
Efficient Solutions to a Class of Generalized Time-Dependent
Combinatorial Optimization Problems

Todd W. Kolb and Lixin Tao

School of Computer Science and Information Systems
Pace University

1 Martine Ave., White Plains, NY 10606
USA

Michael W. Tao
Thomas Jefferson High School for Science and Technology

6560 Braddock Road, Alexandria, VA 22312
 USA

Abstract: A class of generalized intractable time-dependent problems is identified and abstracted into a
mathematical model. Simulated annealing is adopted as the base of the solution strategy. Comprehensive
experiments are conducted to study the sensitivity of the algorithm to the values of its multiple parameters.
Extensive performance evaluation shows that the proposed algorithm significantly outperforms the best
published alternative algorithms for the same problem class.

Key-Words: Time-dependent combinatorial optimization problems, meta-heuristics, simulated annealing.

1 Introduction
As a branch of operations research, combinatorial
optimization plays an important role in obtaining
efficient solutions to NP-hard problems common in
science, engineering, and management domains. In
2001, Michael L. Gargano and William Edelson [3]
described a model of time-dependent combinatorial
optimization problems, and outlined several
important applications of the model in terms of the
genetic algorithm meta-heuristic. The model assumes
a set of unit-time tasks to be completed sequentially,
a set of workers bidding on completing the tasks with
time-dependent costs, and seeks an optimized
ordering for completing the tasks and an optimized
assignment of the tasks to the workers for minimizing
the total cost. The model can be subdivided into
sub-models depending on whether a worker can bid
on multiple tasks, or whether a worker can be
assigned to completing more than one task.
 In 2002, Joseph DeCicco [1] used genetic
algorithm to solve a sub-model of the above
problems in which a worker can only bid on one task
and be assigned at most one task. In 2004, Rigoberto
Diaz [2] established the mathematical model for the
same sub-model of problems that Joseph DeCicco
worked on, simplified the problems in the sub-model
with a novel problem transformation algorithm, and
claimed significantly reduced solution costs and
algorithm time-complexity with his algorithm based
on simulated annealing meta-heuristic. In 2004,
Maheswara Kasinadhuni [7] proposed a new genetic
algorithm heuristic to solve the same sub-model of
problems with multiple genome coding.
 This research focuses on the efficient solutions to
the most difficult sub-model of the above

time-dependent combinatorial optimization problems
in which a worker can bid on multiple tasks but can
be assigned to at most one task. Since the task
assignment for a worker now depends on all previous
such assignments, Diaz’s problem transformation
cannot be applied to simplify the problems. In
addition to its own value in solving more difficult
real-world problems, this sub-model of problems also
provides a platform for more objective comparison of
solution quality and time-complexity of different
solution approaches for the timed-dependent
combinatorial optimization problems since problem
transformation cannot be applied any more.
 Efficient solution algorithms based on exhausted
search, repeated random solutions, genetic algorithm,
and simulated annealing were designed and
implemented in Java. Except the exhaust search
algorithm that can find optimal solutions to problem
instances of size less than 10, others are all heuristic
algorithms that can provide efficient solutions for
problem instances of size larger than 200. Extensive
experimental study shows that the simulated
annealing algorithm outperforms all of the other
approaches.

2 Problem Formulation
Let },,,{ 21 nxxxX K= be a set of n workers. Let

},,,2,1{ sS K= ns ≤<1 , be a set of s tasks,
where each task takes a unit of time to complete, and
the tasks must be completed sequentially in
consecutive time units. Let },,,{ 21 sXXX K be a
set of non-empty subsets of X , where for each

si ≤≤1 , iX contains the workers of X who can

work on task i. Let s℘ be the set of all permutations
on set },,2,1{ sS K= representing all the orderings
of the tasks to be completed, +ℜ the set of all
nonnegative real numbers, and

+ℜ→×× SSXc : a given cost function where for
each Xx∈ and Sji ∈, , ∞=),,(jixc if and only
if iXx∉ , and),,(jixc is the cost for worker x to
complete task i in time unit j otherwise.
Find a vector

ss XXXxxxv ×××∈= KK 2121),,,(where each
component of v is unique, and a permutation

s∈℘π such that the objective function

∑
=

=
s

i
i iixcvf

1

))(,,(),(ππ

is minimized.
 This problem formulation contains s tasks and n
workers, where ns <<0 . Each worker is capable of
working on one or more tasks, and each task can be
completed by any of its eligible workers in a unit of
time. All tasks must be completed sequentially in
consecutive time units. The cost for a worker to
complete a task depends on the time slot in which the
task in conducted. This problem tries to find one
worker for each task (vector v) and an ordering of
the tasks (π) in which they will be completed such
that the total cost would be minimal.
 As an example application of this problem
formulation, let us consider the Highway Minimum
Bidding Problem. There is a need to build s highway
segments to connect some cities. There are n (sn ≥)
companies bidding to build the highway segments.
The segments will be built in successive months, one
in each month. Each bidding company can bid on the
construction of multiple highway segments, be
assigned to the construction of no more than one
highway segment, and the cost of the bids vary with
the month in which construction occurs. Assign the
bidding companies to build the highway segments in
a particular order so that the total cost is minimized.
 As a particular problem instance, there are four
highway segments involved. Due to budget limits,
the four segments must be built in four consecutive
months, one month for each segment, but the order of
their construction is not important. There are nine
companies bidding on the construction of the four
segments, each can bid on multiple segments. Let us
assign unique identification numbers 1, 2, …, 9 to
these companies. Table 1 shows the costs for the
bidding companies to build highway segments in
particular months. For example, for company 2 to
build segment 1 in month 3, the bidding cost is 12. A

feasible solution (not optimal) is to let company 5
build segment 2 in month 1, company 2 build
segment 1 in month 2, company 6 build segment 3 in
month 3, and company 4 build segment 4 in month 4.
The resulting total cost is 65 + 36 + 65 + 12 = 178.
We notice that company 4 could build segment 2 in
month 1 with a lower cost of 57, instead of the current
65. But since each company can only be assigned to
no more than one segment, the fact that company 4 is
assigned to segment 4 prevents it from being
assigned to segment 2.

Table 1 Highway Bidding Costs

cost (in millions of dollars) highway

company

M1 M2 M3 M4

1 21 47 18 85
2 66 36 12 28
3 43 59 89 18

1

7 42 42 30 29

4 57 41 85 52
2 5 65 23 62 13

6 80 11 65 17
7 25 72 31 24
8 21 75 86 22

3
1 40 52 50 33

9 63 79 32 78
1 21 30 62 39

4

4 20 85 79 12

3 Problem Solution
In this section we describe the design and
implementation of our simulated annealing algorithm
for time-dependent problems based on the simulated
annealing meta-heuristic. We also design
experiments to conduct sensitivity analysis of the
heuristic to its various parameter values.
 The simulated annealing meta-heuristic described
by David S. Johnson [6] will be used as the base of
our solution to the class of time-dependent
combinatorial optimization problems that can be
modeled with our problem formulation. Based on our
problem formulation, a feasible solution to our
problems is of form),(πθ v= where

ss XXXxxxv ×××∈= KK 2121),,,(represents the
assignment of the workers to the tasks, and π is a
permutation of numbers in {1, 2, …, s} representing
the order in which the tasks will be conducted. Given
a current solution),(πθ v= , we define a move on
it to be either randomly swapping two values in π , or
randomly changing the worker assignment for one
randomly chosen task. The algorithm is described in

the pseudo-code below.

There are four parameters that we need to configure:
• Initial temperature t0. A too large value for t0

will lead to wasted random walk in the solution
space at the beginning of the algorithm
execution thus prolong the algorithm’s running
time without the benefit of improving solution
quality. A too small value for t0 will let the
algorithm get stuck in a local optimum.

• Temperature reduction ratio r. Ratio r should be
a real number between 0.0 and 1.0. If it is too
large, the temperature will be reduced very
slowly, leading to prolonged algorithm
execution. On the other hand, if r is too small,
the temperature will be reduced too fast and the
current solution can get stuck in a local
optimum.

• Number l of consecutive non-improvement
iterations before the temperature is reduced. If l
is too large, the algorithm may waste execution
time in a prolonged non-aggressive solution
search. If l is too small, then the current solution
may not have a chance to settle down to a stable
good solution.

• Number k of consecutive non-improvement
iterations before the algorithm is terminated. If
k is too large, execution may be extended
without quality benefit. If k is too small, then
the algorithm may terminate too soon before
better solutions could be obtained.

 These four parameters are not independent. As a
matter of fact, they have close inter-dependence. It is
a big challenge to find optimized values for them so
that the resulting algorithm can perform well on a
large set of potential problem instances [5].
 We run the algorithm on seven training problem
instances with value of s ranging from 4 to 200. After

experimenting with various parameter combinations,
we decided the effective ranges for the four
parameters are as follows:

Table 2. Chosen parameter values for
simulated annealing.

t0 r l k
13 0.995 1400 160

4 Performance Comparisons
Since heuristics for solving combinatorial
optimization problems are not based on theoretical
analysis, the only objective way to evaluate their
performance is by conducting comparative study
based on a large enough set of benchmark problem
instances.
 In this section, we first define the experimental
environment and problem instances. Then a thorough
performance evaluation will be conducted to
compare both the solution quality and running time
for three different heuristics for solving the same
time-dependent problems.

4.1 Experiment Design

All experiments were conducted on a
Hewlett-Packard xw4200 workstation with an Intel
Pentium 4: 3.4 GHz with EM64T CPU, 2 GB RAM,
and running the Sun Microsystems Solaris 10 (x86)
operating system in 64-bit mode.
 Seventy problem instances, generated with a
random number generator, are used for performance
evaluations. These problem instances have task
numbers 4, 10, 20, 30, 50, 100, and 200; worker
numbers vary from 6 to 425; and bid numbers vary
from 9 to 637. There are ten problem instances for
each of the task numbers.

4.2 Simulated Annealing vs. Genetic

Algorithm

For this experiment, we compare the performances of
simulated annealing and genetic algorithm. For each
of the 70 benchmark problem instances, we use each
of the above two algorithms to run ten times and
report the best cost, worst cost, and average cost for
the problem instance, as well as the best running
time, worst running time, and average running time.
 Table 2 and Figure 1 compare the solution quality
and running time between simulated annealing and
genetic algorithm. We observe that, except for the
trivial cases where s = 4, the cost values of simulated
annealing significantly outperform those for genetic

Get a random initial solution θ as the current solution.
Let temperature t = t0, the initial temperature.
While there are improvements of the best cost in the last k
 iterations do
 While there are improvements of the best cost in the
 last l iterations do
 Perform the following loop l times.
 Let θ ’ be a random neighbor of θ .

 Let ∆ = f(θ ’) – f(θ).
 If 0≤∆ (downhill move), set θ = θ ’.
 If 0>∆ (uphill move),

 set θ = θ ’ with probability ./ te ∆−
 End While.
 Set t = tr ⋅ (reduce temperature).
End While.

algorithm. The larger the problem instances, the more
simulated annealing outperformed genetic algorithm.
When s = 200, the simulated annealing improved the
average costs of the genetic algorithm’s by 72%. The
running times of simulated annealing are on the same
order as those of the genetic algorithms.

Table 2 Solution Quality comparison
between SA and GA

Figure 1 SA vs. GA Solution Comparisons

4.3 Comparisons between Simulated

Annealing and Repeated Random
Solutions

For a heuristic to prove its value in combinatorial
optimization, it must show that it can produce better
solutions than repeatedly generated random solutions

in the same amount of running time. In this and the
following two sections, we conduct this type of
performance evaluation for both simulated annealing
and genetic algorithm.
 Table 3 and Figure 2 show the comparison of
solution quality of simulated annealing with that of
the Repeated Random heuristic. In the same amount
of running time, simulated annealing greatly
improved the costs of repeated random by up to 74%.

Table 3 SA vs. RR Solution
Comparisons

File Name and

Algorithm
Best
Cost

Average
Cost

Best
Time

Average
Time

Simulated Annealing
(SA)
h4s04c7b10.txt 133 133 202 207
h10s10c20b30.txt 162 162 292 362
h20s01c44b66.txt 235 242 602 952
h30s08c60b90.txt 343 360 1354 1575
h50s09c91b136.txt 556 582 2248 2728
h100s03c203b304.txt 1105 1129 6584 8291
h200s06c403b604.txt 2179 2205 19056 22417

Repeat Random for
SA
h4s04c7b10.txt 133 133 207 207
h10s10c20b30.txt 212 225 362 362
h20s01c44b66.txt 476 541 952 952
h30s08c60b90.txt 872 948 1575 1575
h50s09c91b136.txt 1772 1815 2728 2728
h100s03c203b304.txt 3872 3933 8291 8291
h200s06c403b604.txt 8404 8550 22417 22417

Figure 2 SA vs. RR Solution Comparisons

4.4 Comparisons between Genetic Algorithm

and Repeated Random Solutions

Table 4 and Figure 3 compare the solution quality
between the genetic algorithm and repeated random
solutions. The repeated random heuristic was

File Name and
Algorithm

Best
Cost

Average
Cost

Best
Time

Average
Time

Simulated Annealing
(SA)
h4s04c7b10.txt 133 133 202 207
h10s10c20b30.txt 162 162 292 362
h20s01c44b66.txt 235 242 602 952
h30s08c60b90.txt 343 360 1354 1575
h50s09c91b136.txt 556 582 2248 2728
h100s03c203b304.txt 1105 1129 6584 8291
h200s06c403b604.txt 2179 2205 19056 22417

Genetic Algorithm
(GA)
h4s04c7b10.txt 133 133 12 15
h10s10c20b30.txt 174 183 24 43
h20s01c44b66.txt 371 413 68 201
h30s08c60b90.txt 626 683 218 439
h50s09c91b136.txt 1251 1415 563 1259
h100s03c203b304.txt 3022 3458 997 4879
h200s06c403b604.txt 7379 7965 4575 23593

0

5000

10000

15000

20000

25000

h4
s0

4c
7b

10
 (

SA
)

h1
0s

10
c2

0b
30

 (
SA

)

h2
0s

01
c4

4b
66

 (
SA

)

h3
0s

08
c6

0b
90

 (
SA

)

h5
0s

09
c9

1b
13

6
(S

A)

h1
00

s0
3c

20
3b

30
4

(S
A
)

h2
00

s0
6c

40
3b

60
4

(S
A
)

h4
s0

4c
7b

10
 (

G
A)

h1
0s

10
c2

0b
30

 (
G
A
)

h2
0s

01
c4

4b
66

 (
G
A
)

h3
0s

08
c6

0b
90

 (
G
A
)

h5
0s

09
c9

1b
13

6
(G

A)

h1
00

s0
3c

20
3b

30
4

(G
A)

h2
00

s0
6c

40
3b

60
4

(G
A)

Average Cost
Average Time

0

5000

10000

15000

20000

25000

h4
s0

4c
7b

10
 (

SA
)

h1
0s

10
c2

0b
30

 (
SA

)

h2
0s

01
c4

4b
66

 (
SA

)

h3
0s

08
c6

0b
90

 (
SA

)

h5
0s

09
c9

1b
13

6
(S

A)

h1
00

s0
3c

20
3b

30
4

(S
A)

h2
00

s0
6c

40
3b

60
4

(S
A)

h4
s0

4c
7b

10
 (

RR
 4

 S
A)

h1
0s

10
c2

0b
30

 (
RR

 4
 S

A)

h2
0s

01
c4

4b
66

 (
RR

 4
 S

A)

h3
0s

08
c6

0b
90

 (
RR

 4
 S

A)

h5
0s

09
c9

1b
13

6
(R

R
 4

 S
A)

h1
00

s0
3c

20
3b

30
4

(R
R
 4

 S
A)

h2
00

s0
6c

40
3b

60
4

(R
R
 4

 S
A)

Average Cost
Average Time

executed for as long as the average running time of
the genetic algorithm for each particular problem
instance. In the same amount of running time, the
genetic algorithm greatly worsened the average costs
of repeated random by up to 71%.

Table 4 GA vs. RR Solution
Comparisons

File Name and
Algorithm

Best
Cost

Average
Cost

Best
Time

Average
Time

Genetic Algorithm
(GA)
h4s04c7b10.txt 133 133 12 15
h10s10c20b30.txt 174 183 24 43
h20s01c44b66.txt 371 413 68 201
h30s08c60b90.txt 626 683 218 439
h50s09c91b136.txt 1251 1415 563 1259
h100s03c203b304.txt 3022 3458 997 4879
h200s06c403b604.txt 7379 7965 4575 23593

Repeat Random 4 GA
h4s04c7b10.txt 133 133 15 17
h10s10c20b30.txt 213 247 43 43
h20s01c44b66.txt 574 598 201 201
h30s08c60b90.txt 962 1006 439 439
h50s09c91b136.txt 1730 1819 1259 1262
h100s03c203b304.txt 3858 3926 4879 4879
h200s06c403b604.txt 8459 8536 23593 23593

0

5000

10000

15000

20000

25000

h4
s0

4c
7b

10
 (
G
A)

h1
0s

10
c2

0b
30

 (
G
A)

h2
0s

01
c4

4b
66

 (
G
A)

h3
0s

08
c6

0b
90

 (
G
A)

h5
0s

09
c9

1b
13

6
(G

A)

h1
00

s0
3c

20
3b

30
4

(G
A)

h2
00

s0
6c

40
3b

60
4

(G
A)

h4
s0

4c
7b

10
 (
R
R

4G
A)

h1
0s

10
c2

0b
30

 (
R
R

4G
A)

h2
0s

01
c4

4b
66

 (
R
R

4G
A)

h3
0s

08
c6

0b
90

 (
R
R

4G
A)

h5
0s

09
c9

1b
13

6
(R

R
4G

A)

h1
00

s0
3c

20
3b

30
4

(R
R

4G
A)

h2
00

s0
6c

40
3b

60
4

(R
R

4G
A)

Average Cost
Average Time

Figure 3 GA vs. RR Solution Comparisons

5 Conclusion
This paper generalized a previous problem
formulation of time-dependent combinatorial
optimization problems. Extensive experimental
results show that the proposed simulated annealing
algorithm outperforms the costs of the genetic
algorithm and repeated random solutions by up to
72%.

References:

[1] Joseph DeCicco, “Sensitivity Analysis of Certain

Time Dependent Matroid Base Models Solved by

Genetic Algorithms,” DPS dissertation, CSIS,
Pace University, New York, May 11, 2002.

[2] Rigoberto Diaz, Lixin Tao, Michael Gargano,
Fred Grossman, and Michael W. Tao. “Solving a
class of time-dependent combinatorial
optimization problems with abstraction,
transformation and simulated annealing,” IADIS
International Conference of Applied Computing,
March 23-26, 2004, Lisbon, Portugal. pp.
I-535-I-542.

[3]Michael L. Gargano, William Edelson. “Optimal
Sequenced Matroid Bases Solved by Genetic
Algorihms with Feasibility Including
Applications,” Congressus Numerantium 150,
2001, pp. 5-14.

[4]Michael R. Garey and David S. Johnson.
“Computers and Intractability: A Guide to the
Theory of NP-Completeness,” W. H. Freeman
and Company, New York, 1979.

 [5]F. Glover and G. A. Kochenberger, “Handbook
of Meta-heuristics,” Kluwer Academic
Publishers, 2003.

[6]D. S. Johnson, C. R. Aragon, L. A. McGeoch, and
C. Schevon. “Optimization by Simulated
Annealing: an Experimental Evaluation; Part I,
Graph Partitioning,” Operations Research, vol.
37, issue 6 (Nov.-Dec.), 1989, pp. 865-892.

[7]Maheswara Kasinadhuni. “Solving Optimization
Problems Using Genetic Algorithms with
Multiple Genome Coding,” DPS dissertation,
CSIS, Pace University, May 2004.

[8]Lixin Tao. “Research Incubator: Combinatorial
Optimization,” Technical Report #198 CSIS,
Pace University, NY, http://csis.pace.edu/~lixin
/dps (current May 2005).

