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Abstract: - We investigate the role of global mixing in epidemic processes. We first construct a simplified model of the SIR
epidemic using a realistic population distribution. Using this model, we examine possible mechanisms for destruction of spatial
correlations, in an attempt to produce correlation curves similar to those reported recently for real epidemiological data. We find
that introduction of a long-range interaction destroys spatial correlations very easily if neighbourhood sizes are homogeneous.
For inhomogeneous neighbourhoods, very strong long-range coupling is required to achieve a similar effect.
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1 Introduction
The main mechanism of transmission of infectious dis-
eases is usually the direct contact of susceptible individ-
uals with an infective one. Since this contact is normally
highly localized in space, it is quite natural to expect that
space should play an important role in dynamics of in-
fectious diseases. There is a clear evidence that some in-
fectious diseases in animal populations spread geographi-
cally. A well-known example is the spatial advance of fox
rabies in Europe, which seems to have started in Poland
in 1939, and has moved steadily westward at a rate of
30-60 km per year [1]. Similar patterns of spread have
been observed in the epizootic of rabies among raccoons
in eastern United States and Canada. It started in 1977
in an area on the West Virginia-Virginia border and has
moved at a rate of 30-40 km per year [2].

In human populations, the spread of the Black Death in
Europe from 1347–1350 is the most often quoted example
[3]. Introduced to Italy in 1347, it spread up through Eu-
rope at 300-500 km per year. For other diseases the spatial
effects appear to be somewhat less pronounced. For ex-
ample, even though in the past influenza pandemics used
to reveal spatial patterns [4], there is a very strong evi-
dence that in recent times the spread of influenza is statis-

tically uniform in space. Bonabeau et al. [5] examined the
spatial correlation structure of the influenza epidemic for
the epidemic of winter 1994–5, using high-quality data
collected by a large network of general practitioners in
France. They found that at least for influenza epidemics,
space does not play any important role, and the spread of
the disease is dominated by the mean-field dynamics.

The goal of this paper is to investigate the role of global
mixing in the spread of epidemics. We first construct a
simplified model of the SIR epidemic based on realistic
population distribution. Using this model, we investigate
possible mechanisms for destruction of spatial correla-
tions, trying to achieve similar effects as those reported
by Bonabeau et al. [5].

2 Description of the model
In order to study the influence of global mixing on the
spread of epidemics we use a model based on interact-
ing particle systems, in the spirit of our earlier work
[6, 7]. Models of this type take various forms, rang-
ing from stochastic interacting particle models [8] to
models based on cellular automata or coupled map lat-
tices [9, 10, 11, 12].

Consider a set of N individuals, labelled with consecu-
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tive integers 1, 2 . . . , N . This set of labels will be denoted
by L. We assume that each individual can be in three dis-
tinct states, susceptible (S), infected (I) or removed (R).
There are two ways to change the state of a single indi-
vidual. A susceptible individual who comes in direct con-
tact with an infected individual can become infected with
probability p. Infected individual can become removed
with probability q. The precise description of the model
is as follows.

The state of the i-th individual at the time step k will
be described by a Boolean vector variable η(i, k) =
〈ηS(i, k), ηI (i, k), ηR(i, k)〉, where ητ (i, t) = 1 if the i-
th individual is in the state τ , where τ ∈ {S, I,R}, and
ητ (i, k) = 0 otherwise. We assume that i = 1, 2, . . . , N
and k ∈ N, i.e., the time is discrete. Hence, the vector
η(i, k) can be in one of the following states: η(i, k) =
〈1, 0, 0〉 for a susceptible individual, η(i, k) = 〈0, 1, 0〉
for an infected individual, and η(i, k) = 〈0, 0, 1〉 for a
removed individual. No other values of η(i, k) are possi-
ble in SIR epidemic model. In SIR model an individual
can only be at one state at any give time and transitions
occur only from susceptible to infected and from infected
to removed. The removed does not become susceptible
or infected again in SIR model. Therefore, SIR model is
suitable for studying spread of influenza in the same sea-
son because the same type of influenza virus can infect an
individual only once and once the individual is recovered
from the flu it becomes immune to this type of virus.

We further assume that at the time step k the i-th indi-
vidual can interact with individuals from a subset of L, to
be denoted by C(i, k). Using this notation, we obtain

ηS(i, k + 1) = ηS(i, k)
∏

j∈C(i,k)

Xi,j,kηI(j, k), (1)

ηI(i, k + 1) = ηS(i, k)
(

1 −
∏

j∈C(i,k)

Xi,j,kηI(j, k)
)

+ηI(i, k)Y i, (2)

ηR(i, k + 1) = ηR(i, k) + ηI(i, k)Yi, (3)

where Xi,j,k is a set of iid Boolean random variables such
that Pr(Xi,j,k = 1) = p, Pr(Xi,j,k = 0) = 1− p, and Yi

is a set of iid Boolean variables such that Pr(Yi = 1) = q,
Pr(Yi = 0) = 1 − q.

Note that Xi,j,k = 1 means that the disease has been
transmitted from the j-th individual to the i-th individ-
ual at time step k. If at least one of the random vari-

ables Xi,j,k in the product
∏

j∈C(i,k) Xi,j,kηI(j, k) takes
the value 1, then the product becomes 0, and we obtain
ηS(i, k+1) = 0, meaning that the i-th individual changes
its state from susceptible to infected.

The crucial feature of this model is the set C(i, k), rep-
resenting all individuals with whom the i-th individual
may have interacted at the time step k. In a large human
population, it is almost impossible to know C(i, k) for
each individual, so we make some simplifying assump-
tions. First of all, it is clear that the spatial distribution of
individuals must be reflected in the structure of C(i, k).
We have decided to use realistic population distribution
for Southern and Central Ontario using census data ob-
tained from Statistic Canada [13, 14]. The selected region
is mostly surrounded by waters of Great Lakes, forming
natural boundary conditions. The data set specifies popu-
lation of so called “dissemination areas” , i.e., small areas
composed of one or more neighbouring street blocks. We
had access to longitude and latitude data with accuracy of
roughly 0.01◦, hence some dissemination areas in densely
populated regions had the same geographical coordinates.
We combined these dissemination areas into larger units,
to be called “modified dissemination areas” (MDA).

We will now define the set C(i, k) using the concept
of MDAs. This set will be characterized by two posi-
tive integers nc and nf . Let us label all MDAs in the
region we are considering by integers m = 1, 2, . . . ,M ,
where in our case M = 5069. For an individual i be-
longing to the m-th MDA, the set C(i, k) consists of all
individuals belonging to the m-th MDA, plus all individ-
uals belonging to nc MDAs nearest to m, plus nf MDAs
randomly selected among all remaining MDAs. While
the “close neighbours”, i.e., nc nearest MDAs, will not
change with time, the “far neighbours”, i.e., nf randomly
selected MDAs, will be randomly reselected at each time
step.

3 Mean Field
The model described in the previous section involves
strong spatial coupling between individuals. Before we
describe consequences of this fact, we will first construct
a set of equations which approximate dynamics of the
model under the assumption of “perfect mixing”, i.e., ne-
glecting the spatial coupling.

The state of the system described by eq. (1–3) at time
step k is determined by the states of all individuals and is
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described by the Boolean random field η(k) = {η(i, k) :
i = 0, . . . , N}. The Boolean field {η(k) : i = 0, 1, 2 . . .}
is then a Markov stochastic process.

By taking the expectation Eη(0) of this Markov pro-
cess when the initial configuration is η(0), i.e. ρτ (i, k) =
Eη(0) [ητ (i, k)] for τ ∈ {S, I,R}, we get the probabil-
ities of the i-th individual being susceptible, infected or
removed at time k.

In the mean field approximation, we assume indepen-
dence of random variables ητ (i, k). Hence, the expected
value of a product of such variables is equal to the prod-
uct of expected values. Under this assumption, taking ex-
pected values of both sides of equations (1–3) we obtain

ρS(i, k + 1) = ρS(i, k)
∏

j∈C(i,k)

(1 − pρI(j, k)), (4)

ρI(i, k + 1) = ρS(i, k)
(

1 −
∏

j∈C(i,k)

(1 − pρI(j, k))
)

+ρI(i, k)(1 − q), (5)

ρR(i, k + 1) = ρR(i, k) + ρI(i, k)q. (6)

Since mean field approximations neglect spatial correla-
tions, we further assume that ρτ (i, k) is independent of i,
i.e., ρτ (i, k) = ρτ (k). Even though sets C(i, k) have dif-
ferent number of elements for different i and k, for the
purpose of this approximate derivation we assume that
they all have the same number of elements (1+nc+nf)D,
where D is the average MDA population. All these as-
sumptions lead to

ρS(k + 1) = ρS(k)(1 − pρI(k))(1+nc+nf )D, (7)

ρI(k + 1) = ρI(k) + ρS(k)

−ρS(k)(1 − pρI(k))(1+nc+nf )D − qρI(k), (8)

ρR(k + 1) = ρR(k) + qρI(k). (9)

The third equation in the above set is obviously redundant,
since ρS(k) + ρI(k) + ρR(k) = 1.

Similarly to the classical Kermack-McKendrick model,
mean field equations (7)-(9) exhibit a threshold phe-
nomenon. Depending on the choice of parameters, we
can have ρI(k) < ρI(0) for all k, meaning that the in-
fection dies out, or we can have an outbreak of the epi-
demic, meaning that ρI(k) > ρI(0) for some k. The
intermediate scenario of constant ρI(k) will occur when
ρI(k) = ρI(0), i.e., when

ρS(0) − ρS(0)(1 − pρI(0))
(1+nc+nf )D − qρI(0) = 0.

(10)

Assuming that initially there are no individuals in the
removed group, we have ρS(0) = 1 − ρI(0). Fur-
thermore, if (1 + nc + nf )D is large, we can assume
(1 − pρI(0))

(1+nc+nf )D ≈ 1 − p(1 + nc + nf )DρI(0).
Solving eq. (10) for q under these assumptions we obtain

q =
(

1 − ρI(0)
)

(1 + nc + nf )Dp. (11)

Thus, assuming the mean field approximation the epi-

demic can occur only if q <
(

1−ρI(0)
)

(1+nc+nf )Dp.

4 Dynamics of the model
The mean-field equations derived in the previous section
depend only on the sum of nc and nf . This means, for ex-
ample, that the model with nc = 5, nf = 0 and the model
with nc = 0, nf = 5 will have the same mean field equa-
tions. However, the actual dynamics of these two models
will be very different. Depending on the relative size of
nf and nc, the epidemic may propagate or die out, as we
will see in the following analysis.

Let Nτ (k) be the expected value of the total number of
individuals belonging to class τ ∈ {S, I,R},

Nτ (k) = Eη(0)

(

N
∑

i=1

ητ (i, k))

)

.

We say that an epidemic occurs if there exists k > 0 such
that NI(k) > NI(0). For fixed p, nf and nc, there exists
a threshold value of q to be denoted by qc, such that for
each q < qc an epidemic occurs, and for q > qc it does not
occur. Obviously qc depends on p, and this is illustrated in
Figure 1, which shows graphs of qc as a function of p for
several different values of nf and nc, where nf +nc = 12.
The graphs were obtained numerically by direct computer
simulations of the model. The condition nf + nc = 12
means that the size of the neighbourhood is kept constant,
but the proportion of “far neighbours” (represented by nf )
to “close neighbours” (represented by nc) varies. Figure 1
also shows the mean-field line given by eq. (11).

5 Spatial correlations
As demonstrated in the previous section, the relative size
of parameters nf and nc controls dynamics of the epi-
demic process in a significant way, shifting the critical
line up or down. When nc = 0, i.e., when there are
no “far neighbours”, the epidemic process has a strictly
local nature, and we can observe well defined epidemic
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Figure 1: Graphs of critical lines for nf = 5, 9, 11, and 12. In all
cases, nc = 12 − nf . Solid line represents mean field approximation.

fronts propagating in space. This is illustrated in Figure
2, where the epidemic starts at k = 0 at a single centrally
located MDA (Figure 2a), with nc = 12, nf = 0. Modi-
fied dissemination areas are represented by pixels colored
according to the density of individuals of a given type,
such that the red component of the color represents den-
sity of infected individuals, green density of susceptibles,
and blue density of removed individuals. By density we
mean the number of individuals of a given type divided by
the population of the MDA. Epidemic wave propagating
outwards can be clearly seen in subsequent snapshots (c),
(d) and (e). The front is mostly red, meaning that the bulk
of infected individuals is located at the front. After these
individuals gradually recover, the center becomes blue.

Let us now consider slightly modified parameters, tak-
ing nc = 11, nf = 1. This means that we now replace
one “close” MDA by one “far” MDA. This does not seem
to be a significant change, yet the effect of this change
is quite spectacular. As we can see in Figure 3, the epi-
demic propagates much faster, and there are no visible
fronts. The disease quickly spreads over the entire region,
and large metropolitan areas become red in a short time,
as shown in Figure 3(b). This suggests that infected indi-
viduals are more likely to be found in densely populated
regions, and their distribution is dictated by the population
distribution – unlike in Figure 2, where infected individu-
als are to be found mainly at the propagating front.

In order to quantify this observation, we use a spatial
correlation function for densities of infected individuals

Figure 2: Example of a propagating epidemic front for nc = 12,
nf = 0, p = 0.00005, q = 0.05, with (a) k = 0, (b) k = 25, (c) k =
50 and (d) k = 75. Modified dissemination areas are represented by
pixels colored according to density of individuals of a given type, such
that the red component represents density if infected, green density of
susceptibles, and blue density of removed individuals.

defined as

h(r, k) = 〈ηI(i, k)ηI (j, k)〉r≤d(i,j)≤r+∆r ,

where d(i, j) is the distance between i-th and j-th indi-
vidual, and < · > represents averaging over all pairs i, j

satisfying condition r ≤ d(i, j) ≤ r + ∆r. In subsequent
considerations we will take ∆r = 1km. The distance be-
tween two individuals is defined as the distance between
MDAs to which they belong.

Consider now a specific example of the epidemic pro-
cess described by eq. (1-3), where p = 0.000015, q =
0.2, and nc + nf = 12. For this choice of parameters
epidemics always occur as long as nf > 0. Figure 4
shows graphs of the correlation functions h(r, kmax) at
the peak of each epidemic, so that kmax is the time step
at which the number of infected individuals achieves its
maximum value. An interesting phenomenon can be ob-
served in that figure: while the increase of the proportion
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Figure 3: Development of the epidemic for nc = 11, nf = 1, p =
0.00005, q = 0.05, with (a) k = 0, (b) k = 15, (c) k = 25 and (d)
k = 50. Colour coding is the same as in the previous figure.

of “far” neighbours does destroy spatial correlations, one
needs very high proportion of “far”neighbours to make
the correlation curve completely flat. In [5] it is reported
that for influenza epidemics h(r, kmax) ∼ r0.04±0.03. If
we fit h(r, kmax) = Crα curve to the correlation data
shown in Figure 4a, we obtain values of the exponent α

as shown in Table 1. In order to obtain α of compara-
bly small magnitude as reported in [5], one would have to
take nf equal to at least 10, meaning that 77% of neigh-
bours would have to be “far neighbours”. In reality, this
would require that 77% of all individuals one interacted
with were not his/her neighbours, coworkers, etc., but in-
dividuals from randomly selected and possibly remote ge-
ographical regions. This is clearly at odds with our intu-
ition regarding social interactions, especially outside large
metropolitan areas. This prompted us to investigate fur-
ther and to find out what is responsible for this effect.

Upon closer examination of spatial patterns generated
in simulations of our model, we reached the conclusion
that the inhomogeneity of population sizes in neighbour-
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Figure 4: Graphs of the correlation function h(r, kmax) for different
values of nf , where p = 0.000015, q = 0.2, and nc + nf = 12.

nc nf α

11 1 -0.72 +/- 0.03
10 2 -0.45 +/- 0.02
9 3 -0.32 +/- 0.01
8 4 -0.27 +/- 0.01
7 5 -0.191 +/- 0.007
6 6 -0.179 +/- 0.009
5 7 -0.120 +/- 0.005
4 8 -0.115 +/- 0.006
3 9 -0.071 +/- 0.003
2 10 -0.057 +/- 0.002
1 11 -0.047 +/- 0.003

Table 1: Values of the exponent α obtained by fitting h(r, kmax) =
Crα to simulation data.

hoods C(i, k) makes spatial correlations so persistent.
Since different MDAs have different population sizes, we
expect that some individuals will have larger neighbour-
hood populations than others, and as a result they will
be more likely to get infected, even if the proportion of
infected individuals is the same in all MDAs. This will
build up clusters of infected individuals around populous
MDAs.

To test if this is indeed the factor responsible for strong
spatial correlations in our model, we replaced all MDA
population sizes with constant population size D, i.e., av-
erage MDA population size. As expected, graphs of the
correlation functions obtained in this case were are all es-
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sentially flat, with the exponent α close to zero even in the
case of nf = 1, when we obtained α = 0.023 ± 0.002.

6 Conclusions
As demonstrated in the previous section, spatial correla-
tions are difficult to destroy if neighbourhood sizes are
inhomogeneous. Very strong mixing, i.e., very signifi-
cant amount of long-range interactions is required to ob-
tain flat correlations curves. On the other hand, for homo-
geneous neighbourhood sizes, even relatively small long-
range interaction immediately forces the process into the
perfect-mixing regime, resulting in the lack of spatial cor-
relations.

There is a strong evidence that in recent times epi-
demics of influenza do not produce significant spatial cor-
relations [5] in spite of the heterogeneity of the population
distribution. One can speculate that this must be due to
one of the following two factors: either most of our daily
interactons are long-ranged, or conversely, most interac-
tions are short-ranged, but the number of interactions per
unit time does not vary too greatly from individual to in-
dividual.

We suspect that the answer depends on the social and
economic structure of the underlying community or ad-
jacent communities. The first scenario applies to large
metropolitan areas and conurbations with a large number
of commuters, while the second scenario is more likely
for small communities without much interaction with the
outside word. The above considerations also indicate that
a more realistic model will have to separate two aspects
of the interaction. First of all, with how many individuals
does a given person interact with per unit time, e.g., per
day, and how is this number distributed? This could con-
ceivably be determined experimentally without much dif-
ficulty. The second aspect is much harder, though: from
what pool are these individuals chosen and how? While
an accurate answer to this question does not seem to be
possible, we hope to get at least some insight from anal-
ysis of travel and traffic data. This work is currently in
progress and will be presented elsewhere.
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[10] Boccara N. and Cheong K. Critical Behaviour of a Proba-
bilistic Automata Network SIS Model for the Spread of an
Infectious Disease in a Population of Moving Individuals.
J.Phys. A: Math. Gen., vol. 26, 1993, pp. 3707–3717.

[11] Duryea M., Caraco T., Gardner G., Maniatty W., and Szy-
manski B.K. Population dispersion and equilibrium infec-
tion frequency in a spatial epidemic. Physica D, vol. 132,
1999, pp. 511–519.

[12] Benyoussef A., Boccara N., Chakib H., and Ez-Zahraouy
H. Lattice three-species models of the spatial spread of
rabies among foxes. Int. J. Mod. Phys.C vol. 10, 1999,
pp. 1025–1038

[13] Statistics Canada. Dissemination Area Digital Carto-
graphic File. Statistics Canada, Geography Division, Ot-
tawa, ON, 2001.

[14] Statistics Canada. Profile of Age and Sex, for Canada,
Provinces, Territories, Census Divisions, Census Subdi-
visions, and Dissemination Areas, 2001 Census. Industry
Canada, Ottawa, ON, 2001.

6


