the LRS model is
given and some simulation results are discussed fo-
cussing on the fact that we want to reproduce details
of the measured fundamental diagram.

2.1 The LRS model

The LRS model is a modification of the Nagel-
Schreckenberg model [1] to better capture reactions
of the drivers intended to keep safety on the highway.
The model is defined on an one-dimensional lattice
of L cells with periodic boundary conditions, which
corresponds to a ring topology with the number of
vehicles preserved. Each cell is either empty, or it is
occupied by just one vehicle traveling with a discrete
velocity v at a given instant of time. All vehicles
have a velocity that ranges from 0, . . . , vmax. In ad-
dition, and for simplicity, only one type of vehicle is
considered, this means that all vehicles are treated in
the same manner. The time-step (∆t) is taken to be
one second, therefore transitions are from t → t + 1.
These aspects can also be easily modified. For con-
venience we use dimensionless (integer) variables, the
real units being specified when needed.

Let vi and xi denote the current velocity and po-
sition of vehicle i, and vp and xp be the velocity and
position of the vehicle ahead (preceding vehicle) at
a fixed time; di := xp − xi − 1 denotes the distance
(number of empty cells) in front of the vehicle in po-
sition xi

a.
The dynamic of the system is defined with the fol-

lowing set of rules, which are applied to all N vehicles
on the lattice each time-step:

R1: Acceleration
If vi < vmax, the velocity of the car i is
increased by one, i.e.,

vi → min(vi + 1, vmax).

R2: Randomization
If vi > 0, the velocity of car i is decreased
randomly by one unit with probability R,
i.e.,

vi → max(vi − 1, 0) with probability R.

aBumper to bumper headway.
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R3: Deceleration
If ds

i < vi, where

ds
i = di +

[
(1− α) · vp +

1
2

]
,

with a parameter 0 ≤ α ≤ 1, the velocity
of car i is reduced to ds

i . [x] denotes the
integer part of x, i.e. [x + 1

2 ] corresponds
to rounding x to the next integer value.
The new velocity of the vehicle i is there-
fore

vi → min(vi, d
s
i ).

R4: Vehicle movement
Each car is moving forward according to
its new velocity determined in steps 1-3,
i.e.,

xi → xi + vi.

Rules R1, R2 and R3 are designed to update velocity
of vehicles; rule R4 updates position. According to
this, state updating is divided into two stages, first
velocity (rules R1, R2 y R3), second position. In or-
der to determine the velocity (vi) consistently for all
vehicles, rule R3 must be iterated at most (vmax)
times.

Note that in rule R3 the distances between the ith
and (i + 1)th vehicles, and their corresponding ve-
locities are considered. Knowledge of the preceding
vehicle’s velocity is incorporated through the antic-
ipatory driving parameter α with range 0 ≤ α ≤ 1.
By only varying the parameter α in the term ds

i =
di + [(1 − α)vp + 1/2], different anticipatory driving
schemes that require different safe braking distance
with respect to the preceding vehicle can be modeled.

The LRS model is a minimal model in the sense
that all four steps R1-R4 are necessary to reproduce
the basic features of real traffic, however, additional
rules may be needed to capture more complex situ-
ations [11] or as in our case to reproduce with more
detail a real situation.

2.2 Some simulations results

The fundamental diagram characterizes the depen-
dence of the vehicles flow on density and is one of
the most important criteria to show that the model
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Figure 1: Fundamental diagram for different values of the
anticipation parameter α. The legend indicates the effect of
rounding in the estimation of the velocity of preceding car,
defined in rule R3 (as presented in ref. [7]).

reproduces traffic flow behavior. Variation of the pa-
rameter α makes it possible to consider several an-
ticipation strategies, e.g. non-automated, mixed and
automated traffic flow, and so go beyond previous
analysis.

To simulate the LRS model, the typical length of
a cell is around 7.5 m b. With this value of the cell-
size and a time-step of 1 s, the velocity of a vehicle
vi = 1 corresponds to moving from one cell to the
downstream neighbor cell in one time-step, and that
translates to 27 km/h in real units. The maximum
velocity is set to vmax = 5, equivalent to 135 km/h.
The density ρ is defined as ρ = N/L, where N is the
number of cars on the highway. Initially, N vehicles
are distributed randomly on the lane around the loop
with an initial speed taking a discrete random value
between 0 and vmax. Since the system is closed, the
density remains constant with time.

In Fig. 1 the fundamental diagram resulting from
the LRS model with a fixed value of the probability
R = 0.2 and different values of α is shown. Simula-
tions are carried out for L = 104 cells and T = 15 ∗L
time-steps. In order to analyze results, the first
10 ∗ L time-steps of the simulation were discarded
to let transients die out and the system reach its

bIt is interpreted as the length of a vehicle plus the distance
between cars in a dense jam, but it can be suitably adjusted
according to the problem under consideration
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steady state. Then the simulation data are averaged
over the final 5 ∗ L time-steps. The curve shows 98
points for ρ varying from 0.01 to 0.99 in steps of 0.01.
Simulation results for driving schemes associated to
intermediate-levels of anticipation with α from 0.13
to 0.5, exhibit phase separation in a certain density
regime into a free-flow region and so-called v-platoons
[7]. In these dense platoons vehicles move with the
same velocity v and have vanishing headway. These
states have been shown to be in agreement with dif-
ferent empirical observations in real traffic flow [7].

2.3 Comparison with real non-automated traf-
fic

When talking about fundamental diagrams from
measured data one has to keep in mind that it is diffi-
cult to give the exact shape of such a curve. However
a characteristic shape can be found [10]. For compar-
ison with simulation data from the LRS model, the
characteristic curve from measured data taken from
[12], is plotted in Fig. 2 as a solid line. A max-
imum flow and critical density can be observed at
(ρc, qmax) = (0.17, 2340 cars/h). Roughly speaking
ρc separates the low density interval of free traffic
flow (free-flow) from a jammed phase characterized
by the persistence of jams (negative slope). More-
over, a change in the slope in the free flow region
(positive slope) is identified at a density of 0.1. This
fact corresponds to a reduction in the mean velocity
of vehicles near the critical density. At this density
interval the free flow velocity changes. Our interpre-
tation of this fact is the following: Before traffic flow
breaks down at the critical density of the fundamen-
tal diagram (where the maximum flow is reached)
and therefore before first jams arise traffic flow orga-
nizes freely at a lower mean velocity. This means that
drivers sacrifice speed in order to have less space to
the preceding car without braking. As a consequence
more cars fit on the road and the regime of free-flow
can exist for high densities but with slower velocity.

For comparison with this characteristic curve, sim-
ulation data of the LRS model corresponding to an
α value of 0.75 (cautious estimation of the preceding
car’s velocity, non-automated traffic) and R = 0.2 are
also depicted in Fig. 2 (dash line).

As we can see from Fig. 2, the curve of the LRS
model (dashed line) is consistent with the charac-
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Figure 2: Typical form of an empirical fundamental diagram
taken from [12] (solid line) in comparison with simulations of
the proposed model for R = 0.2 and α = 0.75 (dashed line).
Each point corresponds to a fixed density.

teristic curve of the measured fundamental diagram
(solid line). The values for the critical density and
the maximum flux resulting from the LRS model
are (ρc, qmax) = (0.16, 2417 cars/h). These values
are closer to the corresponding ones of the empiri-
cal curve, in comparison with other existing models
based on cellular automata, see [9]. However, the
curve from simulations does not depict two slope in
the free-flow region compared to real traffic measure-
ments.

It would be even more satisfactory to reproduce
the two slopes correctly, the improved LRS model
to be introduced in the following tries to reproduce
the quantitative characteristic of the fundamental di-
agram, i.e. the position of the maximum and the
change in the slope before the maximum flow. We
want to stress that recently other models have tried to
reproduce the characteristic curve of the fundamental
diagram presented here, in a quantitative way; how-
ever, the attempts complicate the models and do not
completely succeed [9] [10].

3 Modification to the LRS model

In order to reproduce the quantitative characteristic
curve of the fundamental diagram, we have under-
stood how two different slopes arise in the real data
based in the analysis performed in [10]. In the pos-
itive slope region of the fundamental diagram (free-
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flow regime) the value of the slope depends only on
the free-flow velocity for the corresponding density.
In the interval density from 0.1 to 0.165, there is a
reduction in the mean velocity of vehicles near the
critical density. In order to model this feature prop-
erly with the LRS model one would have to introduce
a rule switching to a maximum velocity less than five
for the density range from 0.1 to 0.165 but allowing
to keep the positive slope. Such a switch would trig-
ger a lower free flow velocity for that interval since
the free flow velocity only depends on the maximum
velocity and the value of the random braking param-
eter R with which speed is reduced by one in the
randomization process. Therefore, in this paper we
modify the deceleration process of the LRS model
so that even for a gap of nine cells the maximum
velocity is set to four. This means that very fast
cars would only increase their velocity to maximum
speed when there was a safety distance in average at
least 67.5 meters in front of them. This physical re-
striction mimics the psychological drivers behavior of
not reaching the maximum velocity with many cars
around. This observation leads to a modification on
the deceleration rule to LRS model as:

R3’: If vi = 5 (i.e. vi = vmax) and ds
i ≤ 9 cells then

vi → min(vi−1, ds
i )

else (like rule R3 of LRS model)

vi → min(vi, d
s
i ).

In Fig. 3, the results obtained from the here pro-
posed model are shown and compared with the exper-
imental curve from real traffic data [12]. The curve
resulting from the modified LRS model fits the real
curve in both its increasing part and its decreasing
part quite well. Furthermore, the results from the
proposed model agree quantitatively with the exper-
imental shape of the fundamental diagram in all of
the density ranges. It is very important to claim that
this agreement is only obtained by doing a very sim-
ple modification in the deceleration process of the
LRS model. We need to stress one more time that
attempts of other existing models in the literature
to obtain this agreement did not succeed. Moreover,
the modified LRS model preserves the simplicity of
the models based in CA. Simulation results for dif-
ferent values of the anticipatory driving parameter
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Figure 3: Fundamental diagram for the modified model. This
diagram is in agreement with the experimental curve in a quan-
titative way.

(see Fig. 4) illustrate that this modified LRS model
even captures the phases of traffic flow encoded in
the fundamental diagram as it was observed in the
LRS model, while preserving simplicity. This allows
rapid simulation that can prove useful for application
to large scale traffic networks. It is important to ob-
serve that a slight shift in the free-flow branch of the
fundamental diagram appears. Such a shift is due
to the modification on the deceleration rule, where
a vehicle increases its velocity to vmax only when a
safe distance is at least 9 cells, i.e., this change occurs
beyond a density of 0.1. For this reason, around this
density the straight line of free-flow regime is bro-
ken in two parts for all the α-values. For α ≤ 0.5,
while the first branch has a slope of vmax − R the
second branch shows a slope of 4.0. This velocity
is the ”effective” maximum velocity according to the
modification of R3.

4 Conclusions

In this paper we introduced simulation results which
we obtained by modifying the LRS [7] model for traf-
fic flow simulation. We suggest a modified decelera-
tion process aiming at a quantitative improvement
of the fundamental diagram obtained for all density
regimes. The new deceleration process is still highly
local and does not affect the run time of model com-
putations. The modified model preserves the simplic-

5



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

flo
w

 [v
e

h
/ti

m
e

st
e

p
]

density

 α=0.00
 α=0.13
 α=0.20
 α=0.50

Figure 4: Fundamental diagram for different values of the an-
ticipation parameter α resulting from the modified LRS model.

ity law of CA modeling. Concerning our simulation
results corresponding to the cautious estimation of
the preceding car’s velocity (α = 0.75) of the modi-
fied model, the relations obtained from the density
vs. flow curve are in agreement with the charac-
teristic curve of the measured fundamental diagram.
Moreover, this agreement is not only qualitative but
also quantitative for all density ranges, and it has not
been attained with other CA models. The improved
LRS model introduced in this paper reproduces the
quantitative characteristic of the fundamental dia-
gram, i.e. the position of the maximum and the
change in the slope before the maximum. We want
to stress that recently other models have tried to re-
produce the characteristic curve of the fundamental
diagram presented here, in a quantitative way. How-
ever, the attempts to improve the correlation of sim-
ulation and measurement did not succeed. Further-
more, we want to claim that within a small variant in
the free-flow regimen, simulation results for different
driving schemes associated to intermediate-levels of
anticipation exhibit the same phase separations ob-
served in the fundamental diagram for the original
LRS model [7] opening new questions in phase sepa-
ration in driven diffusive phenomena.
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[6] Lárraga M.E., del Rı́o J.A., and Mehta A. Micro-
scopic Simulation of Urban Traffic based on Cellular
Automata. Physica A, Vol. 307, 2002, pp. 527–547.
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