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Abstract: - Fourier methods give excellent frequency estimation performance with either single complex 
exponentials or long data lengths. For multiple exponentials parametric techniques offer superior resolution. 
This work examines the signal conditions which determine the choice of a particular method. Equations are 
developed that describe the Fourier performance with data length, SNR and relative frequencies and 
amplitudes. Optimal methods are identified for a spectrum of conditions. 
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1   Introduction 
Extension of various frequency estimation methods 
continues to occupy a large section of the signal 
processing literature. 
    Methods based on the Fourier transform are well 
documented, easy and quick to implement and offer 
excellent performance in noisy conditions. However, 
these methods suffer from spectral leakage. This is 
due to the inherent mismatch between the 
assumption of infinite time domain extension 
outside the data section of interest and the real-
world necessity of windowing the data, or of 
analyzing a non-infinite vector size [1,2]. Despite 
spectral broadening arising from windowing, 
Fourier techniques are maximum likelihood (ML) 
for a single complex exponential in noise, or for 
multiple signals given sufficient data. Each spectral 
peak reduces in bandwidth with increasing time and 
the multiple peak problem reduces to multiple single 
peak equivalents. 
    However, in practice sufficient data is not 
available, and the use of sidelobe reducing windows 
is employed at the expense of estimation variance. 
Interest then turns to parametric techniques which 
require no restrictive data length assumptions. 
Autoregressive (AR) techniques estimate the linear 
prediction coefficients and use these to gain 
information on signal frequencies [3,4]. With 
multiple signals, frequency resolution is much 
improved over Fourier methods, spectral 
interference is reduced and the frequency estimate 
approaches the Cramér-Rao bound (CRB) [5,6].  

    However, not only do parametric methods lack 
the simplicity and consequent processing speed of 
Fourier methods, often the CRB is only approached 
and not achieved. This work examines the trade-off 
involved between the performance of the modified 
covariance method and the maximization of the 
Fourier spectrum. Equations are developed that aid 
understanding of the Fourier bias problem and the 
two methods are compared over a range of signal 
parameters. It is shown that when the frequency 
estimation problem concerns a primary component 
and additional signals are unwanted (can be 
considered noise) Fourier techniques are to be 
preferred over a range of SNR that depends on 
relative component amplitudes. 
 
 
2   Frequency estimation methods 
The system under consideration is the sum of 
multiple complex exponentials: 
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where Ak, fk and φk are the amplitude, frequency and 
phase of the kth component, and w(t) is complex 
white Gaussian noise of variance σ2. This work uses 
k = 2. 
    
2.1 The modified covariance method 
This autoregressive model assumes the data set can 
be entirely described by a linear combination of 



previous outputs and driving noise. The modified 
covariance method estimates the P coefficients, 
where P is the model order, by minimizing the 
forward and backward prediction errors in the least 
squares sense: 
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where: 
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and similarly for bρ̂ , where N is the data length and 
ak is the kth AR coefficient. 
 
2.2   The Fourier transform 
The amplitude of the Fourier transform of the 
windowed data: 
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is maximized to give an estimate of the frequency 
components. A two stage process is common: 1) a 
coarse search to give an approximation of the 
spectral peaks followed by 2) a fine search using a 
smaller bin width to improve the estimation 
accuracy. In discrete notation: 
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where estimate resolution (as distinct from 
resolution between components) can be increased 
either through zero-padding or, equivalently, 
frequency domain interpolation. 
 
2.3   Spectral comparison 
The figure-of-merit that compares the resolution 
ability between components is bandwidth [7]: 
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hence the parametric technique performs rather well 
at high SNR and the Fourier method requires a large 
data set. A comparison is given in Fig.1. 
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Fig. 1 - For short data records and high SNR, the 
modified covariance method has better resolution. 

 
2.4   Single complex exponential performance 
It is well known that the maximization given in 
eqn.5 leads to the ML estimate for a single complex 
exponential hence the Cramér-Rao bound is 
achieved: 
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Fig. 2 - Fourier methods are ML past cut-off for a 

single exponential;  the covariance method only 
approaches the CRB. 

 
where ρ is the SNR. The performance of the 
modified covariance method is a function of order. 
With 4/NP ≈  the CRB is almost reached. At low 



values of SNR the methods are not efficient. It is 
possible to calculate this cut-off point by estimating 
the probability that spurious noise-induced spectral 
bin magnitudes exceed the magnitude of the true 
spectral peak [8]. 
 
 
3   Bias in the Fourier transform 
Consider the spectrum of a single complex 
exponential windowed by a boxcar function: 
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The spectral location of interest is the bias-inducing 
section of the second component, and the important 
aspect is the slope at 1ff = : 
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The frequency estimate derived from the spectrum 
of component 1 can be given by 12 2/ˆ ccf −=  
where each ci, where i = 1, 2, 3, is found from the 
matrix equation YXC 1−= , where Y  consists of 
the three peak magnitudes and X  has rows of bin 
frequencies arranged quadratically.  
    The modified spectrum consists of the zero-phase 
sum of the preceding approximation and the linear 
approximation of the interfering spectrum at f1. An 
expression for bias is obtained by calculating the 
influence of the linear interpolation. It is seen that 
the slope of the linear interpolation is added to c2, 
hence the new peak location is given by: 
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This can be considered representation of the 
maximum bias under the worst phase conditions. 
The true bias will be less and depend on 

21 φφφ +=  where 121 ϕϕφ −=  and 212 f∆= πτφ . 
From a consideration of how spectra add [9]: 
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Fig.3 shows the bias as relative frequency is varied, 
showing good agreement between eqn.9 and 
simulation. 
 

1.15 1.2 1.25 1.3 1.35

1

2

3

4

5

6

x 10
−4

f
2
/f

1

B
ia

s/
f 1 

Bias (simulation)
Bias (theory)

 
Fig. 3 - Bias is dictated by the differential of the 

second component spectrum. 

 
 
4   Error comparison 
The total error comprises noise-induced variance 
according to: 
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hence the Fourier performance can be written: 
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where B is calculated for a uniform distribution of 
phase: πϕ 20 <<  and frequency separation: 

maxmin fff ∆<∆<∆ : 
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an integral that is best performed numerically. Fig.4 
compares the modified covariance performance with 
Fourier for k = 2, A2/A1 = 0.3, 1.9 < ∆f /f1 < 2.5, 
uniformly distributed and random phase. It is seen 
that the Fourier method closely follows the lines 
predicted by eqns. 11 & 12, which show that as bias 
becomes significant compared to noise-induced 
variance, a floor is reached in performance. At 



SNRs less than the cut-off, the modified covariance 
method performs less well. 
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Fig. 4 - The covariance method does not suffer from 

spectral interference. 

 
Fig.5 compares performance over SNR and 
frequency separation. At low SNR the Fourier 
method achieves the CRB. However, deviation 
quickly occurs at lower SNR, though the cut-off is 
smaller than for the covariance method. When clean 
signals are used the bias becomes significant and the 
covariance method performs better. The cross-over 
point is a function of frequency separation and it is 
seen that the SNR range over which Fourier is 
preferred increases with ∆f. 
    It is noted that the superior performance will not 
be achieved with non-rectangular window functions. 
The Fourier method will perform better at high SNR 
due to sidelobe repression but advantage at low SNR 
is lost from decreased variance performance [10,11].  
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Fig. 5 - Relative performance in 3d-space. Fourier is 

preferable at large ∆f and low SNR. 

 
 

5   Conclusion 
The modified covariance method has been compared 
to the Fourier technique. Despite the limitations of 
the latter method in regard to spectral interference, it 
has been shown that it is possible to take advantage 
of the desirable qualities under certain 
circumstances. Given sufficient spectral separation 
and relative amplitudes and an interest only in the 
frequency location of the component of greatest 
magnitude, Fourier performance is better than the 
modified covariance over a wide range of SNR. The 
CRB is very nearly achieved at a lower SNR than 
the AR method. 
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