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Abstract; The fpPID controller is a modified version
of the well known PID controller, whose derivative
component has been replaced by a fuzzy time series
predictor. Such controller has shown good performance
in simulation, but an important issue when modifying
standard PID architecture is it’s stability. In this paper
we present delay independent conditions for fpPID
controller stability1. Such conditions were obtained
using the LMI approach and the Lyapunov Krasovskii
Theorem.
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1 Introduction

1.1 PID Controller (Proportional-Integral-
Derivative)

The PID controller is by far the most common control
algorithm. Most feedback loops are controlled by this
algorithm or minor variations of it. It is implemented
in many different forms, as a stand-alone regulator or
as a part of a DDC package or hierarchical distributed
process control system[2].

The equation for PID is given by:
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u((t) = Kp[e(t) +
1
TI

∫ t

0
e(t)dt + TD

de(t)
dt

] (1)

Where:
u(t) → Control signal
e(t) → error signal,

defined by:e(t) = y(t)− r
KP → Proportional constant
KP
TI

→ Integral constant
(KP )(TD) → Derivative constant

1.2 Fuzzy time series prediction

fpPID controller, uses a finite amount of past data, to
predicte(t + h). The prediction is given by:

êt+h =
1
k

k∑

j=1

Sjetj+h
, (2)

being h the ahead time step in the prediction;etj+h

the control error measure;h the time length;tj j =
1, 2, . . . , k are the neighbors used for prediction ofêt+h

and Sj is the local similarity measure between each
neighbor and the actual input. Local similarity is com-
puted as follows: Ifet−m . . . et are them time series
points previous to actual time andetj−m ,...etj any other
sequence of points in the time series, then the local sim-
ilarity of etj to et is

Sj =
1

m + 1

m∑

j=0

µj,i, (3)



whereµj,i is the membership value ofetj−i in a fuzzy
set defined locally whose unique membership one point
is located atet−i.

1.3 fpPID Controller

The fpPID controller, is obtained by replacing
the derivative component in standard PID with a
fuzzy k-nearest neighbors method for time series
prediction[15], this architecture yields a better perfor-
mance than PID because of using past dynamics ofe(t).

The equation for this controller is given by:

u(t) = KP (e(t)) + KI

∫ t

0
e(t)dt

+
K ′

fp

N

N∑

j=1

{
1
m

m−1∑

i=0

(µj,i)e[t− hj(t)]
}

,(4)

where:

KP → Proportional Constant.
KI → Integral Constant.
K ′

fp → Fuzzy Predictive Constant.
N → Number of delays Constant.
m → Number of points in mask.

This mask defines the number
of past points to considerate as reference
for similarity function.

µj,i → membership value to the reference related.
e(t) → Error signal at timet. e(t) = r − x(t)
hj(t) → Delay used to make the prediction

1.4 Stability analysis

While being of vital importance, closed loop stability
analysis in Fuzzy Logic Controllers (FLC), it is not an
easy task.

Since a system with a FLC is a nonlinear system, two
different stability analysis should be undertaken: a
local one around the operating point and a global one
to check out if there are other equilibria or limit cycles.

One of the first proposals for stability analysis of FLC
was the use of the describing function method [1, 3, 4],
the circle criterion [5, 6] and the related Popov criterion
for analyze the stability of Mamdani-type fuzzy control

systems [7, 8], for linear plant. In [9] the local stabil-
ity of a direct neuro-fuzzy controller is analyzed in an
input/output setting. Multivariable circle criterion has
also been used to analyze the robust stability of a fuzzy
feedback linearization regulator [10]. More recently,
slide modes have gained some spread for analysis of
FLC [11, 12]. The stability analysis techniques based
on Lyapunov direct method have gained popularity in
the last years.
The methods based on linear matrix inequalities (LMI)
[13] approach have been popularized in recent years.
From this approach delay independent and delay
dependent stability conditions have been obtained.
Delay independent stability conditions have been
more conservatives than Delay dependent stability
conditions.

Theories of robust control have been introduced for
systems with unknown delays. Systems with constant
unknown delay term but unlimited, i.e.,h ∈ [0,∞),
have been analyzed [14, 16, 17] providing delay-
independent stability criteria. If an unknown delay
term is constant and bounded, delay-dependent stability
criteria [18, 19, 20, 21, 22] improve stability margins
compared to delay-independent criteria. [23]

The stability analysis for a FLC which depends of past
dynamics of error,modelled as bounded variant delays
in time is presented in this paper. The LMI approach
and the Lyapunov-Krasovskii functionals are used in
order to derive delay independent conditions.

In this paper, the stability of such controller is studied.
The paper is distributed as it follows: Section 2 presents
the general description of the problem; Section 3 the
stability analysis; finally, Section 4 shows the illustra-
tive examples

2 Problem Statement

Consider the following SISO system:

ẋ(t) = −ax(t) + bu(t), (5)

wherex(t) is the state variable andu(t) the control sig-
nal dependent one(t), a,b > 0 are numerical constants.
u(t) provided by a fpPID controller, and it is:
The fuzzy predictor in the fpPID controller, uses a finite
numberN of time variant delayshj(t). Each neighbor
of the predictor algorithm vote with eachhj(t), the
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change reason∆hj(t) can not be longer than the time
series step and∆t > 0.

Considering a constant referencer, the dynamicsx(t)
is related toe(t) asx(t) = r − e(t).Replacingx(t) and
u(t) in(5) we obtain:

ė(t) = a(r − e(t)) + b

{
KP (e(t)) + KI

∫ t

0
e(t)dt

+
K ′

fp

N

N∑

j=1

{
1
m

m−1∑

i=0

(µj,i)e[t− hj(t)]
}}

.(6)

In this controller we have two cases to describe stability
criterium:

1. Prediction = 0. in this case PI controller acts on the
plant and the stability can be demonstrated through
classic techniques.

2. Prediction6= 0. In this case fpPID controller acts
on the plant and the stability can be demonstrate
by means of LMI Approach.

We can see that equation (6) is of slowed down type,
and assumed thathj(t) ≤ Dj for j = 1, . . . , N , where
Dj are constants, and represents the amount of past time
to considerate for prediction algorithm. As the equation
(6) is retarded type sinceh(t) does not grow faster than
t, we have thaṫhj(t) ≤ Hj < 1,Hj represents the su-
perior top, forj = 1, . . . , N .
For case (2), we have that initial conditionsφ(t) for (6)
are the data previously stored.

3 Stability analysis

We based our result in the next Theorem:

Theorem 3.1 (Lyapunov-Krasovskii) The trivial so-
lution of the system (6) is asymptotic stable [24] if and
only if exists a functionalv(t, xt) positive defined, and
a functionV1(x(t)) positive defined such that

1. V1(x(t)) ≤ V (t, xt)∀t ≥ 0 and||xt||h ≤ H,

2. V (x(t)) decreases monotonically up to zero
throughout the trajectories of the system(6) when
t →∞.

Here, we employed the normh is defined by

‖xt‖h = sup
t∈[t−h,t]

‖x(t)‖ (7)

The candidate equation to demonstrate the Stability un-
der Lyapunov-Krasovskii criterium is as follow:

v(et) = P0e
2(t) +

N∑

i=1

Pi

∫ 0

−hi(t)

e2(t + θ)dθ (8)

whereP0 > 0, Pi > 0, ∀i, j = 1, . . . , N . We observe
thatN is defined positive and in addition satisfies:

V1(e(t)) = ‖e(t)‖, V1(e(t) ≤ V (et) (9)

Differentiating (8) throughout the trajectories of (6) ob-
tain

v̇(et) = 2P0e(t)ė(t) +
N∑

i=0

Pi{e2(t)− e2[t− hi(t)]

[1− ḣi(t)]} (10)

Replacing (6) in (10), we obtain:

v̇(et) = 2P0e(t)

{
a(r − e(t))− b

{
KP (e(t)) +

KI

∫ t

0
e(t)dt

+
K ′

fp

N

N∑

j=1

{ 1
m

m−1∑

i=0

(µj,i)e[t− hj(t)]}
}}

+
N∑

i=1

Pi

{
e2(t)− e2[t− hi(t)][1− ḣi(t)]

}
.

Developing this equation we obtain:

v̇(et) = 2P0are(t)− (2P0a + 2P0bKP )e2(t)

−2P0bKIe(t)
∫ t

0
e(t)dt− 2P0bK

′
fp

N
e(t)

N∑

j=1

Pj

{ 1
m

m−1∑

i=0

(µj , i)e[t− hj(t)]
}

+
N∑

i=1

Pi

{
e2(t)− e2(t− hj(t)

)

(
1− ḣi(t))

}
. (11)
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The term that describes delays into the system is:

2P0bK
′
fp

N
e(t)

N∑

j=1

Pj

{ 1
m

m−1∑

i=0

(µj , i)e[t−hj(t)]
}

(12)

If we considered a single term for this sum, we obtain:

2P0bK
′
fp

N
Pje(t)

{ 1
m

m−1∑

i=0

(µj , i)e[t− hj(t)]
}

(13)

To simplify notation, add two new termK1 andθ(µj,i)
as follow:

K1 =
2P0bK

′
fp

N

θ(µj,i) =
m−1∑

i=0

(µj , i) ≤ 1 (14)

Using this in (12), forN terms(delays) finally obtain:

K1e(t)
N∑

j=1

Pj

{ 1
m

m−1∑

i=0

(µj , i)e[t− hj(t)]
}

= K1e(t)
N∑

j=1

Pj

{ 1
m

θ(µj , i)e[t− hj(t)]
}

(15)

(16)

replacing (15) in(11) obtain:

v̇(et) = 2P0are(t)−

(2P0a + 2P0bKP +
N∑

i=1

Pi)e2(t)

−2P0bKIe(t)
∫ t

0
e(θ)dθ

+K1e(t)
N∑

j=1

Pj

{ 1
m

θ(µj , i)e[t− hj(t)]
}

−
N∑

j=1

Pie
2(t− hi(t))(1− ḣi(t)) (17)

We have to remember that we are analyzing stability
for the trivial solution of the system, thereforer = 0.
Considering this for (17) finally we obtain:

v̇(et) = −2P0a + 2P0bKP +
N∑

i=1

Pi)e2(t)

−2P0bKIe(t)
∫ t

0
e(θ)dθ

+K1e(t)
N∑

j=1

Pj

{ 1
m

θ(µj , i)e[t− hj(t)]
}

−
N∑

j=1

Pie
2(t− hi(t))(1− ḣi(t)) (18)

Now, we consider this:

Pi > 0∀i, e2(t + hi(t)) ≥ 0

Considering this, obtain:

v̇(et) = −(2P0a + 2P0bKP +
N∑

i=1

Pi)e2(t)

−2P0bKIe(t)
∫ t

0
e(θ)dθ

+K1e(t)
N∑

j=1

Pj

{ 1
m

θ(µj , i)e[t− hj(t)]
}

−
N∑

j=1

Pje
2(t− hj(t))(1− ḣ(t)) (19)

Considering the last term, and that we have a slowed
down equation, we obtain:

(1−Hj) > 0 (20)

One more time, applying sum quad in (19), for the sec-
ond term, we obtain:

−2P0KIbe(t)
∫ t

0
e(θ)dθ

≤ 4P 2
0 b2e2(t) + K2

I [
∫ t

0
e(θ)dθ]2 (21)

And for the last term we obtain:

−{
N∑

j=1

Pje
2( t− hi(t))}(1− ḣj(t))

≤
N∑

j=1

Pje
2( t− hj(t))(1 + H), (22)

Considering this, replacing (21) and (22) in (19), obtain:

v̇(et) ≤ −(2P0a + 2P0bKP +
N∑

j=1

Pj)e2(t)

+4P 2
0 b2e2(t)

+K2
I [

∫ t

0
e(θ)dθ]2

+K1e(t)
N∑

j=1

Pj

{ 1
m

θ(µj , i)e[t− hj(t)]
}

+
N∑

j=1

Pje
2(t− hj(t))(1 + H) (23)
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simplifying this equation, finally obtain:

v̇(et) ≤ −
{

2P0[a + b(KP + 2b)] +
N∑

j=1

Pj

}
e2

+K2
I [

∫ t

0
e(θ)dθ]2

+K1

N∑

j=1

Pj

{ 1
m

θ(µj , i)e[t− hj(t)]
}

+
N∑

j=1

Pje
2(t− hj(t))(1 + H) (24)

In an space-state representation, obtain:

v̇(et) ≤ ET ME

where:

E ≤




e(t)
e(t− h1)
e(t− h2)

...
e(t− hN )∫ t

0
e(θ)dθ




M =




M11 M12 M13 · · · M1N 0
M21 M22 0 · · · 0 0
M31 0 M33 · · · 0 0
...

...
...

. . .
... 0

MN1 0 0 · · · MNN 0
0 0 0 0 0 MN+1,N+1




The values for M are:

M11 = −{
P0

(
2bKP − P0(1− 4b2)

)

+2P0a +
∑N

j=1 Pi

}
M21 = − 1

2K1P1

(
1
mθ(µj , i)

)
M31 = − 1

2K1P2

(
1
mθ(µj , i)

)
...

MN1 = − 1
2K1PN

(
1
mθ(µj , i)

)
M12 = − 1

2K1P1

(
1
mθ(µj , i)

)
M13 = − 1

2K1P2

(
1
mθ(µj , i)

)
...

M1N = − 1
2K1PN

(
1
mθ(µj , i)

)
M22 = K2

1P1(1−H1)
M33 = K2

1P2(1−H2)
...

MNN = −K2
1PN (1−HN )

MN+1,N+1 = K2
I

By the previous thing, we can to establish the following re-
sult:

Theorem 3.2 (fpPID Stability) The trivial solution of the
system (6) is locally asymptotic stable if and only if matrix
M is defined negative.

4 Answer of some plants simulated
with the controller fpPID

In the following graphs, the plots drawn up with dotted line
represent the fpPID controller output, and the plots drawn up
with solid line represent a standard PID.
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5 Conclusions

In the Asymptotic Stability analysis for fpPID controller in
closed loop, in spite of of being a system nonlinear (that
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in addition depends on last values), It was possible to find
sufficient conditions for this stability system by means of
LMI approach.

The Stability analysis was made with Lyapunov-Krasovskii’s
functionals.

with the use of Lyapunov-Krasovskii’s functionals, the pos-
sibility fits of analyzing robustness schemes.
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