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Abstract: - The scale-invariant forms of conservation equations in reactive fields are described.  The modified 
form of the Helmholtz vorticity equation is solved to determine laminar flow outside a rigid cylinder and flow 
inside and outside of a cylindrical liquid body in a uniform gaseous stream or at the stagnation-point of two 
symmetric gaseous planar counterflow jets.  For the former problem, a modified solution for flow around rigid 
cylinder is presented that resolves the Stokes paradox and is harmonious with the Oseen‘s classical solution.  
For the latter problem, parallel to the classical Hill spherical vortex, the solution describing two cylindrical 
vortex lines is presented.  Also, the stream functions representing flow within two concentric immiscible liquid 
cylinders in uniform or planar counterflow gaseous streams are presented. 
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1 Introduction 
The universality of turbulent phenomena from 
stochastic quantum fields to classical hydrodynamic 
fields resulted in recent introduction of a scale-
invariant model of statistical mechanics and its 
application to the field of thermodynamics [4].  The 
implications of the model to the study of transport 
phenomena and invariant forms of conservation 
equations have also been addressed [5, 6].  In the 
present study, the modified form of the Helmholtz 
vorticity equation is solved for the problems of flow 
across a rigid or liquid cylinder located in a uniform 
stream or flow within a liquid cylinder at the 
stagnation-line of planar gaseous counterflow jets. 
 
2 A Scale-Invariant Model of Statistical 
Mechanics 
Following the classical methods [1-3], the invariant 
definitions of the density ρβ, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given 
as [4, 5]  
 
ρ n m m f duβ β β β β= = ∫ β      ,       uβ = vβ−1             (1) 

 
1m f d−

β β β β β β= ρ ∫v u u
          

  ,         wβ = vβ+1   (2) 
 
 

 

The invariant definitions of the peculiar and the 
diffusion velocities have been introduced as [4] 
 

V'β = uβ −  vβ   ,    Vβ = vβ − wβ = V'β+1     (3) 
 

3 Invariant Forms of the Conservation 
Equations for Chemically Reactive 
Flow Fields 
Following the classical methods [1-3], the scale-
invariant forms of mass, thermal energy, linear and 
angular momentum conservation equations [5, 6] at 
scale β are given as 
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where εβ = ρβhβ, pβ = ρβvβ, and πβ = ρβωβ are the 
volumetric density of thermal energy, linear and 
angular momentum of the field, respectively and 
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 is the vorticity.  Also, Ωβ  is the 
chemical reaction rate and hβ is the absolute enthalpy 
[5]. 
 The local velocity vβ in (8)-(11) is expressed in 
terms of the convective wβ = <vβ> and the diffusive 
velocities [5] 
 

vβ = wβ + Vβg      ,      (8a) g D ln( )β β= − ρV ∇

vβ = wβ + Vβtg         ,    tg ln( )β β= −α εV ∇   (8a) 

vβ = wβ + Vβhg        ,      (8c) hg ln( )β β= −νV p∇

vβ = wβ + Vβrhg       ,    rhg ln( )β β= −νV π∇  (8d) 
 

where (Vβg, Vβtg, Vβhg, Vβrhg) are respectively the 
diffusive, the thermo-diffusive, the linear hydro-
diffusive, and the angular hydro-diffusive velocities.  
For unity Schmidt and Prandtl numbers Scβ = Prβ = 
νβ/Dβ = νβ/αβ = 1, one may express 
 

tg g tβ β= +V V V          (9a)

hg g hβ β= +V V V          (9b)

rhg g rhβ β= +V V V             (9a)
 

that involve the thermal Vβt, the linear (translational) 
hydrodynamic Vβh   and the angular (rotational) 
hydrodynamic Vβrh diffusion velocities defined as [6] 
 

t ln(h )β β= −αV ∇     (10a)

h ln( )β β= −νV ∇     (10b) 

rh ln( )β β= −νV ω∇     (10c) 
 

 Since for an ideal gas hβ = cpβTβ, when cpβ is 
constant and T = Tβ, Eq.(3.6a) reduces to the Fourier 
law of heat conduction  
 

th κ Τβ β β β β= ρ = −q V ∇    (11) 
where κβ  and αβ = κβ/(ρβcpβ) are the thermal 
conductivity and diffusivity.  Similarly, (10b) may be 
identified as the shear stress associated with 
diffusional flux of linear momentum and expressed 
by the generalized Newton law of viscosity [5] 
 

ijβ β jβ ijβh jβ iρ µ /β= = − ∂τ v V v x   (12) 
 

Finally, (10c) may be identified as the torsional stress 
induced by diffusional flux of angular momentum 
and expressed as 
 

ijrβ β jβ ijβrh β jβ iρ µ /= = − ∂τ ω V ω x   (13) 
 

    Substitutions from (8a)-(8d) into (4)-(7), 
neglecting cross-diffusion terms and assuming 

constant transport coefficients with unity Prandtl 
and Schmidt numbers Scβ = Prβ = 1, result in [6] 
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       (17) 
 

The above forms of the conservation equations 
perhaps help to better reveal the coupling between 
the gravitational versus the inertial contributions to 
total energy and momentum densities of the field. 
    Substitutions from (14) into (15)-(17) result in 
scale-invariant forms of conservation equations in 
chemically reactive fields [6] 
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∂
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β

∂ Ω
− ν ∇ = − −

∂ ρ

ω ω
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       (21) 
 

Equation (21) is the modified form of the Helmholtz 
vorticity equation for chemically reactive flow 
fields. The last two terms of (21) respectively 
correspond to vorticity generation by vortex-
stretching and chemical reactions.  Hence, 
(− ωβΩβ/ρβ) represents generation Ωβ < 0 
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(annihilation Ωβ > 0) of angular momentum 
accompanied by release (absorption) of thermal 
energy associated with exothermic (endothermic) 
chemical reactions.  As an example, the latter source 
term may be used to describe the change of angular 
momentum of a ballet dancer.  In this case, the loss 
of mass due to chemical reactions in the body of a 
spinning dancer that brings the arms inward, thus 
doing work against centrifugal forces, results in an 
increase in the dancer's angular momentum. 
 
4 Solution of the Modified Helmholtz 
Vorticity Equation for Flow Inside a 
Liquid Cylinder in a Uniform Gaseous 
Stream  
For flow within a liquid cylinder located in a 
gaseous stream the non-dimensional steady forms of 
(18)-(21) in cylindrical coordinate and in the 
absence of reactions Ω = 0 reduce to  
 

2
z z z

r 2 2

w 1 1w r
r r r r r

θ∂ ∂ ∂ ∂∂ ⎛ ⎞+ = +⎜ ⎟∂ ∂θ ∂ ∂ ∂⎝ ⎠
ω ω ω z

θ
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r r vv v 1 0
r r r

θ∂∂
+ + =
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with (23)-(25) subject to the boundary conditions 
 

r = 0 r v

r

v
r

0θ∂

∂

∂
= =

∂
 (26a) 

 

r R=   (26b) rv v 2sinθ + θ == 0

θ

where , 
, ,  is the cylinder 

radius and U is the uniform stream velocity.  The 
dimensionless uniform far field convective velocity 
components are given by  

r r r r(v v w w (v v w w / U, , , ) , , , )θ θ θ θ
′ ′ ′ ′=

r r /( / U)′= ν R R /( / U)′= ν R′

rw cos=  , w sinθ = − θ   (27) 
 

An exact solution of (22) and (26) may be expressed 
by the dimensionless vorticity  
 

2
z 8r sin / Rω = − θ     (28) 

 

corresponding to the stream function 
 

2
i r[(r / R) 1]sinΨ = − θ  (29) 

 

where i i /′Ψ = Ψ ν , and ωz = ω'z(ν/U2).  The radial 
and angular velocity components within the cylinder 
are given by 
 

2
r

1v [(r / R) 1]
r

cos∂Ψ
= = −

∂θ
θ  (30) 

 

2v [3(r / R) 1
rθ ]sin∂Ψ

= − = − −
∂

θ  (31) 
 

Some of the streamlines calculated from (33) using 
Mathematica [9] are shown in Fig.1. 
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Fig.1 Streamlines for flow within a liquid 
cylinder in a uniform gaseous stream from (33). 
 
 

If one introduces the Cartesian coordinate system 
 
y r cos= − θ θ ,   (32) x r sin=

 

the stream function (29) will assume the form 
 

2 2
i x[(x / R) (y / R) ]1+ −

2

Ψ =    (33) 
 

leading to the velocities 
 

2
yv 1 3(x / R) (y / R)= − −    (34) 

 

2
xv 2xy / R=      (35) 

 

and the vorticity 
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2
z 8x / Rω = −      (36) 

 

 Near the center of the spherical flow (Fig.1) i.e. 
for small r 0, the velocity field (30)-(31) reduces to ≈
 

r r 1v w cosβ β−= = − θ

θ

  (37a) 
 

1v w sinθβ θβ−= =    (37b) 
 

where the subscripts (β, β−1) refer to the larger and 
smaller adjacent scales [6].  The local velocity (37) 
is similar to the outer convective velocity field (27) 
except that it is in the opposite direction (Fig.1).  
Therefore, in view of the scale-invariant form of 
(22)-(25), one arrives at a cascade of concentric 
cylindrical vortices that are embedded within each 
other with alternating sense of rotation.  This is 
because when the inner cylindrical vortex is small 
enough, it will experience a locally uniform external 
flow field (37) that is produced by the outer 
cylindrical vortex. 
    In view of the linearity of the governing 
equations, one can show that the streamline for two 
embedded concentric liquid cylinders may be 
presented as product solutions.  To show this, first 
the modified Helmholtz vorticity equation (22) is 
written as 
 

L(ωz) =  0     (38) 
 

where the linear operator L is defined as 
 

r
w= w

r r
θ∂ ∂

+
∂ ∂

L
θ

  
 

         
2 2

2 2

1 1
r r r r

⎡ ⎤∂ ∂ ∂
2+⎢ ⎥∂ ∂ ∂θ⎣ ⎦

− +   (39) 

 

Next, the axial vorticity is expressed in terms of the 
stream function as 
 

2 2
i i i

z i2 2 2

1 1 (
r r r r

⎡ ⎤∂ Ψ ∂Ψ ∂ Ψ
ω = − + + = Ψ⎢ ⎥∂ ∂ ∂θ⎣ ⎦

J )  (40) 

 

where a second linear operator J is defined as 
 

2 2

2 2

1 1
r r r r

⎡ ⎤∂ ∂ ∂
= − + +⎢∂ ∂ ∂θ⎣ ⎦

J 2 ⎥    (41) 

 

such that (38) becomes 
 

L [J (Ψi) ] = 0     (42) 
 

     Let us now consider the flow field within two 
concentric liquid cylinders that are located in a 
uniform gaseous stream.  The liquid cylinders are 

supposed to be composed of different immiscible 
fluids.  For the outer cylinder of radius R1 and the 
inner cylinder of radius R2, the stream functions 
from (33) are 
 

2 2
i1 1 1x[(x / R ) (y / R ) 1]Ψ = + −         ,  

 2 2
i2 2 2x[(x / R ) (y / R ) 1]Ψ = + −  (43) 

 

Although (37) and (27) are different, since the 
convective terms in (39) with (36) cancel identically 
 

z z
r

ww
r r

θ 0∂ω ∂ω
+ =

∂ ∂θ
    (44) 

 

the operator L in (39) becomes identical for the 
outer and the inner flow fields.  Hence, applying the 
vorticity equation (38) to the stream functions in 
(43) gives 
 

L [J (Ψ1)] = L [J (Ψ2) ] = 0   (45) 
 

that in view of the linearity of the operators leads to 
the product solution 
 

L [J (Ψ1Ψ2)]  = L [J (Ψ3) ] = 0   (46) 
 

Therefore, for flow within two concentric liquid 
cylinders composed of different and immiscible 
fluids located in a uniform flow the stream function 
is expressed by (43) and (46) as 
 

i3 i1 i2Ψ = Ψ Ψ =  
2 2 2 2 2 2 2

1 2 1 2(x / R R ) (x y R )(x y R )= + − + −   (47) 
  

    Some of the streamlines for flow within two 
concentric liquid cylinders calculated from (47) are 
shown in Fig.2. 
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Fig.2 Streamlines in two concentric liquid 
cylinders in uniform gaseous stream from (47). 
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It is noted that as the radius of the outer cylinder R1 
is increased, the streamlines within the outer 
cylinder (Fig.2) become increasingly similar to the 
streamlines for external flow over a liquid cylinder 
(Fig.5) that will be considered in the Sec.6. 
 
5 Solution of the Modified Helmholtz 
Vorticity Equation for Flow Inside a 
Liquid Cylinder at Stagnation-Point of 
Planar Gaseous Counterflow Jets 
Following the classical solution of Hill [7, 8], the 
flow generated in a small cylindrical body of liquid  
that is located at the stagnation point of a planar 
gaseous counterflow is considered [10].  The 
convective velocity of the gaseous counterflow 
outside of the cylinder is given by [2]   
 

yw′ = −Γy′ x′ , xw′ = Γ   (48) 
 

where Γ is the counterflow velocity gradient.  With 
the definitions of dimensionless velocity and 
coordinates 

x y x y x y x y( ( ′ ′ ′ ′ νΓv v w w v v w w, , ,  ) = , , ,  )/  

x x / /′= ν Γ      ,     y y / /′= ν Γ  (49) 
 

the dimensionless axial vorticity and stream 
function satisfying (22) and (26) are 

2
z 12(r / R) sin cosω = − θ θ  

 

   (50) 2 2
i r [(r / R) 1)sin cosΨ = − θ θ

 

where , /′ω = ω Γ R R / /′= ν Γ

2 ]

, 
Ψ = Ψ' /(νU/Γ) and R' is the cylinder radius.  In 
Cartesian coordinates (50) becomes 
 

2
z 12xy / Rω = −   

  (51) 2 2
i xy[(x / R) (y / R) 1]Ψ = + −

 

leading to the velocity components 
 

2 2
yv y[1 3(x / R) (y / R) ]= − − ,  

   (52) 2
xv x[1 (x / R) (y / R)3= − − −

 

Some of the streamlines calculated from (51) are 
shown in Fig.3. 
 

     It is interesting to note that even if there were no 
liquid cylinder at the stagnation point, it is expected 
that a small cylindrical region of flow recirculation 
like that shown in Fig.3 (or like an ellipsoidal 
cylindrical body) will form around the stagnation 
point.  Therefore, for fluids with finite viscosity, the 

critical singularity located at the stagnation point will 
be avoided by the global flow through the formation 
of such a closed region of secondary flow.  The 
radius of such a secondary flow region is given 
by R /∗ = ν Γ  and hence depends on the viscosity 
and the rate of strain. 
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Fig.3 Streamlines in liquid cylinder at the 
stagnation point of planar counterflow from (51). 
 
     In the vicinity of the stagnation point, x 0≈  
and y 0≈ , the local velocity field (52) reduces to 
 

y y 1v wβ β− y= =     ,  (53) x x 1v wβ β−= = x−
 

that except for its opposite direction is similar to the 
outer convective velocity field in (48).  Therefore, as 
was noted earlier [10-11], because of the scale-
invariant nature of the conservation equations, one 
expects a cascade of embedded concentric cylindrical 
flows at ever-smaller scales to form around the 
stagnation point.  Following the reasoning and the 
procedures similar to those described in (38)-(47), it 
can be shown that for two concentric cylinders 
located at the stagnation-point of a planar 
counterflow with the radii R1 and R2 and with the 
respective stream functions obtained from (51) as 
 

2 2
i4 1 1xy[(x / R ) (y / R ) 1]Ψ = + −  

 2 2
i5 2 2xy[(x / R ) (y / R ) 1]Ψ = + −  (54) 

 

one arrives at the product solution given by 
 

i6 i4 i5Ψ = Ψ Ψ =  

      2 2 2 2 2 2 2
1 2 1 2(xy / R R ) (x y R )(x y R )+ − + −

       (55) 
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Some of the streamlines calculated from Eq.(55) for 
flow within two concentric cylinders that are located 
at the stagnation line of two symmetric planar 
gaseous counterflow jets are shown in Fig.4. 
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Fig.4 Streamlines in two immiscible concentric 
liquid cylinders calculated from (55). 
 
Examination of Fig.4 shows that generation of many 
concentric cylindrical flows is accompanied by the 
formation of many new local planar counterflow 
regions.  It is expected that in the vicinity of each 
new stagnation point smaller secondary cylindrical 
flows will be generated.  For example, one would 
expect small cylindrical flows to form in the vicinity 
of the poles of the inner cylinder in Fig.4.  Since 
strained flow fields are common features of turbulent 
flows, the generation of cascades of cylindrical line 
vortices at each stagnation point is expected to play 
an important role in turbulent dissipation process.  
The application of the results to the classical dynamo 
problem [13] requires future consideration. 
 
6 Modified Theory of Flow Outside of 
a Rigid Cylinder in Uniform Stream 
It is well known that the solution of the problem of 
viscous flow outside of a rigid cylinder in uniform 
stream encounters difficulties leading to what is 
known as the Stokes paradox [8].  The difficulty is 
that thus far a solution that simultaneously satisfies 
both the far field uniform velocity boundary 
conditions as well as the no-slip boundary 
conditions on the surface of the cylinder has not 
been possible.  The problem was partially resolved 
by the classical solution of Oseen [14-16] that 
assumed a constant velocity convective term.  It is 
interesting to note that the equation considered by 

Oseen [14] is indeed similar to the modified form of 
the Helmholtz vorticity equation (22). 
 Before discussing flow around a rigid cylinder, 
the solution of the simpler problem of flow outside 
of a liquid cylinder in a uniform gaseous stream is 
considered.  For this problem with the far field 
uniform convective velocity 
 

rw cos= θ   ,       (56) w sinθ = − θ
 

the solution of (22) and (26) is similar to the 
classical result [8] and given by the stream function 
 

2
of r[1 (R / r) ]sinΨ = − θ    (57) 

 

with the velocity components 
 

2
rv [1 (R / r) ]cos= − θ  (58) 

 

2v [1 (R / r) ]sinθ = − + θ  (59) 
It is noted that while the radial velocity on the 
cylinder surface vanishes, the angular velocity 
assumes the finite value of  
 

v (R) 2sinθ = − θ     (60)
 

that matches (31) at r = R as required. 
 As opposed to the internal flow that has a finite 
axial vorticity given in (28), the axial vorticity in the 
external flow vanishes identically 
 

z 0ω =  (61) 
 

The result (57) expressed in Cartesian coordinates 
assumes the form 
 

2 2 2

of 2 2

x(x y R )
x y
+ −

Ψ =
+

   (62) 

 

Some of the streamlines for flow external to a liquid 
cylinder calculated from (62) with R = 2  are 
shown in Fig.5. 
 For the problem of flow around a rigid cylinder, 
we consider superposition of a uniform flow, a 
doublet, and a special rectilinear vortex that has 
angle-dependent angular velocity and introduce the 
dimensionless complex potential 
 

2RF z 2iRSin ln(z / R)
z

= + − α   (63) 
 

where F F /′= ν , z z /( / U)′= ν , r r /( / U)′= ν , 
R R /( / U)′= ν  and 

 

iz re θ=      (64) 
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Fig.5 Streamlines outside of liquid cylinder in 
uniform gaseous flow calculated from (62). 
 
It is noted that the angle dependence of the line 
vortex in the last term of the potential (63), unlike θ, 
is considered to be constant.  Separating the real and 
the imaginary parts of the complex potential (63) 
leads to the velocity potential  
 

2

2

Rr(1 )cos 2R sin
r

Φ = + θ + θ α   (65) 
 

and the stream function 
 

2

or 2

Rr(1 )sin 2R sin ln(r / R)
r

Ψ = − θ − α  (66) 
 

The stream function (66) gives the velocity 
components 
 

2

r 2

Rv (1 )cos
r

= − θ     (67) 
 

2

2

R 2Rv (1 )sin sin
r rθ = − + θ + α   (68) 

 

 The angular dependence of the line vortex is now 
chosen to be α = θ such that (68) becomes 
 

2

2

R 2Rv [1 ]sin
r rθ = − + − θ    (69) 

 

The angular velocity in (69) has the desired property 
that it vanishes on the surface of the rigid cylinder 
while simultaneously satisfying the far field 
convective velocity boundary condition (56) thereby 
resolving the Stokes paradox.  Also, for the choice 

of angular dependence of vortex velocity α = θ, one 
obtains from (66) the stream function 
 

2
2 2 1/ 2

or 2 2 2 2 1/ 2

R 2Rx
x(1 ) ln[(x y ) / R]

x y (x y )
Ψ = − − +

+ +
 

       (70) 
 

Some of the streamlines calculated from (70) for 
flow over a rigid cylinder are shown in Fig.6.  As is 
to be expected, the streamlines for the flow over a 
rigid cylinder shown in Fig.6 from (70) are different 
from those for the flow over a liquid cylinder shown 
in Fig.5 from (62).  Therefore, for example in 
theoretical combustion models [3], the former flow 
is relevant to coal particle combustion while the 
latter flow applies to combustion of liquid sprays.  
The direct comparisons of the predicted velocity 
profiles with experimental observations require 
further future considerations. 
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Fig.6 Streamlines for flow outside of a rigid 
cylinder in uniform stream calculated from (70). 
 

 
7 Concluding Remarks  
The modified form of the Helmholtz vorticity 
equation was solved for the classical problem of flow 
over a rigid cylinder.  The new solution resolves the 
classical Stokes paradox for flow over a cylinder.  
The solutions of the modified form of the Helmholtz 
vorticity equation were also determined for flow 
inside and outside of liquid cylinder located in 
uniform gaseous flow or at the stagnation-line of 
planar gaseous counterflow jets.  Finally, the velocity 
fields within two concentric liquid cylinders made of 
different immiscible fluids in uniform or planar 
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counterflow gaseous streams were determined.  The 
results may help the understanding of vortex 
dynamics in turbulent fields and the understanding of 
evaporation/combustion of cylindrical regions of 
liquid/solid fuels that may be encountered in 
turbulent spray combustion.  The generation of 
cascades of embedded cylindrical vortices within 
locally strained flows (Fig.4) was identified as one 
possible mechanism of turbulent dissipation. 
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