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MEXICO

Abstract: - A one-dimensional nonlinear global model of neuronal interaction at cerebral cortex level is here
presented, in order to study the dynamics of synaptic excitatory and inhibitory activity of the cortex. We
prove that under certain conditions, excitation and inhibition traveling waves appear.
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1 Introduction
Traveling waves of chemical, physical and biologi-
cal activity have been observed in different environ-
ments. One important example in neurophysiology
is the action potential in a neuron, which is a travel-
ing wave of electric activity that spreads in the axon
length. The mathematical model of this phenomenon
(The Hodgkin–Huxley’s equations) has been widely
studied. ([3],[4]) Travelling waves of electric activity
have also been observed in the cerebral cortex [6].
Theoretical studies of this phenomenon have been
proposed [1].

In order to study the existing relationship be-
tween certain physiological states and electroence-
phalographic states measured at scalp or cortex level,
several neuronal interaction models at the cortex -
thalamus level have been previously proposed.

Local models try to explain the space-time prop-
erties of the electroencephalograms(EEG) with re-
spect to the properties at neuronal level, discrete
neuronal networks or neuronal networks distributed
in the millimeter range.

In global models, the corticortical fiber systems
(whose wavelengths are in the centimeter range) and
the fact that the cortex is a closed structure are con-
sidered important elements. These models consider
that the EEG measured at the scalp is essentially the
result of cortical neuron interactions through action
potentials.

The model takes the column of cerebral cortex as
the fundamental unit and tries to describe the inter-

actions between cortical columns through their inter-
connections as well as the interaction of the cortex
with other cerebral structures. It consists of a pair of
nonlinear integral equations that relate the synaptic
activity in each column of cortex in a given instant
of time t to the action potentials produced earlier in
other columns of cortex, taking into account propa-
gation velocities of action potentials but ignoring the
synaptic delays.

In this article, we will present a global model
of neuronal interaction at cerebral cortex level that
takes advantage of certain anatomic and physiologi-
cal characteristics of the cerebral cortex. We argue
that this kind of models provides a framework for
study the electrical traveling waves at the cerebral
cortex.

2 Problem Formulation
The cortex presents certain anatomical and physio-
logical characteristics that allow the elaboration of
neuron interaction models whose variables and pa-
rameters can be correlated with electroencephalogra-
phic measures obtained at the scalp.

Among the important characteristics of the cere-
bral cortex are:

1. It is a stratified system that has 6 horizontal
layers.

2. It has a columnar organization, that is, the
neurons are grouped by cortical columns and
cortical macrocolumns.



3. It is a densely interconnected system formed
by approximately 1010 cortical fibers. The in-
terconnections between neurons can also be di-
vided into two groups: the intracortical con-
nections that are short-range (lower than one
millimeter) and which can be excitatory or in-
hibitory, and the corticortical connections,
which are large-range (20cm long approxima-
tely) and are only of the excitatory type.

4. The input to the cerebral cortex that come
from other cerebral structures are only of the
excitatory type.

More information about these points can be found
in [5].

2.1 Deduction of the model
With this information it is possible to consider the
cortex like a system that involves the dynamic global
interaction of approximately 106 cortical columns with
one external input of the excitatory type and that are
modulated by a local process of lateral inhibition.

For the sake of simplicity we will consider the
cortex as consisting of only one layer. We will first
consider one uniform slice of cortex which will be
represented by the set of real numbers.

If we denote by the subindices ± those related
to the synaptic excitatory activity and inhibitory re-
spectively, then the elementary models are:

a) h±(x, t) − The active synapses density or synap-
tic activity, in the column x at time t (1/cm2).

b) g(x′, t) − The total fraction of neurons of col-
umn x′ that “firing” action potentials in time
t (dimensionless).

c) R±(x′, x, v) − The number of synaptic connec-
tions per cm2 in column x per unit length in
x′ and per unit velocity (sec/cm4). In order to
simplify the model, we will consider now that
R± has the following form

R±(x, x′, v) = λ±
2 S±(x)e−λ±|x−x

′|δ(v − v±)

where v± represent the propagation velocities
of action potentials of excitatory and inhibitory
neurons, respectively; λ−1

± represents the de-
creasing scales of synaptic connections, δ is Dirac’s
delta, and S±(x) the synapses density in col-
umn x. (1/cm2).

d) h0
±(x, t) − The synaptic input density which is
active in column x in time t produced by ac-
tion potentials that are “fired” in other cerebral
structures (1/cm2).

The density of synaptic activity in column x at in-
stant t produced by action potentials that are“fired”
in the inner structures of the cerebral and reach x at
instant t, which will be denoted by h0(x, t). There-
fore, we get:

h+(x, t) = h0(x, t)+
1
2
λ+S+(x)

∫ ∞

−∞
e−λ+|x−x′|g

(
x′, t− |x′ − x|

v+

)
dx′

(1)

h−(x, t) =

1
2
λ−S−(x)

∫ x+ε

x−ε
e−λ−|x−x

′|g

(
x′, t− |x− x′|

v−

)
dx′.

(2)

where the parameter ε > 0 is related to the assump-
tion that inhibitory activity has a short range.

2.2 Reduction of the System
We will now define

H±(x, t) =
h±(x, t)
S±(x)

, H0(x, t) =
h0(x, t)
S+(x)

Dividing (1) by S+(x), (2) by S−(x) and applying

the operator ∂2

∂x2 on both equations, we obtain the
following equivalent system of differential equations:

∂2H+

∂t2
+ 2λ+v+

∂H+

∂t
+ λ2

+v
2
+H+ − v2

+

∂2H+

∂x2

(3)

= F0(x, t) + λ2
+v

2
+g(x, t) + λ+v+

∂g

∂t
(x, t) ,

∂2H−
∂t2

+ 2λ−v−
∂H−
∂t

+ λ2
−v

2
−H− − v2

−
∂2H−
∂x2

= G0(x, t, ε) , (4)

where

F0(x, t) =
∂2H0

∂t2
+ 2λ+v+

∂H0

∂t

+ λ2
+v

2
+H0 − v2

+

∂2H0

∂x2
,



G0(x, t, ε) = λ2
−v

2
−g(x, t) + λ−v−

∂g

∂t
(x, t)

− 1
2
λ−v−e

−λ−ε
{
λ−v−

[
g

(
x+ ε, t− ε

v−

)
+ g

(
x− ε, t− ε

v−

)]
+

[
∂g

∂t

(
x+ ε, t− ε

v−

)
+
∂g

∂t

(
x− ε, t− ε

v−

)]}
− 1

2
λ−v

2
−e

−λ−ε
{
∂g

∂x

(
x+ ε, t− ε

v−

)
−∂g
∂x

(
x− ε, t− ε

v−

)}
.

Using results of regular perturbation theory of
differential equations, we obtain that, when ε → 0,
the solutions of (3), (4) have an asymptotical behav-
ior like those of the following system of equations.

∂2H+

∂t2
+ 2λ+v+

∂H+

∂t
+ λ2

+v
2
+H+ − v2

+

∂2H+

∂x2
=

(5)

F0(x, t) + λ2
+v

2
+g(x, t) + λ+v+

∂g

∂t
(x, t) ,

∂2H−
∂t2

+2λ−v−
∂H−
∂t

+λ2
−v

2
−H−−v2

−
∂2H−
∂x2

= 0 . (6)

Since the activity in a column of cortex depends
as much of the synaptic excitatory activity as of the
inhibitory, we shall introduce the variable

u(x, t) = V+H+(x, t)− V−H−(x, t) , (7)

where V± is the postsypnaptic magnitude potential
in one synapse. The variable u will be named as the
activation variable.

Doing some algebraic manipulations with equa-
tion (7), we obtain:

∂2u

∂t2
+ 2λ+v+

∂u

∂t
+ λ2

+v
2
+u− v2

+

∂2u

∂x2

= V+λ
2
+v

2
+g(x, t) + V+λ+v+

∂g

∂t
(x, t) + V+F0(x, t)

− V−

[
∂2H−
∂t2

+ 2λ+v+
∂H−
∂t

+λ2
+v

2
+H− − v2

+

∂2H−
∂x2

]
. (8)

The function g(x, t) represents, for x fixed, the
physiological activity of column x at an instant t. In
general, this depends in a very complex way on the

synaptic excitatory and inhibitory activity existing
in column x. Thus we consider

g(x, t) = g(u),

where, for simplicity we can suppose that g is one
sigmoid function of activation variable u.

Considering this new function and introducing
the non dimensional variables

τ = λ+υ+t, y = λ+x,

we get the following equivalent simplified equation to
(8):

∂2u

∂τ2
+ 2

∂u

∂τ
+ u− ∂2u

∂y2
=

(9)

V+

[
ḡ(u) + ḡ′(u)

∂u

∂τ

]
+ f0(y, τ) + C0(y, τ)

where

f0(y, τ) =
V+

λ2
+v

2
+

F0

(
y

λ+
,

τ

λ+v+

)
(10)

C0(y, τ) = −V−
[
∂2H−
∂τ2

+ 2
∂H−
∂τ

+H− −
∂2H−
∂y2

]
.

(11)
Note that in model (10), (11) we have the follow-

ing facts:

1. f0(y, τ) is associated to the excitatory input of
inner brain structures to the cortex.

2. C0(y, τ) is associated to the control produced
by the lateral inhibitory activity.

3 Problem solution
Traveling waves are waves that spread through the
physical medium without losing their shape.

In this section, we shall study under which con-
ditions equation (9) yields traveling waves.

3.1 Preliminary lemmas
Before beginning this analysis, we shall prove some
important results for our aims.

We suppose that the inhibitory control is such
that

f0(y, τ) + C0(y, τ) ≡ 0.

It is easy to proof the following lemma,



Lemma 1 Let f : R2 → R2 be continuous, and sup-
pose that the differential equation

dx

dt
= f(x), x ∈ R2 (12)

has one and only one stationary-point x0, which is
a saddle-point. Then, the necessary and sufficient
condition for the existence of a homoclinic solution of
the equation (12) that is it has one nontrivial bounded
solution in R.

We will search under which conditions the partial
differential equation

∂2u

∂τ2
+2

∂u

∂τ
+u− ∂2u

∂y2
= V+

[
ḡ(u) + ḡ′(u)

∂u

∂t

]
. (13)

has solutions of the form

u(y, τ) = φ(y − cτ) = φ(s), where s = y − cτ (14)

which also satisfy the condition

lim
s→±∞

φ(s) = φ0 , (15)

where φ0 is a constant.
If one solution of equation (13) exists, it has the

form (14) and since it has to satisfy condition (15),
it has to satisfy the ordinary differential equation

(c2− 1)
d2φ

ds2
+ c(V+ḡ

′(φ)− 2)
dφ

ds
+ (φ− V+ḡ(φ)) = 0 .

(16)
Conversely, if φ is a solution of (16) which satisfies

condition (15), then the function

u(y, τ) = φ(y − cτ)

is a solution of equation (13).
Note:
In the following we will suppose that 0 < c < 1,

such that it corresponds to the real propagation ve-
locity, cv+, which cannot be greater than the action
potential spread velocities.

We have that equation (16) is equivalent to the
first order equation system:

d

dt

(
φ

ψ

)
=

(
0 1
1

1−c2
−2c
1−c2

) (
φ

ψ

)
+

V+

1− c2

(
0

cḡ′(φ)ψ − ḡ(φ)

)
, (17)

where ψ(s) = dφ
ds

The existence of traveling waves for the equation
(13) is equivalent to the existence of homoclinic solu-
tions of system (17) at some value of c ∈ (0, 1), and

due to Lemma 1, The existence of homoclinic solu-
tions of (17) is equivalent to the existence of non-
trivial bounded solutions in R of (17) in case (17)
satisfies the conditions of Lemma 1.

From (16) it is evident that for c = 1 there are
not homoclinic solutions to this equation.

In the following we shall suppose that

ḡ′(φ) <
1
V+

for each φ ∈ R . (18)

With this condition we shall see that system (17)
has only one stationary-point for every value of con-
stant c that satisfies 0 < c < 1.

In addition, this stationary point is independent
of c and is a saddle-point of the system. With this
result, the problem of finding homoclinic solutions
for the system (17) is reduced to searching bounded
solutions in R, different from the trivial solution for
this system.

The stationary solutions of (17) have the form(
φ0

0

)
, where φ0 is the root of the equation

φ− V+ḡ(φ) = 0 .

Therefore, from the condition V+ḡ
′(φ) < 1

V+
, we

conclude that this equation has only one solution φ0,
which belongs to only one stationary solution of (17).

To determine if the stationary point is a saddle-
point, we will study the linear approximation to the
system in a vicinity of a stationary point.

Calculating the right hand side derivative of (17)
in the stationary point and making some operations,
we obtain that the linear approximation of the sys-
tem in the vicinity of a stationary point is:

d

dt

(
φ

ψ

)
=(
0 1

1
c2−1

(V+ḡ
′(φ0)− 1) c

c2−1
(2− V+ḡ

′(φ0))

) (
φ

ψ

)
.

(19)

and the roots of its characteristical equation are :

λ± =
c

c2−1
(2− V+ḡ

′(φ0))
2

±

√
( c
c2−1

(2− V+ḡ′(φ0))2 + 1
c2−1

(V+ḡ′(φ0)− 1))

2
.

(20)

Now, since V+ḡ
′(φ0) < 1 and 0 < c < 1, we

obtain 0 < λ+ and λ− < 0.
Therefore,

(
φ0

0

)
is one saddle-point of (19) for

every value of 0 < c < 1.



According to Lemma 1, the existence of homo-
clinic solutions of (17) is equivalent to the existence
of bounded solutions different from the trivial solu-
tion

(
φ0

0

)
.

We know that the bounded solutions of differen-
tial equation (17) coincide with the bounded solu-
tions of the nonlinear integral equation(

φ

ψ

)
=

V+

1− c2

∫ ∞

−∞
G(t− τ, c)

(
0

cḡ′(φ(τ)ψ(τ)− ḡ(τ)

)
dτ ,

(21)

where G(t, c) is the corresponding Green’s principal
function ([1],p. 81) of the equation (17).

Now, we shall study under which conditions the
integral equation (21) have bounded solutions in R.

Lemma 2 Green’s principal function of Ac is

G(t, c) =


1
2e

t
c−1

(
1− c c2 − 1
−1 1 + c

)
, si t > 0

−1
2e

t
c+1

(
1 + c 1− c2

1 1− c

)
, if t < 0 .

(22)

Proof:
We know that Green’s principal function is de-

fined by

G(t, c) =

{
eActP−, t > 0
−eActP+, t < 0

(23)

So,we need to calculate eAct and the projectors
P+, P−.

Using Jordan’s canonical form Ac, and after some
manipulations, which we will not show here, we ob-
tain

eAct =
1
2
e

t
1+c

(
1 + c 1− c2

1 1− c

)
+

1
2
e

t
c−1

(
1− c c2 − 1
−1 1 + c

)
= e

t
1+cP+ + e

t
c−1P− (24)

Substituting (24) in (23), we come to (22). �

Lemma 3

| G(t) |≤ (1 + c)e
−|t|
1+c . (25)

Proof:
The proof is immediate from lemma 2.
In order to obtain simpler estimates of the inte-

grand in the integral equation (21), we suppose that
ḡ(u) is the sigmoid function.

ḡ(u) =
1

1 + e−αu+β
with α > 0, β > 0 . (26)

Obtaining the first and second derivative of ex-
pression (26), we obtain

| ḡ′ |≤ α , (27)

| ḡ′′ |≤ 2α2 . (28)

From (27) and (28), we immediately obtain

Lemma 4 Let ρ > 0. For all
(
φ
ψ

)
∈ B[0, ρ], and(

φi
ψi

)
∈ B[0, ρ], i = 1, 2, we get the following esti-

mated values

| cḡ′(φ)ψ − ḡ(φ) |≤ cαρ+ 1 , (29)

| (cḡ′(φ1)ψ1 − ḡ(φ1))− (cḡ′(φ2)ψ2 − ḡ(φ2)) |
≤ 2α(αρc+ 1) . (30)

3.2 The existence of traveling waves
In the Theorem 1 we state the conditions that guar-
antee the existence of traveling waves in our model.

Proposition 1 We suppose that in system (17) the
function ḡ has the form (26). Let

(
φ
0

)
be the statio-

nary solution of (17).
We also suppose that V+α < 1

4 . Then, for each
ρ > max{φ0,

1
2α} there exists one and only one boun-

ded solution of the system (17) contained in B[0, ρ],
which is the stationary-solution

(
φ0

0

)
. In addition

c(ρ) is given by

c(ρ) = −

(
1 + 1

αρ + 1
4α2ρV+

)
2

+

√(
1 + 1

αρ + 1
4α2ρV+

)2
− 4

(
1
αρ −

1
4α2ρV+

)
2

. (31)

Proof:
We begin by proving that under the conditions

of this proposition, system (17) satisfies the condi-
tions of the Theorem of the appendix, and therefore
has only one bounded solution u contained in B[0, ρ].



Since
(
φ0

0

)
is a bounded solution of the system con-

tained in the same closed-ball, we have
(
φ0

0

)
is the

only solution of (17) in this closed ball.
The eigenvalues of matrix are

1
1 + c

,
1

c− 1
,

therefore Ac satisfies condition (52).
By lemma 4 we get, for

(
φ
ψ

)
∈ B[0, ρ],

V+

1− c2

∣∣∣∣( 0
cḡ′(φ)ψ − ḡ(φ)

)∣∣∣∣ ≤ V+

1− c2
(cαρ+ 1)

and

V+

1− c2

∣∣∣∣( 0
cḡ′(φ1)− ḡ(φ1)− (cḡ′(φ2)ψ2 − ḡ(φ2))

)∣∣∣∣
≤ V+

1− c2
2α(αρc+ 1)

∣∣∣∣(φ1

ψ1

)
−

(
φ2

ψ2

)∣∣∣∣
when

(
φi
ψi

)
∈ B[0, ρ] i = 1, 2.

Therefore, system (17) satisfies the conditions (53),
(54), where

M = (cαρ+ 1)
V+

1− c2
, q = 2α(αρc+ 1)

V+

1− c2
.

By lemmas 2 and 3, Green’s principal function,
G(t, c), of Ac satisfies

| G(t, c) |≤ (1 + c)e
−|t|
1+c ,

therefore, system (17) also satisfies (55) with

N = 1 + c y r =
1

1 + c
.

We only have to prove condition (56) holds, that
is, we need to prove with conditions of the proposi-
tion 1, its satisfied

(cαρ+ 1)V+

1− c2
≤ ρ

2(1 + c)2
, (32)

2α(αρc+ 1)V+

1− c2
<

1
2(1 + c)2

. (33)

Performing some operations and reordering the
terms we obtain that the system (32), (33) is equiv-
alent to the system

P1(c) =

c2 +
(

1 +
1
αρ

+
1

2αV+

)
c+

1
αρ

− 1
2αV+

≤ 0 , (34)

P2(c) =

c2+
(

1 +
1
αρ

+
1

4α2ρV+

)
c+

(
1
αρ

− 1
4α2ρV+

)
< 0 .

(35)

That’s why we need to prove (34) and (35).
To prove this, we need to obtain the polynomial

square roots P1(c), P2(c).
The roots of P1 are

c1±(ρ) =
−

(
1 + 1

αρ + 1
2αV+

)
2

±

√(
1 + 1

αρ + 1
2αV+

)2
− 4

(
1
αρ −

1
2αV+

)
2

. (36)

The roots of P2 are

c2±(ρ) =
−

(
1 + 1

αρ + 1
4ρα2V+

)
2

±

√(
1 + 1

αρ + 1
4ρα2V+

)2
− 4

(
1
αρ −

1
4α2ρV+

)
2

. (37)

Since, by hypothesis, αV+ < 1
4 and ρ > 1

2α we
have

1
αρ

− 1
4α2ρV+

< 0 ,

therefore the roots of P1(c) are real, one negative,
c1−(ρ), and the other positive c1+(ρ). The same hap-
pens with P2(c).

Then

P1(c) ≤ 0 for c1−(ρ) ≤ c ≤ c1+(ρ) , (38)

P2(c) < 0 for c1−(ρ) < c < c2+(ρ) . (39)

In addition,

c2+(ρ) < c1+(ρ) , (40)

This final part follows from each of the expressions
for every one of them and from the fact that

4α2ρV+ = 2αρ(2αV+) > (2αV+) since ρ >
1
2α

.

It is also easy to prove that c1+(ρ) < 1. Thus,
if we take 0 < c(ρ) = c2+(ρ) < 1, then, for every
0 < c < c(ρ), we have

P1(c) ≤ 0 ,

P2(c) < 0 .



Summarizing, under the conditions of proposition
1, system (17) satisfies the conditions of the theorem
of the appendix, for every 0 < c < c(ρ). This is what
we wanted to prove. �

With proposition 1, we have proved that if αV+ <
1
4 , ρ > max{φ0,

1
2α}, then system (17) cannot have

homoclinic solutions in 0 < c < c(ρ). Then, the
traveling waves do not exist for the equation (13),
where 0 < c < c(ρ).

Now, we continue to analyze what happens when
we take ρ > max{φ0,

1
2α} and c(ρ) < c < 1.

We consider for ρ > max{φ0,
1
2α} the βρ space,

βρ =
{(

φ

ψ

)
: R −→ R2 :

(
φ

ψ

)
is continuous,

‖ φ ‖2
∞ + ‖ ψ ‖2

∞≤ ρ2

}
. (41)

We know that βρ is a Banach space. We consider

the family of integral operators F
((

φ
ψ

)
, c

)
defined

by

F
((

φ

ψ

)
, c

)
=

(
φ

ψ

)
− F1

((
φ

ψ

)
, c

)
, (42)

where

F1

((
φ

ψ

)
, c

)
=

V+

1− c2∫ ∞

−∞
G(t− τ, c)

(
0

cḡ′(φ(τ))ψ(τ)− ḡ(φ(τ))

)
dτ .

(43)

In order that F
((

φ
ψ

)
, c

)
can act from βρ to βρ, c it

should satisfy the condition (34). From this we can
conclude that those values of c for which it is possible
to find homoclinic solutions of system (17), satisfy

c2+(ρ) < c < c1+(ρ) .

So we consider

F : βρ × (c2+(ρ), c1+(ρ)) −→ βρ defined by (42) .

Since
(
φ0

0

)
is a stationary point of system (17) for

each 0 < c < 1, we have the following expression:

F
((

φ

0

)
, c

)
= 0 for each c2+(ρ) < c < c1+(ρ) .

So, if we can prove that DF
((

φ0

0

)
, c

)
is invert-

ible, and that it satisfies the other conditions of the

implicit function theorem in a vicinity of
((

φ0

0

)
, c

)
,

we shall conclude that there exist U, V vicinities of(
φ0

0

)
and c respectively, such that for each c∗ ∈ V one

and only one L (c∗) =
(
φ
ψ

)
∈ U exists that satisfies:

F
((

φ

ψ

)
, c∗

)
= 0 ,

but,
(
φ
ψ

)
would be one nontrivial bounded solution

in R, of system (17) and by lemma 1, a homoclinic
solution of this system, to this would correspond one
traveling wave of equation (13) with velocity c∗.

So, now we will prove that the integral operator
F with c1+(ρ) < c < c2+(ρ), satisfies the conditions of
the implicit function theorem.

Lemma 5 Under the conditions of proposition 1, the
integral operator F defined in (42), is of the C1 class
in one vicinity of

((
φ0

0

)
, c

)
. In addition the Fréchet’s

partial derivative of F with respect to
(
φ
ψ

)
, which is

denoted by DF
((

φ
ψ

)
, c

)
, is given by

DF
((

φ

ψ

)
, c

)
= I −DF1

((
φ

ψ

)
, c

)
. (44)

with

DF1

((
φ

ψ

)
, 0

)
= δφF1

((
φ

ψ

)
, c

)
+ δψF1

((
φ

ψ

)
, c

)
(45)

where the Gâteaux ’s derivatives with respect to φ and
ψ that appear in the right-hand side of equation (45)
are given by the expressions

δφF1

((
φ

ψ

)
, c

)
(h) =

−V+

2

{
e

t
c+1

1 + c

∫ ∞

t[
e
−τ
c+1

(
c+ 1

1

)
[ cḡ′′(φ(τ))ψ(τ)− ḡ′(φ(τ) ]h(τ)

]
dτ

+
e

t
c−1

c+ 1

∫ t

−∞[
e
−τ
c−1

(
c− 1

1

)
[ cḡ′′(φ(τ))ψ(τ)− ḡ′(φ(τ)) ]h(τ)

]
dτ

}
, (46)



δψF1

((
φ

ψ

)
, c

)
(k) =

− V+c

2

{
e

t
c+1

1 + c

∫ ∞

t
e
−τ
c+1

(
c+ 1

1

)
ḡ′(φ(τ))k(τ) dτ

+
e

t
c−1

1 + c

∫ t

−∞
e
−τ
c−1

(
c− 1

1

)
ḡ′(φ(τ))k(τ) dτ

}
. (47)

Proof.

The Gâteaux’s derivative is obtained in a direct
way. �

Lemma 6 Under the conditions of proposition 1,
DF

((
φ0

0

)
, c

)
is an invertible operator.

Proof:
Since

DF
((

φ0

0

)
, c

)
= I −DF1

((
φ0

0

)
, c

)
,

it suffices to prove that∥∥∥∥DF1

((
φ0

0

)
, c

)∥∥∥∥ < 1 .

Evaluating (45) in
((

φ0

0

)
, c

)
and calculating its

norm, we obtain∥∥∥∥DF1

((
φ0

0

)
, c

) (
h

k

)∥∥∥∥
∞

≤
∥∥∥∥δφF1

((
φ0

0

)
, c

)
(h)

∥∥∥∥
∞

+
∥∥∥∥δψF1

((
φ0

0

)
, c

)
(k)

∥∥∥∥
∞
. (48)

We obtain values for∥∥∥∥δφF1

((
φ0

0

)
, c

)∥∥∥∥
∞
,

∥∥∥∥δψF1

((
φ0

0

)
, c

)∥∥∥∥
∞
.

Evaluating (46) in
((

φ0

0

)
, c

)
and calculating its

norm, we obtain:∥∥∥∥δφF1

((
φ0

0

)
, c

)
(h)

∥∥∥∥
∞

≤ V+ḡ(φ0)
2

(√
c2 + 2c+ 2 +

√
c2 − 2c+ 2

)
‖ h ‖∞ .

For 0 < c < 1 we have that√
c2 + 2c+ 2 is increasing,√
c2 + 2c− 2 is decreasing.

Therefore, we have that∥∥∥∥δφF1

((
φ0

0

)
, c

)
(h)

∥∥∥∥
∞

≤ V+ḡ
′(φ0)
2

(√
5 +

√
2
)
‖ h ‖∞ . (49)

In a similar way we obtain∥∥∥∥δψF1

((
φ0

0

)
, c

)
(k)

∥∥∥∥
∞

≤ V+ḡ
′(φ0)c
2

(√
5 +

√
2
)
‖ k ‖∞ . (50)

Substituting (49) and (50) in (48), we obtain∥∥∥∥DF1

((
φ0

0

)
, c

) (
h

k

)∥∥∥∥
≤ V+ḡ

′(φ0)
2

(1+c)
(√

5 +
√

2
) (√

‖ h ‖2
∞ + ‖ k ‖2

∞

)
.

Since 0 < c < 1 and V+α <
1
4 we obtain∥∥∥∥DF

((
φ0

0

)
, c

) (
h

k

)∥∥∥∥ < 1,

and this is what we wanted to prove. �
Finally, we have the main theorem.

Theorem 1 Suppose that in system (17), the func-
tion ḡ has the form (26) and αV+ < 1

4 . Then, for
every ρ > max{φ0,

1
2α}, there exist c1(ρ), c2(ρ) with

0 < c1(ρ) < c2(ρ) < 1, such that, for each c, sat-
isfying 0 < c < c1(ρ), the only bounded solution of
this system, contained in the closed-ball B[0, ρ], is
the stationary solution

(
φ0

0

)
. On the other hand, for

every c, with c1(ρ) ≤ c ≤ c2(ρ), there exists one
nontrivial bounded solution, of the system, which is
also a homoclinic solution, which corresponds one
traveling wave of equation (13) with velocity c. The
real translation velocity of this traveling wave is cv+.
In addition c1(ρ), c2(ρ) are the positive roots of the
quadratic polynomials defined in (36), (37).

Proof:
The existence of c1(ρ), was proved in proposition

1. By lemmas 5 and 6 the integral operator F de-
fined in (42) satisfies the conditions of the implicit
function theorem in one vicinity of

((
φ0

0

)
, c

)
, which



means F
((

φ
ψ

)
, c

)
is of the C ′ class in one vicinity

of
((

φ0

0

)
, 0

)
, F

((
φ0

0

)
, c

)
= 0 and DF

((
φ0

0

)
, c

)
is in-

vertible. Then, there exist vicinities U and V of
(
φ0

0

)
and c respectively such that, for each c∗ ∈ V , one and
only nontrivial element

(
φ
ψ

)
∈ U exists such that

F
((

φ

ψ

)
, c∗

)
= 0 .

Then,
(
φ
ψ

)
is a nontrivial bounded solution of (21)

and thus,
(
φ
ψ

)
is a bounded nontrivial solution of sys-

tem (17), which, by lemma 1, is a homoclinic solution
of system (17). �

4 Conclusions
In the model we propose, we have included strong
simplifications such as the fact that it is a one dimen-
sional model, not taking into account the curvature
of the cortex. Also, we consider that the distribu-
tion of connections only depends on the distance be-
tween columns and the decreasing scales of the con-
nexions do not depend on the cortical regions consid-
ered. Finally, we did not explicitly take into account
neurochemical activity. The model we have studied,
notwithstanding its important simplifications, has al-
lowed us to obtain analytical results that may mo-
tivate experimental analysis. Note the relative sim-
plicity of the proposed model and the immediate pos-
sibility to include, although partially, some elements
not yet considered in the model, such as decreasing
scales that depend on the regions of cortex consid-
ered, a generation function of action potentials ḡ that
depends on the location of the column and the ac-
tivation function, and the possibility to build a bi
dimensional mathematical model of the cerebral cor-
tex that would also include, albeit partially, the real
cerebral cortex geometry.

5 Appendix
Theorem (see [1]) Let the equation

du

dt
= Au+ f(t, u) (51)

with u(t) in Rn and suppose that it satisfies the fol-
lowing conditions

1. A is a n× n matrix , such that

σ(A) ∩ ({0} × R) = ∅ . (52)

2. f is continuous and f(t, 0) = 0

3. Let ρ > 0 we suppose exist M > 0 such that

| f(t, u) |≤M for t ∈ R and | u |≤ ρ . (53)

4. There exists q > 0 such that

| f(t, u1)− f(t, u2 |≤ q | u1 − u2 | (54)

for | u1 |≤ ρ and | u2 |≤ ρ.

5. There exists N > 0 and r > 0 such that

| G(t) |≤ Ne−r|t| for each t ∈ R (55)

where G(t) is the Green’s principal function of
the equation (51).

6. M and q such that satisfies

M ≤ ρr

2N
and q <

r

2N
. (56)

Then, equation (51) has one and only one bounded
solution in R, such that

| u(t) |≤ ρ for each t ∈ R . (57)
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