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Abstract: - Frequency estimation of complex exponentials using the interpolated Fourier spectrum is analyzed. 
Data is categorized into two types: phase relationship between components – random/fixed phase difference; 
and availability of data – single-shot/continuous.  When phase difference between exponentials is random the 
bias component, from interaction of secondary sidelobes, itself becomes random. This translation of bias to 
variance has considerable implications when choosing effective window functions in conjunction with 
averaging procedures to minimize mean square error. Optimal methods are identified for each type of data. 
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1   Introduction 
Frequency estimation of multiple complex 
exponentials continues to receive considerable 
attention in the signal processing literature. Non-
parametric, Fourier based techniques have a long 
history and are commonly used in a wide range of 
applications. 
    Estimation of a single complex exponential is 
performed adequately by non-parametric techniques 
under the assumption of an integer number of cycles 
within the data set or a large number of periods. 
These problems are overcome by the use of 
interpolation of the spectral values surrounding the 
frequency of interest, and the optimal performance, 
given by the Cramér-Rao bound (CRB), is achieved. 
However, the presence of additional signals causes 
problems [1]. Sidelobes, from spectral leakage of 
secondary components, interfere with the location of 
the primary main-lobe; this is associated with a 
frequency estimation bias [3], the magnitude of 
which is a function of frequency separation. 
Judicious use of window functions reduces the 
influence of sidelobes at the expense of main-lobe 
width, resulting in the common bias-variance trade-
off. However, resolution is severely affected. 
     Resolution is a source of advantage in parametric 
techniques [2]. Use of a pre-defined model achieves 
good estimation accuracy, whilst relaxation of the 
non-parametric technique assumptions gives 
superior distinction between two frequencies. 
However, computational burden is significantly 
higher for high-order model-based techniques. 
   A range of Fourier based procedures are available 
for many applications. The eventual choice of 
method depends upon such parameters as SNR, 

frequency separation and data length. This paper 
examines the performance of methods based on the 
discrete Fourier transform (DFT), shows how bias 
and variance of frequency estimation are linked and 
establishes the optimal method under a range of 
conditions with judicious use of averaging and 
windowing. It is shown how the optimal method 
depends upon signal phase properties and the 
availability of data. 
 
 
2   Sources of estimation error 
The time domain description of multiple complex 
exponentials is: 
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where Ak, fk and φk denote amplitude, frequency and 
phase of the kth signal, w(t) is complex white 
Gaussian additive noise of variance σ2 and tm is 
signal length. 
     
2.1 Maximum likelihood estimation 
It is well known that Fourier methods give the 
maximum likelihood frequency estimate [4] in the 
case of zero bias and zero leakage.  
    For K = 1, the first of these conditions is true 
when the DFT is used with a complex exponential. 
In the case of a single sinusoid the negative 
spectrum introduces a bias to the positive spectrum 
and frequency estimate, but use of complex 
exponentials allows significant mathematical 
simplification and zero bias [5]. If K > 1 bias is 



introduced by secondary sidelobes; this case is dealt 
with in section 2.2. 
     The second condition becomes redundant, if       
K = 1, through the use of frequency domain 
interpolation of the spectral values around the 
frequency of interest. Many such techniques are 
available [6], [7] and relative performance 
difference between methods is often minimal. The 
mean square error then reduces to the estimation 
variance and is given by the Cramér-Rao bound [7]: 
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where fs is the sampling frequency, N the data length 
and ρ the SNR, A2/σ2. This lower bound is achieved 
for all SNR > SNRc, the cut-off point at which it 
becomes impossible to reliably distinguish signal 
peaks from noise spikes in the spectrum [8]. 
    However, deviation from the lower bound occurs 
when a non-rectangular window function is used on 
the time domain data. Typically, a Bartlett window 
will increase estimation standard deviation by 1.25 
and a Parzen window by a factor 2. Fig. 1 shows the 
CRB is achieved using the Boxcar window for   
SNR > - 5 dB; use of other functions gives lower 
performance. 
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Fig. 1 – Deviation from the Cramér-
Rao bound occurs with windowing. 

 
 
2.2 Bias effect of additional complex signals 
The spectrum of a time-limited complex exponential 
is given by the frequency shifted and scaled 

ff /)sin(  function. Consider the situation when 
only one frequency is desired and the additional, 
spurious signals can be treated as unwanted 

narrowband noise. To establish the bias effect, of a 
spurious or secondary component of frequency f2, 
on the frequency of interest, f1, and how the effect 
varies with window function [9], it is useful to 
consider the simple cases of Boxcar and Bartlett 
functions, the spectra of which are: 
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where τ is the data length in the first case and half 
the data length in the second. 
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Fig. 2 – Bartlett sidelobes have lower 

magnitude and larger period. 

 
The sidelobes of signal 2 introduce a bias to the 
spectral peak of signal 1; the magnitude of the 
frequency shift depends on the amplitude of the 
sidelobes at f1, found from eqns. 3 & 4.  
    This leads to the familiar trade-off between bias 
and variance. A noisy signal, with well separated 
frequencies, will yield lower errors with a 
rectangular window. However, closely spaced 
exponentials, with high SNR, require the use of 
more complex time domain functions. Fig. 2 
illustrates the impact of spurious sidelobes on the 
main-lobe with 3.1/ 12 =ff , 1/ 12 =AA  and 

µs20=t . The impact of additional signals is 
reduced when the data is windowed with a Bartlett 
function. The combined spectrum is not shown for 
reasons of clarity and although the resultant bias is 
small compared to sidelobe period the error is 
significant for many applications. 



3   Minimizing estimation error 
In order to optimize the frequency estimation 
procedure it is useful to measure the estimation error 
over a large number of estimations, N. A suitable 
measure is the root mean square error: 
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where the bias, B, is 
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and the variance is given by 
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where nfp  is the nth frequency estimate. 
 
3.1 Introduction of random relative phase 
The phase coherency between spectrum 1 and 
sidelobes 2 is found from the ratio of frequency 
separation, ∆f21 = f2  –  f1, and the sidelobe period, 
2/τ: 
 

211 f∆= πτθ .                          (8) 
 
Note that in Fig. 2 the sidelobes are out of phase 
with the main-lobe, hence the slopes are maximized 
and the effect on main-lobe position is severe. 
However, eqns. 3 & 4 contain no phase information, 
so the effect of relative phase between the signals,  
θ2 = φ2 – φ1, must be included in the combined 
expression: 
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which is valid for frequency values surrounding the 
main-lobe and when spurious frequencies are higher. 
It is useful to interpret this equation. Spectral phase, 
θ1, determines the potential magnitude of the 
combined spectrum due to the interaction of 
spurious sidelobes and relative phase, θ2, determines 
the actual magnitude, which varies as cos (θ2). 
    Fig. 3 shows the impact of spurious sidelobes on 
the frequency of interest. Frequency separation and 

relative phase is varied under zero noise conditions. 
From this graph the importance of phase is obvious. 
As phase moves through one period, the bias moves 
through its full range. In fact, return to eqn. 1 and 
impose a uniform distribution on φk, such that       
∆φ  = φ2  – φ1 is uniformly distributed: 0 < ∆φ < 2π, 
and the bias at a given frequency separation 
becomes random. 
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Fig. 3 – Bias changes periodically 
with ∆f and θ, with bias being higher 

at small frequency separations. 

 
Further, impose random signal frequencies such that 
each frequency deviates through a range larger than 
the sidelobe period, 2/τ, then the zero noise bias can 
be translated into standard deviation. 
 
3.2 Theory linking bias with variance 
From the definition of variance, eqn. 7, it is possible 
to predict random-phase frequency estimation 
standard deviation arising from constant-phase bias. 
The bias values represent an envelope of possible 
estimation errors over many samples, hence the 
introduction of random phase will change the 
estimation error according to cos (θ2). The standard 
deviation is found by multiplying the bias envelope 
by the root mean square value of cos2(θ2): 
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Fig. 4 shows the bias-induced variance is linked to 
zero-phase bias as expected. 
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Fig. 4 – Theoretical values of random 

phase variance are confirmed with 
simulation. 

 
The bias-induced variance remains a function of 
frequency separation and relative phase, but the 
magnitude of this effect is smaller with non-
rectangular functions. Fig. 5 compares Boxcar, 
Bartlett and Parzen windows using theory and 
simulation. The optimal choice of function depends 
on frequency separation. Closely spaced frequencies 
give lower bias-induced variance with a rectangular 
window whereas estimation of widely spaced 
frequencies is improved by the Parzen function. The 
periodic nature of error with ∆f arises from 
secondary sidelobes. The Boxcar sidelobes have 
double the frequency of Bartlett sidelobes, and the 
Parzen is shown to have a broader main-lobe. 
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Fig. 5 – Choice of window function 
depends on frequency separation. 

3.3 Improving RMSE through averaging 
All frequency estimation applications can be broadly 
categorized as belonging to one of two groups:       

1) limited data length available requiring a one-shot 
approach, and 2) continuous data stream enabling 
averaging.  
    Bias and variance reduction must be performed by 
choosing the optimal estimation procedure. If the 
application falls within category 1 then for an 
unbiased estimate, the variance performance must 
lie close to the CRB. 
    However, for applications falling within category 
2, averaging can be used to reduce the estimation 
variance according to eqn. 11. 
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where n is the number of frequency estimates used. 
Variance tends to zero hence the RMSE is limited to 
a floor set by the bias. This occurs when the relative 
frequency and phase of complex exponentials is 
fixed and bias does not vary between estimates. 
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Fig. 6 - Zero relative phase 

estimation. 

 
Fig. 6 illustrates that averaging reduces variance but 
not bias. Here, 12 / ff  is uniformly distributed 
between 1.2 and 1.4, 10/ 12 =AA  and µs20=t . 
The bias sets a lower bound on the RMSE,       
RMSE ≥  B, and is approached as n increases: 
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but, if B>σ , RMSE approaches σ as n  approaches 
zero: 
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The choice of window function then simply reduces 
to determining the urgency of estimation and 
working with the trade-off between RMSE and n. 
    Sections 3.1 and 3.2 developed theory behind 
translation of bias to variance. When relative phase 
difference is itself a random variable, eqn. 11 
changes to: 
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hence RMSE, and not just variance, can be reduced 
to an arbitrarily small value.  
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Fig. 7 – The criteria for window 
function choice is changed when 

relative phase is random. 

 
Fig. 7 shows RMSE variation with noise induced 
variance when the parameter values are the same as 
for Fig. 6. At high SNR the impact of bias-induced 
variance is minimal and a Boxcar function offers 
optimal performance. At low SNR, bias-induced 
variance dominates and a Parzen function is 
preferred. 
 
 
4   Conclusion 
Many frequency estimation problems involve a 
single frequency corrupted by Gaussian noise and 
spurious frequencies. The choice of estimation 
procedure is a function of data parameters, 
particularly the rate of variation of relative phase 
between complex exponentials. With fixed phase, 
frequency estimation performance quickly reaches a 
lower bound set by the sidelobe-induced bias as 
averaging is performed. If the application enables 
further data collection, it becomes optimal to use a 
powerful bias-reduction window function, such as 

Parzen, to reduce RMSE. Averaging compensates 
for the increase in noise dependent variance. 
    When components have random phase, bias is 
translated to variance, hence averaging continues to 
reduce RMSE. The choice of window function then 
reduces to an estimate of the SNR. When data 
quality is high, noise-induced variance is small, 
bias-induced variance dominates and a suitable 
window function is Parzen. However, if SNR is 
poor, narrow main-lobe width is required and a 
Boxcar function is optimal. 
    This work has emphasized the importance of 
understanding the available data set. Optimal 
methods have been suggested for data sets classified 
by 1) feasibility of averaging and 2) nature of phase 
relationship. 
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