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Abstract: Separation of the two-dimensional Laplace equation in elliptic coordinates leads to a Chebyshev-like 
differential equation for both the “angular” and “radial” variables, namely ( , )η ξ ; in the case of η  the well 
behaved solution in [-1,1] (its range of definition), are the usual first class Chebyshev polynomials. However, 
since ξ  is defined in [1, )∞ , there is a need to construct another solution by, for example, a Frobenius series 
representation. Using these functions, the complete solution of two-dimensional Laplace’s equation in this 
coordinate system can then be constructed accordingly, and could be used to study a variety of boundary-value 
electrostatic problems involving infinite conductors and lines of charge. Moreover, the corresponding Green’s 
function for the Laplace operator can also be readily obtained using this procedure, a matter that can be useful 
in the study of many problems in solid state physics which involve energy levels and/or optical properties of 
hydrogenic impurities within nanostructures of elliptic shape. These subjects are afforded and discussed in the 
present communication, some useful trends regarding applications of the result are also given. 
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1 Introduction 
Laplace equation plays a fundamental role in 
potential theory since many two-dimensional 
boundary-value problems are of crucial importance 
for both, physics and mathematics. This is the case, 
for instance, in electrostatics, fluid flow through 
obstacles, conformal mapping and so on.  
 The solution of this equation for a specific 
boundary-value problem in electrostatics, can give 
information that a priori is unknown; namely, when 
an initially isolated conductor (charged or raised to 
a given potential) is perturbed by a charge 
distribution, the charge on the conductor’s surface 
after the perturbation redistributes to an unknown 
distribution, then the conventional solution for the 
potential as an integral involving the surface charge 
cannot be used. In those cases, the general solution 
of Laplace equation becomes an important tool to 
obtain the new potential. 
 In most electrostatic problems, a given charge 
distribution is usually involved and one must solve 
instead the Poisson equation, but either in this case 

the general solution of Laplace equation is still 
important since it can be used to construct an 
auxiliary function, the Green’s Function, which 
allows one to find the particular solution of Poisson 
equation that satisfies all the boundary conditions.  
 The construction of the general solution of 
two-dimensional Laplace equation involves its 
separability in a given coordinate system, its is 
separable, for instance, in rectangular, polar, 
parabolic, elliptic and other less common 
coordinate systems (See for Ref.[1]). In the specific 
case of elliptic coordinates, its separation leads to a 
Chebyshev-type ordinary differential equation for 
both “angular” (η) and “radial” (ξ) coordinates. 
The solution associated to the angular variable are 
the well known first-class Chebyshev polynomials 
but in the case of the radial one, they are not longer 
useful because this coordinate is defined in [1,∞) 
and clearly the polynomials diverge at infinity. 
 This fact implies that we need to find a 
different solution which must be properly behaved 
in this interval; once such a solution is known, the 



construction of the Green’s Function associated to 
the Laplace operator in this coordinate system can 
be readily done. 
 The knowledge of both, the general solution 
and the Green’s Function for the Laplace operator 
can used to solve a variety of electrostatic 
boundary-value problems which involve infinite 
conductors and infinite charged lines in elliptic 
coordinates. 
 In addition, the two-dimensional Green’s 
function representation allows one to find  the two-
dimensional Coulomb potential, a matter that can 
be useful to study many properties of solid state 
physics systems which involves hydrogenic 
impurities in nanostructured materials of elliptic 
shape in a similar way as it has been done for other 
shapes [2,3,4]. 
 The same potential in the moment space was 
studied by Ditrich [5]. Other authors, as Furman 
[6], have treated elliptical charge configurations. 
 The aim of this work is to stress at both, 
academic and research levels, the importance 
inherent to the knowledge of the general solution of 
the Laplace equation and the wide possibilities of 
applications. 
 For the sake of clarity, this communication has 
been structured as follows: In section 2, we discuss 
the form of the two-dimensional Coulomb potential 
and its relation with the well known form of the 
Green Function, as reported in [7,8]; the general 
solution of Laplace equation in elliptic coordinates 
is discussed in section 3; a representation of the 
Green function in this coordinates is constructed in 
section 4 and finally, in section 5, we made some 
conclusion and discussion on the possible 
applications of the results presented here-in. 
 
 
2 Two-dimensional Coulomb 
potential 
The two-dimensional Green function, as known in 
textbooks (see for instance, Ref [7]) is of the form: 

 1( , ') ln | ' |
2

G
π

= − −ρ ρ ρ ρ , (1) 

which can be interpreted as the electrostatic 
potential at ρ  due to an infinite line of charge, with 
unit charge per length, located at 'ρ  and it is 
solution of the equation: 
 2 ( , ') ( ')G δ∇ = − −ρ ρ ρ ρ  (2) 
where ( ')δ −ρ ρ  is the Dirac delta function. 
 You most notice that this function is also 
solution of the Laplace equation in charge-free two-
dimensional space, i.e., when '≠ρ ρ . 

 In two dimensions, the electrostatic potential 
does not coincide with the usual Coulomb 
potential, since the former is associated with an 
infinite line of charge (or an infinite charged 
conducting cylinder) while the later is associated 
with the interaction of two point charges, a matter 
which sometimes causes confusion. Anyway, the 
Coulomb potential for a unit point charge in two 
dimensions can be readily related with the two-
dimensional Green’s function from Eq. (1), as: 

 [ ]1 exp 2 ( , ')
| ' |

Gπ=
−

ρ ρ
ρ ρ

 (3) 

In this way, a two-dimensional problem which 
involves Coulomb potential can be afforded by 
firstly constructing the general solution and the 
Green’s function associated with the Laplace 
operator in the system of coordinates adequately 
selected for the specific geometry or shape of the 
object or system under study.  
 In the next sections, we shall describe how this 
can be done in the specific case of elliptic 
coordinates, but it can be readily adapted to other 
orthogonal coordinate system in which Laplace 
equation is separable or, at least, partially 
separable. 
 
 
3 General Solution for Laplace’s 
Equation in elliptic coordinates 
In this section, we will develop Laplace’s operator 
in two dimensions using an elliptic coordinate 
system. This analysis becomes apparent when we 
are analyzing the problem of a line of charge 
parallel to an elliptic-cylindrical conductor because 
we can look for a solution by considering the 
bidimensional problem of obtaining Green’s 
function, which is solution to Poisson’s equation  
 2 ( , ') ( , ')G δ∇ = −ρ ρ ρ ρ . (4) 
We already know that it can be developed by a 
harmonic expansion of functions which are 
solutions to Laplace’s equation 

 2 ( ) 0φ∇ =ρ . (5) 
The points considered are those points different 
from those of the source ( '≠ρ ρ ). Our first step 
towards the solution will be to consider the 
transformation of Laplace’s operator from 
Cartesian coordinates to an elliptic system. Using 
the transformation equations 

 2 1/ 2 2 1/ 2
; [1, );

( 1) (1 ) ; [ 1,1)
x a
y a

ξη ξ
ξ η η

= ∈ ∞
= − − ∈ − .

 (6) 

The scale factors related to this transformation are 



 
1/ 2 1/ 22 2 2 2

2 1
yxh aξ

ξ η
ξ ξ ξ

      ∂∂ −
= + =      ∂ ∂ −       

 (7) 

and 

 
1/ 2 1/ 22 2 2 2

21
yxh aη

ξ η
η η η

      ∂∂ −
= + =      ∂ ∂ −       

. (8) 

 
3.1 Laplacian operator 
The scale factors that has been previously 
calculated will allow us to construct the Laplacian 
operator, which will have the form 

 2 1 h h
h h h h

η ξ

ξ η ξ ηξ ξ η η

    ∂ ∂ ∂ ∂ ∇ = +    ∂ ∂ ∂ ∂        
 (9) 

we can obtain 

 

2 1/ 2 2 1/ 2 2 2 1/ 2
2

2 2 2 2 1/ 2

2 1/ 2 2 2 1/ 2

2 2 1/ 2 2 1/ 2

2 1/ 2

2 2 1/ 2

( 1) (1 ) ( )
( ) (1 )

( 1) ( )1
( ) ( 1)

(1 )1
( )

a
a

a
a

a

ξ η ξ η
ξξ η η

ξ ξ η
ξ ηξ η ξ

η
ηξ η

− − −∂
∇ =  ∂− − 

− −∂ ∂
× + ∂ ∂− − 

− ∂
× ∂− 

(10) 

or 

 

2 2 1/ 2 2 1/ 2
2 2 2

2 1/ 2 2 1/ 2

1 ( 1) ( 1)
( )

(1 ) (1 ) .

a
ξ ξ

ξ η ξ ξ

η η
η η

  ∂ ∂
∇ = − −  − ∂ ∂ 

 ∂ ∂
+ − −  ∂ ∂ 

(11) 

This is the expression for the Laplace operator in 
elliptic coordinates. 
 Now, we can consider the Laplace’s equation 
given in Eq. (5). This can be rewritten using Eq. 
(11) as 

 

2 2 1/ 2
2 2 2

2 1/ 2 2 1/ 2

2 1/ 2

1( , ) ( 1)
( )

( 1) (1 )

(1 ) ( , ),

a
ψ ξ η ξ

ξξ η

ξ η
ξ η

η ψ ξ η
η

 ∂
∇ = − ∂− 

 ∂ ∂
× − + − ∂ ∂ 

 ∂
× −  ∂ 

(12) 

and then solved by the variable separation method. 
So, we introduce 
 ( , ) ( ) ( )S Hψ ξ η ξ η= , (13) 
and rearrange to obtain 

 

2 1/ 2
2 1/ 2

2 1/ 2
2 1/ 2

(1 ) ( )(1 )
( )

( 1) ( )( 1)
( )

.

dHd
H d d

dSd
S d d

const

η ηη
η η η

ξ ξξ
ξ ξ ξ

 −
− 

 
 −

= − − 
 

=

 (14) 

 
3.2 Angular equation: Chebyshev 
polynomials 
The effect of variable separation allows us to define 
a constant. Assuming that 2.const m= , from the 
left term of Eq. (14), we obtain the well known 
Chebyshev equation 

 2 1/ 2 2 1/ 2 2(1 ) (1 ) 0d dH m H
d d

η η
η η
 

− − + = 
 

 (15) 

which has solutions for 0,1, 2,m = , valid for 
[ 1,1]η∈ − : 

 ( ) ( )mH Tη η= , (16) 
known simply as the Chebyshev polynomials. 
These polynomials are orthogonal and satisfy the 
following condition 

 
1 '

, '2 1/ 21

( ) ( )
(1 )
m m

m m m
T T

d a
η η

η δ
η−

=
−∫ . (17) 

Their general expression is 
 1( ) cos( cos )mT mη η−= . (18) 
 
3.3 Radial equation: second solution to 
Chebyshev’s equation 
From the right hand term of Eq. (14), and with the 
constant of separation already defined, one can 
obtain 

 2 1/ 2 2 1/ 2 2( 1) ( 1) 0d dS m S
d d

ξ ξ
ξ ξ
 

− − − = 
 

, (19) 

that must be solved in the [1, )∞  interval. We can 
recognize it as the Chebyshev equation of second 
class. In this range, the Chebyshev polynomials 
remain to be a valid solution, but they are irregular 
at infinity, so we will need another linearly 
independent solution for this equation, in order to 
completely describe an electrostatic problem such 
as the one we are interested in.  
 We have to decide how to obtain the second 
solution to Chebyshev’s equation, as there are 
several ways to obtain it; one of them will be 
discussed here.  
 
3.3.1 Second solution by the Frobenius’ method 
In order to obtain the solution using the Frobenius 
method, we have used the traditional way, as it is 
shown in the Appendix. The functions obtained 
have the following form and properties: 



 
( )2

0

2
0

1

ln 1 0
( )

1 , 1
m

m l
l

l

a m
S

a m a m

ξ ξ
ξ

ξ ξ
∞

− −

=

 + − ==    + ≥   
∑

 (20) 

where 0 0a ≠ , [1, )ξ ∈ ∞  and  

 ( 2 )4 .
( 1) ( 1)

l

l
m la

m l l

−Γ +
=
Γ + + Γ +

 

They decay very fast as ξ  grows and have a finite 
value in 1ξ = . Those functions, in conjunction 
with Chebyshev’s polynomials are a complete set 
of functions that will allow us to develop the 
Green’s function corresponding to a singular point 
in the elliptic coordinate system. 
 
 
4 Green’s Function 
With the aid of the functions ( )mT η  for the angular 
function, and the functions ( )mT ξ  and ( )mS ξ  for 
the radial variable, we can construct the Green’s 
function in the two-dimensional space.  
 As mentioned before, we need to solve 
Poisson’s equation for a linear distribution of 
charge, located at ' ( ', ')ξ η=ρ , which is 

 

2 ( , ') ( ')
1 ( ') ( ')

G

h hξ η

δ

δ ξ ξ δ η η

∇ = − −

= − − −

ρ ρ ρ ρ

, (21) 

where 2∇  is given by Eq. (11). 
 Because the { ( )}mT η  polynomials constitute a 
complete set of basis functions in [-1,1], i.e. in the 
angular coordinate, Dirac’s delta function can be 
expressed as a linear combination of them, in the 
form 

 2 1/ 2
0

( ) ( ')( ')
(1 )
m m

m

T Tη η
δ η η

η

∞

=

− =
−∑ . (22) 

Furthermore, the delta function can be used to 
define a function by the means of  

 
1

' '1
( ') ( ) ( ')m mT d Tδ η η η η η

−
− =∫  (23) 

then, using Eq. (22) we have 

 

'
' 2 1 / 2

, '

( ) ( )
( ') ( ')

(1 )
( ').

m m
m m m

m

m m m m m
m

T T
T A T d

A a T

η η
η η η

η
δ η

=
−

=

∑ ∫
∑

 

That is, 

 ' ' ' ' '
'

1( ') ( ')m m m m m
m

T A a T A
a

η η= ⇒ = . (24) 

Thus, we have Eq. (22) as 

 2 1/ 2
0

( ) ( ')1( ')
(1 )
m m

m m

T T
a

η η
δ η η

η

∞

=

− =
−∑ . (25) 

Using this result and the definition of the scale 
factors for elliptical coordinates, we can return to 
our differential equation for Green’s function 

 

2 1/ 2 2 1/ 2
2

2 2 2

2 1/ 2
0

2 1/ 2

2 2 2

( 1) (1 )( , ; ', ')
( )

( ) ( ')1( ')
(1 )

( 1) 1( ') ( ) ( ')
( )

m m

m m

m m
m m

G
a

T T
a

T T
aa

ξ ηξ η ξ η
ξ η

η η
δ ξ ξ

η

ξ δ ξ ξ η η
ξ η

∞

=

− −
∇ = −

−

× −
−

−
= − −

−

∑

∑

(26) 

or, assuming that Green’s function can be separated 
as a product of functions of the base space, i.e., if 

 
( , ') ( , ; ', ')

( ', ') ( ) ( )m m m
m

G G
B g T
ξ η ξ η

ξ η ξ η
=

=∑
ρ ρ

 (27) 

then 

 

2 1/ 2 2 1/ 2
2 2 2

2 1/ 2 2 1/ 2

2 1/ 2

2 2 2

1 ( 1) ( 1)
( )

(1 ) (1 )

( ) ( )

( ) ( ')( 1) ( ') .
( )

m m m
m

m m

m m

d d
d da

d d
d d

B g T

T T
aa

ξ ξ
ξ ξξ η

η η
η η

ξ η

η ηξ δ ξ ξ
ξ η


− −

− 


+ − − 


×

− −
= −

−

∑

∑

 (28) 

Regrouping and using the results of Eq. (15), we 
have 

 

2 1/ 2 2 1/ 2 2

2 1/ 2

( 1) ( 1)

( ')
( 1) ( ') ( ) 0

m
m m

m

m
m

m

dgdB m g
d d

T
T

a

ξ ξ
ξ ξ

η
ξ δ ξ ξ η

  
− − −  

 


+ − − =


∑
(29) 

But we already know that the { ( )}mT η  set is 
linearly independent, thus we have 

 

1/ 2 2 1/ 2 2

2 1/ 2

( 1) ( 1)

( 1) ( ') ( ')
( ', ')

m
m

m

m m

dgd m g
d d

T
a B

ξ ξ
ξ ξ
ξ δ ξ ξ η

ξ η

2 − − − =

− −
−

 (30) 

We are going to analyze this equation in the region 
of the singularity, i.e. the region where 'ξ ξ≠ . In 
this case, we have Eq. (28) and it will have two 
different solutions: one regular at infinity, and other 
regular and finite at 1ξ = . Those functions will be 
used to construct Green’s function, which has to be 
continuous at 'ξ ξ= . They are: 

 
( ) 1 '

( )
( ) 1 '

m
m

m

BT
g

AS
ξ ξ ξ

ξ
ξ ξ ξ

< <
=  < < < ∞

 (31) 



where A and B are coefficients that need to be 
calculated. Integrating  Eq. (30) around 'ξ ξ= , we 
have 

 

' '
2 1 / 2 2

' '

'

'

lim ( 1)

( ') ( ')
lim

( ', ')

m
m

m

m m

dgd d m g d
d d

T d
a B

ξ ε ξ ε

ε
ξ ε ξ ε

ξ ε

ε
ξ ε

ξ ξ ξ
ξ ξ

δ ξ ξ η ξ
ξ η

+ +

→∞
− −

+

→∞
−

 
− − 

  
−

= −

∫ ∫

∫
(32) 

The second integral in the left-hand side of Eq. (32) 
vanishes, while the first one and that of the right 
hand side simplify to the functions evaluated at 

'ξ ξ= ; then we have 

 
'

2 1 / 2

'

( ')
( 1)

( ', ')
m

m m

dg Tm
d a B

ξ

ξ

η
ξ

ξ ξ η

+

−

− = −  (33) 

Assuming that 
 ( ', ') ' ( ') ( ')m m mB B Tξ η ξ η= , (34) 
and considering Eq. (31), we can rewrite Eq. (33) 
as 

 

2 1/ 2 2 1/ 2( ' 1) ' ( ') ( ' 1) ' ( ')
1
' ( ')

m m

m m

AS BT

a B

ξ ξ ξ ξ

ξ

− − − =

−
(35) 

But the continuity of Green’s function puts the 
condition 

 
( ')

( ') ( ')
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m
m m

m

TAAS BT
B S

ξ
ξ ξ

ξ
= ⇒ = ; (36) 

then, from Eq. (35), 
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( ' 1) ( ') ' ( ')
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1 ,
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m
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m

m m

S
B T T

S

a B

ξ
ξ ξ ξ

ξ

ξ

 
− − = 

 

−

  

or 

 2 1/ 2 ( ')
( ' 1) { , }

' ( ')
m

m m
m m

S
BW S T

a B
ξ

ξ
ξ

− = −  (37) 

where { , }m mW S T  is the Wronskian between these 
pair of functions, and is precisely 

 2 1/ 2

1{ , } ;
( ' 1)m mW S T
ξ

= −
−

 (38) 

then, the coefficient of the 'mB  is 

 
( ') ( ')

' ( ') ' ,m m
m m

m m

S T
BB AB

a a
ξ ξ

ξ = ⇒ =  (39) 

when we use Eq. (36). With these factors we can 
construct the functions for the regions above and 
below 'ξ , i.e. 
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( ') ' ( ')

( ')
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m
m m

m

m
m m

m

T
g AB

a
S
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a

ξ
ξ ξ

ξ
ξ ξ

+

−

= =

= =
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Finally, we arrive to the expression for Green’s 
function using Eqs. (27), (34) and (40), to have 
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( , ') ,m m m

m m

T T f
G

a
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=

= ∑ρ ρ  (41) 

where 
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T S
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and  

 
, 0

, 0
2

m

m
a

m

π
π

=
= 

≠

 (43) 

This function has the required properties and the 
condition of being symmetrical respect to the 
exchange between variables. 
 Using Eq. (3) and (41), we obtain an 
expression for the Coulomb potential: 

 
0

2 ( ) ( ') ( , ')1 exp
| ' |

m m m

m m

T T f
a

π η η ξ ξ∞

=

 
=  −  
∏ρ ρ

(44) 

This form of the Coulomb potential can be 
implemented in a numerical approach. 
 
 
5 Conclusion 
In this communication we have obtained the 
general solution of Laplace equation and its 
corresponding Green’s Function in elliptic 
coordinates. In addition, a representation of the 
two-dimensional Coulomb potential was given. The 
reported expressions for these functions can be 
used to study an interesting class of two-
dimensional problems which range from purely 
electrostatic to  actual solid state physics problems. 
In the former case, we can mention, for instance, 
the boundary-value problem of an elliptic 
conducting cylinder, with a given potential or 
surface charge, and a charged line; in the latter, the 
study of hydrogenic impurities in bidimensional 
nanostructured quantum dots of elliptic shape. 
 As a collateral result, the solution of the 
Chebyshev differential equation in [1,∞) was 
constructed using the Frobenius method, which 
allowed us to define the Second Chebyshev 
Functions, and to construct both the Green’s 
function and the Coulomb potential in this 
coordinate system. 
 The formalism followed here-in to obtain 
these results can be extended to any two-



dimensional coordinate system in which the 
Laplace equation is separable or, at least, partially 
separable. 
 Work is in progress to apply some of the 
results to specific systems and will be published 
elsewhere. 
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Appendix 
The Chebyshev’s differential equation outside the 
[-1, 1] interval can be expressed as follows: 

 
2

2 2
2( 1) ( ) 0d H d H n H

dd
ξ ξ ξ

ξξ
− + − =  (45) 

where, H  has a removable singularity in 1=ξ  
and is regular at ∞=ξ . In order to find a solution, 
we will use the Frobenius method; in doing so, we 
suggest the following form for the function  

 
0

( ) k l
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=
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Then the first and second derivatives will be 
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and 
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Making the substitution of those expressions in Eq. 
(45), we will have 
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i.e.,  
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After replacing the index in the second summation 
( 2−→ ll ), while we simplify the first one, we 
will obtain 
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and from it, the recurrence relations for the 
coefficients will appear: 
 2 2

0 ( ) 0a k n− =  (52) 
 2 2

1[( 1) ] 0a k n− − − =  (53) 
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2[( ) ] ( 2)( 1)
for 2

l la k l n k l k l a
l
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(54) 

From the secular equation (52) we will find the 
allowed values of k; if we assume that 
 2 2

0 10, 0 then 0a a k n≠ = − = ∴ 
 k n= ±  (55) 



But the requirement for the function ( )H ξ  to 
vanish as ξ →∞ , makes the powers to be 
considered strictly negative; thus, 
 , with 0k n n= − > . (56) 
The recurrence relation (54) for the case 2l ≥  
(even) and condition (56) will give 
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( 2)( 1) ,

( 2 )l l
n l n la a

l l n− − +

+ − + −
=

+
 (57) 

a recurrence relation between coefficients that will 
allow us to find all coefficients as a function of 0a  
that we assumed different from zero. In 
consequence, 

 
2 0 0

0

( 1) ( 1)
2(2 2) 2 2( 1)

,
2 2

n n n na a a
n n

n a

−

+ +
= =

+ ⋅ +

=
⋅

 (58) 

 
4 2 0

02

( 2)( 3) ( 2)( 3)
4(4 2 ) 2 2 4 2( 2)

( 3) ,
2 4 2

n n n n na a a
n n

n n a

− −

+ + + +
= =

+ ⋅ ⋅ ⋅ +
+

=
⋅ ⋅

(59) 

 

6 4

03

03

( 4)( 5)
6(2 6)

( 3)( 4)( 5)
2 6 4 2( 3)

( 4)( 5)
2 6!!

n na a
n

n n n n a
n

n n n a

− −

+ +
=

+
+ + +

=
⋅ ⋅ ⋅ +
+ +

=

 (60) 

Continuing this way, we will derive a compact 
expression for the coefficients, 
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Functions of well-defined parity will then be built 
with the aid of these coefficients: 

 

2 1

21
0 2

1

( )
( ) ,

2 !

l

n n ls l
n l

l

n s
H a n

l
ξ ξ ξ

−

∞
± − − −= +

=

 
+ 

 = + ⋅
 
 
 

∏
∑ (62) 

where +  stands for n even and −  for n odd. In the 
special case where n = 0, the function 0 ( )H ξ  is 
solution to the differential equation 

 2 1/ 2 2 1/ 2 0 ( )
( 1) ( 1) 0,

dHd
d d

ξ
ξ ξ

ξ ξ
− − =  (63) 

where we have put Eq. (45) in self-adjoint form; 
this can be solved by direct integration, and  yields 
the function 

 ( )2
0 ( ) ln 1H Cξ ξ ξ= + −  (64) 

We call then this set of functions the Chebyshev 
functions of 2nd Class that are solution to Eq. (45), 
and are defined by 
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In Figs. 1 through 4 we show graphs of those 
functions for values of the index 0,1, 2, , 6n =  

 
Fig. 1. Graph for the Chebyshev function of 2nd 
class, 0 ( )S ξ . 

Fig. 2. Graphs for the Chebyshev functions of 2nd 
class for 1, 2n = .  



 
Fig. 3. Graphs for the Chebyshev functions of 2nd 
class for 3, 4n = . 

 Fig. 4. Graphs for the Chebyshev functions of 2nd 
class for 5,6n = . 
 
 Finally, we consider necessary to point out 
that this method to obtain Chebyshev Functions of 
2nd class is not unique; an alternative way to build 
these functions would involve the direct evaluation 
form the Wronskian and the Chebyshev 
polynomials of 1st class as discussed by Arfken and 
Weber for the Legendre polynomials [7].  
 The closed form of those Chebyshev 
Functions of 2nd class would be expressed as 
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1
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n

dxS T A B
x T x
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∫ (66) 

with nA  a constant to be determined and the 
)(xTn , Chebyshev polynomials, evaluated in the 

interval of interest. The problem with this method 
is that we have to calculate them one by one. As an 
illustration, the three first ones are the following: 
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 (67) 

Both representations are compatible when 
calculated for 1ξ ε> + , but the series form of 
functions ( )nS ξ  is easiest to implement in a 
numerical calculation as that of Green’s function on 
elliptic coordinates. 
 
 


