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Abstract:  A class of generalized intractable time-dependent problems is identified and abstracted into a 
mathematical model. Simulated annealing is adopted as the base of the solution strategy. Comprehensive 
experiments are conducted to study the sensitivity of the algorithm to the values of its multiple parameters. 
Extensive performance evaluation shows that the proposed algorithm significantly outperforms the best 
published alternative algorithms for the same problem class. 
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1   Introduction 
As a branch of operations research, combinatorial 
optimization plays an important role in obtaining 
efficient solutions to NP-hard problems common in 
science, engineering, and management domains. In 
2001, Michael L. Gargano and William Edelson [3] 
described a model of time-dependent combinatorial 
optimization problems, and outlined several 
important applications of the model in terms of the 
genetic algorithm meta-heuristic. The model assumes 
a set of unit-time tasks to be completed sequentially, 
a set of workers bidding on completing the tasks with 
time-dependent costs, and seeks an optimized 
ordering for completing the tasks and an optimized 
assignment of the tasks to the workers for minimizing 
the total cost. The model can be subdivided into 
sub-models depending on whether a worker can bid 
on multiple tasks, or whether a worker can be 
assigned to completing more than one task. 
     In 2002, Joseph DeCicco [1] used genetic 
algorithm to solve a sub-model of the above 
problems in which a worker can only bid on one task 
and be assigned at most one task. In 2004, Rigoberto 
Diaz [2] established the mathematical model for the 
same sub-model of problems that Joseph DeCicco 
worked on, simplified the problems in the sub-model 
with a novel problem transformation algorithm, and 
claimed significantly reduced solution costs and 
algorithm time-complexity with his algorithm based 
on simulated annealing meta-heuristic. In 2004, 
Maheswara Kasinadhuni [7] proposed a new genetic 
algorithm heuristic to solve the same sub-model of 
problems with multiple genome coding. 
     This research focuses on the efficient solutions to 
the most difficult sub-model of the above 

time-dependent combinatorial optimization problems 
in which a worker can bid on multiple tasks but can 
be assigned to at most one task. Since the task 
assignment for a worker now depends on all previous 
such assignments, Diaz’s problem transformation 
cannot be applied to simplify the problems. In 
addition to its own value in solving more difficult 
real-world problems, this sub-model of problems also 
provides a platform for more objective comparison of 
solution quality and time-complexity of different 
solution approaches for the timed-dependent 
combinatorial optimization problems since problem 
transformation cannot be applied any more. 
     Efficient solution algorithms based on exhausted 
search, repeated random solutions, genetic algorithm, 
and simulated annealing were designed and 
implemented in Java. Except the exhaust search 
algorithm that can find optimal solutions to problem 
instances of size less than 10, others are all heuristic 
algorithms that can provide efficient solutions for 
problem instances of size larger than 200. Extensive 
experimental study shows that the simulated 
annealing algorithm outperforms all of the other 
approaches. 
 
 
2   Problem Formulation 
Let },,,{ 21 nxxxX K=  be a set of n workers.  Let  

},,,2,1{ sS K= ns ≤<1 , be a set of s tasks, 
where each task takes a unit of time to complete, and 
the tasks must be completed sequentially in 
consecutive time units. Let },,,{ 21 sXXX K  be a 
set of non-empty subsets of X , where for each 

si ≤≤1 , iX contains the workers of X who can 



work on task i. Let s℘  be the set of all permutations 
on set },,2,1{ sS K=  representing all the orderings 
of the tasks to be completed, +ℜ the set of all 
nonnegative real numbers, and 

+ℜ→×× SSXc : a given cost function where for 
each Xx∈ and Sji ∈, , ∞=),,( jixc if and only 
if iXx∉ , and ),,( jixc is the cost for worker x to 
complete task i in time unit j otherwise. 
Find a vector 

ss XXXxxxv ×××∈= KK 2121 ),,,( where each 
component of v is unique, and a permutation 

s∈℘π such that the objective function 

∑
=

=
s

i
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1

))(,,(),( ππ  

is minimized. 
     This problem formulation contains s tasks and n 
workers, where ns <<0 . Each worker is capable of 
working on one or more tasks, and each task can be 
completed by any of its eligible workers in a unit of 
time. All tasks must be completed sequentially in 
consecutive time units. The cost for a worker to 
complete a task depends on the time slot in which the 
task in conducted.  This problem tries to find one 
worker for each task (vector v) and an ordering   of 
the tasks (π ) in which they will be completed such 
that the total cost would be minimal. 
     As an example application of this problem 
formulation, let us consider the Highway Minimum 
Bidding Problem. There is a need to build s highway 
segments to connect some cities. There are n ( sn ≥ ) 
companies bidding to build the highway segments. 
The segments will be built in successive months, one 
in each month. Each bidding company can bid on the 
construction of multiple highway segments, be 
assigned to the construction of no more than one 
highway segment, and the cost of the bids vary with 
the month in which construction occurs. Assign the 
bidding companies to build the highway segments in 
a particular order so that the total cost is minimized. 
     As  a particular problem instance, there are four 
highway segments involved. Due to budget limits, 
the four segments must be built in four consecutive 
months, one month for each segment, but the order of 
their construction is not important. There are nine 
companies bidding on the construction of the four 
segments, each can bid on multiple segments. Let us 
assign unique identification numbers 1, 2, …, 9 to 
these companies. Table 1 shows the costs for the 
bidding companies to build highway segments in 
particular months. For example, for company 2 to 
build segment 1 in month 3, the bidding cost is 12. A 

feasible solution (not optimal) is to let company 5 
build segment 2 in month 1, company 2 build 
segment 1 in month 2, company 6 build segment 3 in 
month 3, and company 4 build segment 4 in month 4. 
The resulting total cost is 65 + 36 + 65 + 12 = 178. 
We notice that company 4 could build segment 2 in 
month 1 with a lower cost of 57, instead of the current 
65. But since each company can only be assigned to 
no more than one segment, the fact that company 4 is 
assigned to segment 4 prevents it from being 
assigned to segment 2.  
 

Table 1  Highway Bidding Costs 
 

cost (in millions of dollars) highway
 

company
 

M1 M2 M3 M4 

1 21 47 18 85 
2 66 36 12 28 
3 43 59 89 18 

 
1 

7 42 42 30 29 

4 57 41 85 52  
2 5 65 23 62 13 

6 80 11 65 17 
7 25 72 31 24 
8 21 75 86 22 

 
 

3 
1 40 52 50 33 

9 63 79 32 78 
1 21 30 62 39 

 
4 

4 20 85 79 12 
 
 
 
3   Problem Solution 
In this section we describe the design and 
implementation of our simulated annealing algorithm 
for time-dependent problems based on the simulated 
annealing meta-heuristic. We also design 
experiments to conduct sensitivity analysis of the 
heuristic to its various parameter values. 
     The simulated annealing meta-heuristic described 
by David S. Johnson [6] will be used as the base of 
our solution to the class of time-dependent 
combinatorial optimization problems that can be 
modeled with our problem formulation. Based on our 
problem formulation, a feasible solution to our 
problems is of form ),( πθ v= where 

ss XXXxxxv ×××∈= KK 2121 ),,,(  represents the 
assignment of the workers to the tasks, and π  is a 
permutation of numbers in {1, 2, …, s} representing 
the order in which the tasks will be conducted. Given 
a current solution ),( πθ v= ,  we define a move on 
it to be either randomly swapping two values in π , or 
randomly changing the worker assignment for one 
randomly chosen task. The algorithm is described in 



the pseudo-code below. 
     

 
 
There are four parameters that we need to configure: 
• Initial temperature t0. A too large value for t0 

will lead to wasted random walk in the solution 
space at the beginning of the algorithm 
execution thus prolong the algorithm’s running 
time without the benefit of improving solution 
quality. A too small value for t0 will let the 
algorithm get stuck in a local optimum. 

• Temperature reduction ratio r. Ratio r should be 
a real number between 0.0 and 1.0. If it is too 
large, the temperature will be reduced very 
slowly, leading to prolonged algorithm 
execution. On the other hand, if r is too small, 
the temperature will be reduced too fast and the 
current solution can get stuck in a local 
optimum. 

• Number l of consecutive non-improvement 
iterations before the temperature is reduced. If l 
is too large, the algorithm may waste execution 
time in a prolonged non-aggressive solution 
search. If l is too small, then the current solution 
may not have a chance to settle down to a stable 
good solution. 

• Number k of consecutive non-improvement 
iterations before the algorithm is terminated. If 
k is too large, execution may be extended 
without quality benefit. If k is too small, then 
the algorithm may terminate too soon before 
better solutions could be obtained. 

     These four parameters are not independent. As a 
matter of fact, they have close inter-dependence. It is 
a big challenge to find optimized values for them so 
that the resulting algorithm can perform well on a 
large set of potential problem instances [5]. 
     We run the algorithm on seven training problem 
instances with value of s ranging from 4 to 200. After 

experimenting with various parameter combinations, 
we decided the effective ranges for the four 
parameters are as follows: 
 

Table 2. Chosen parameter values for 
simulated annealing. 

t0 r l k 
13 0.995 1400 160 

 
 
4 Performance Comparisons 
Since heuristics for solving combinatorial 
optimization problems are not based on theoretical 
analysis, the only objective way to evaluate their 
performance is by conducting comparative study 
based on a large enough set of benchmark problem 
instances.  
     In this section, we first define the experimental 
environment and problem instances. Then a thorough 
performance evaluation will be conducted to 
compare both the solution quality and running time 
for three different heuristics for solving the same 
time-dependent problems. 

4.1   Experiment Design 
 

All experiments were conducted on a 
Hewlett-Packard xw4200 workstation with an Intel 
Pentium 4: 3.4 GHz with EM64T CPU, 2 GB RAM, 
and running the Sun Microsystems Solaris 10 (x86) 
operating system in 64-bit mode. 
     Seventy problem instances, generated with a 
random number generator, are used for performance 
evaluations. These problem instances have task 
numbers 4, 10, 20, 30, 50, 100, and 200; worker 
numbers vary from 6 to 425; and bid numbers vary 
from 9 to 637. There are ten problem instances for 
each of the task numbers. 
 
4.2 Simulated Annealing vs. Genetic 

Algorithm 
 
For this experiment, we compare the performances of 
simulated annealing and genetic algorithm. For each 
of the 70 benchmark problem instances, we use each 
of the above two algorithms to run ten times and 
report the best cost, worst cost, and average cost for 
the problem instance, as well as the best running 
time, worst running time, and average running time.  
     Table 2 and Figure 1 compare the solution quality 
and running time between simulated annealing and 
genetic algorithm. We observe that, except for the 
trivial cases where s = 4, the cost values of simulated 
annealing significantly outperform those for genetic 

Get a random initial solution θ  as the current solution. 
Let temperature t = t0, the initial temperature. 
While there are improvements of the best cost in the last k 
        iterations do 
    While there are improvements of the best cost in the  
        last l iterations do 
            Perform the following loop l times. 
                  Let θ ’ be a random neighbor of θ . 

                  Let ∆  = f(θ ’) – f(θ ). 
                  If  0≤∆  (downhill move), set  θ  = θ ’. 
                  If   0>∆  (uphill move),  

                        set  θ  = θ ’ with probability ./ te ∆−  
      End While. 
      Set t = tr ⋅  (reduce temperature). 
End While. 



algorithm. The larger the problem instances, the more 
simulated annealing outperformed genetic algorithm. 
When s = 200, the simulated annealing improved the 
average costs of the genetic algorithm’s by 72%. The 
running times of simulated annealing are on the same 
order as those of the genetic algorithms.  

      
Table 2 Solution Quality comparison 
between SA and GA 

 

 
Figure 1  SA vs. GA Solution Comparisons 

 
 
4.3 Comparisons between Simulated 

Annealing and Repeated Random 
Solutions 

 
For a heuristic to prove its value in combinatorial 
optimization, it must show that it can produce better 
solutions than repeatedly generated random solutions 

in the same amount of running time. In this and the 
following two sections, we conduct this type of 
performance evaluation for both simulated annealing 
and genetic algorithm. 
     Table 3 and Figure 2 show the comparison of 
solution quality of simulated annealing with that of 
the Repeated Random heuristic. In the same amount 
of running time, simulated annealing greatly 
improved the costs of repeated random by up to 74%. 
 

Table 3  SA vs. RR Solution 
Comparisons 

 
File Name and 

Algorithm 
Best 
Cost 

Average 
Cost 

Best 
Time 

Average 
Time 

Simulated Annealing 
(SA)     
h4s04c7b10.txt 133 133 202 207 
h10s10c20b30.txt 162 162 292 362 
h20s01c44b66.txt 235 242 602 952 
h30s08c60b90.txt 343 360 1354 1575 
h50s09c91b136.txt 556 582 2248 2728 
h100s03c203b304.txt 1105 1129 6584 8291 
h200s06c403b604.txt 2179 2205 19056 22417 
     
Repeat Random for 
SA      
h4s04c7b10.txt 133 133 207 207 
h10s10c20b30.txt 212 225 362 362 
h20s01c44b66.txt 476 541 952 952 
h30s08c60b90.txt 872 948 1575 1575 
h50s09c91b136.txt 1772 1815 2728 2728 
h100s03c203b304.txt 3872 3933 8291 8291 
h200s06c403b604.txt 8404 8550 22417 22417 

 

 
Figure 2  SA vs. RR Solution Comparisons 

 
 
4.4 Comparisons between Genetic Algorithm 

and Repeated Random Solutions 
 

Table 4 and Figure 3 compare the solution quality 
between the genetic algorithm and repeated random 
solutions. The repeated random heuristic was 

File Name and 
Algorithm 

Best 
Cost 

Average 
Cost 

Best 
Time 

Average 
Time 

Simulated Annealing 
(SA)     
h4s04c7b10.txt 133 133 202 207 
h10s10c20b30.txt 162 162 292 362 
h20s01c44b66.txt 235 242 602 952 
h30s08c60b90.txt 343 360 1354 1575 
h50s09c91b136.txt 556 582 2248 2728 
h100s03c203b304.txt 1105 1129 6584 8291 
h200s06c403b604.txt 2179 2205 19056 22417 
     
Genetic Algorithm 
(GA)     
h4s04c7b10.txt 133 133 12 15 
h10s10c20b30.txt 174 183 24 43 
h20s01c44b66.txt 371 413 68 201 
h30s08c60b90.txt 626 683 218 439 
h50s09c91b136.txt 1251 1415 563 1259 
h100s03c203b304.txt 3022 3458 997 4879 
h200s06c403b604.txt 7379 7965 4575 23593 
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executed for as long as the average running time of 
the genetic algorithm for each particular problem 
instance. In the same amount of running time, the 
genetic algorithm greatly worsened the average costs 
of repeated random by up to 71%. 

Table 4 GA vs. RR Solution 
Comparisons 

File Name and 
Algorithm 

Best 
Cost 

Average 
Cost 

Best 
Time 

Average 
Time 

Genetic Algorithm 
(GA)     
h4s04c7b10.txt 133 133 12 15 
h10s10c20b30.txt 174 183 24 43 
h20s01c44b66.txt 371 413 68 201 
h30s08c60b90.txt 626 683 218 439 
h50s09c91b136.txt 1251 1415 563 1259 
h100s03c203b304.txt 3022 3458 997 4879 
h200s06c403b604.txt 7379 7965 4575 23593 
     
Repeat Random 4 GA      
h4s04c7b10.txt 133 133 15 17 
h10s10c20b30.txt 213 247 43 43 
h20s01c44b66.txt 574 598 201 201 
h30s08c60b90.txt 962 1006 439 439 
h50s09c91b136.txt 1730 1819 1259 1262 
h100s03c203b304.txt 3858 3926 4879 4879 
h200s06c403b604.txt 8459 8536 23593 23593 
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Figure 3  GA vs. RR Solution Comparisons 

 
 
5 Conclusion 
This paper generalized a previous problem 
formulation of time-dependent combinatorial 
optimization problems. Extensive experimental 
results show that the proposed simulated annealing 
algorithm outperforms the costs of the genetic 
algorithm and repeated random solutions by up to 
72%. 
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