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Abstract:  The  extraction  of  fuzzy  association  rules  for  the  description  of  dependencies
and  interactions  from  large  data  sets  as  those  arising  in  gene  expression  data  analysis
applications  perplexes  very  difficult  combinatorial  problems  that  depend  heavily  on  the
size  of  these  sets.  The  paper  describes  a  two  stage  approach  to  the  problem  that  obtains
computat ionally  manageable  solutions.  The  first  stage  aims  to  cluster  transactions  that
more  probably  are  associated.  Thereafter,  the  second  stage,  the  fuzzy  association  rule
extraction  follows,  confronting  a significantly  reduced  problem.
The  clustering  phase  is  accomplished  by  means  of  a  Kernel  Supervised  Dynamic  Grid  Self-
Organized  Map  (KSDG- SOM) utilizing  the  mutual  informa tion  metric.  This  metric  allows
the  formation  of  data  clusters  that  maximize  the  mutual  informa tion  for  transactions  of
the  same  cluster  and  to  minimize  it  between  different  clusters.
Subsequently,  the  fuzzy  association  rules  are  extracted  locally  on  a  per  cluster  basis . The
paper  applies  the  techniques  for  mining  gene  expression  data.  
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1  Introduction

Recently,  the  discovery  of  association  rules  from databases  has  become  an  important  research  topic



[25 ,  34 ].  Although  traditionally  these  techniques
have  been  developed  for  commercial  applications,
nowadays  the  genomic  revolution  presents  another
promising  domain  for  their  exploitation.
The  whole  genome  studies  of  gene  expression  data
of  recent  years  produce  an  extraordinary  large
number  of  measuremen ts.  A  great  chalenge  is  to
uncover  dependencies  between  genes  from  these
measurements  by  computa tional  data  mining
techniques.  
The  extraction  of  association  rules  can  provide
useful  insight  to  some  aspects  of  the  interactions
between  genes  in  an  easily  readable  form  [36 ].
However,  a  main  difficulty  arises  from  the  extremely
large  size  of  whole  genome  gene  expression  data
sets  (and  of  many  other  data  sets  as  well).
The  present  work  attempts  to  cope  with  this
difficulty  by  a  two  step  divide - and- conquer
approach:

1) A  mutual  information  based  clustering
implemented  with  the  KSDG- SOM  model,  that
isolates  the  more  probably  related  genes  onto  the
same  clusters.

2) Fuzzy  association  rules  are  effectively  extracted
for  each  KSDG- SOM node.

An  important  criterion  that  we  impose  for  the
KSDG- SOM growing  phase,  is  the  minimization  of
the  number  of  genes  in  each  cluster  in  order  to
restrict  the  search  over  large  spaces.  Thereafter,  the
mutual  information  metric  with  the  provision  for
incorporating  a  priori  functional  classes  constructs
highly  appropriate  clusters  for  the  detection  of
fuzzy  association  rules.  

The  paper  proceeds  as  follows:  Section  2
summarizes  the  KSDG- SOM  algorithm,  on  which
with  a  few  modifications,  we  build  the  mutual
information  based  clustering  phase.  Then  at  section
3 we  describe  the  concept  of  the  mutual  information
distance  metric  and  its  utilization  for  the  formation
of  clusters.  The  next  section,  first  briefly  presents  a
background  on  association  rules.  Then  we  present
the  association  rule  extraction  algorithms,  that  are
applied  locally  for  each  KSDG- SOM formed  cluster.
Subsequently,  the  crisp  association  rule  extraction
framework  is  extended  to  the  fuzzy  domain.  Section
5 presents  and  discusses  the  results  obtained  from
this  two  phase  fuzzy  association  rule  extraction
frawework.  The  paper  concludes  with  hints  on  the
many  possible  directions  on  which  this  research  can
be  continued  and  extended.  

2  Summary  of  the  KSDG- SOM algorithm  

This  section  summarizes  the  Kernel  Based  Self-
Organizing  Map  (KSDG- SOM)  that  forms  the  basis  of
the  mutual  information  based  clustering  framework.
This  clustering  aims  to  separate  small  groups  of
related  patterns  which  the  association  rules
extraction  algorithm  will  focus  in  order  to  reveal
association  rules.  
Details  of  the  algorithms  of  the  KSDG- SOM approach
are  presented  in  [38 ].
The  standard  SOM  algorithm  has  a  number  of
properties,  which  render  it  to  a  candidate  of
particular  interest  as  a  basis  framework  for  building
more  flexible  and  advanced  algorithms  for  massive
data  analysis.  SOMs  can  be  implemented  easily,  are
fast,  robust  and  scale  well  to  large  data  sets.  They
allow  one  to  impose  partial  structure  on  the  clusters
and  facilitate  visualization  and  interpretation.  In  the
case  hierarchical   information  is  required,  it  can  be
implemented  on  top  of  SOM, as  in  [14 ].
Recently,  several  dynamically  extended  schemes  have
been  proposed  that  overcome  the  limitation  of  the
fixed  non- adaptable  architecture  of  the  SOM. Some
examples  are  the  Dynamic  Topology  Representing
structures  [15 ], the  Growing  Cell  Structures  [11 ,16 ],
Self- Organized  Tree  Algorithms  [17 ,8],  the  joint
entropy  maximization  approach  [18 ]  and  the
Adaptive  Resonance  Theory  [19 ,20 ].
The  KSDG- SOM  approach  has  some  similarities  to
these  dynamically  extended  schemes,  from  the  point
of  view  of  its  unsupervised  component.  However,  one
essential  difference  exists:  all  the  forementioned
schemes  are  purely  unsupervised,  lacking  a  design
for  the  incorporation  of  problem  domain  knowledge.
Instead,  the  KSDG- SOM focus  on  the  design  of  such
types  of  algorithms  that  aim  to  explore  effectively
existing  a  priori  supervised  class  labeling , for  multi -
class  and  possibly  multi - labeled  data.  The  multiple
labeling,  i.e.  the  possible  assignment  of  more  than
one  class  label  at  each  pattern,  perplexes  the
clustering  and  classification  tasks.  For  many
applications,  e.g.  the  gene  expression  analysis,  the
multiple  functional  labeling  of  patterns  is  the  rule
and  not  the  exception  (e.g.    most  genes  belong  to
more  than  one  functional  class).
Also,  in  contrast  to  the  complexity  of  some  of  these
schemes,  the  KSDG- SOM  is  based  on  simple
algorithms  that  through  the  restriction  of  growing  on
a rectangular  grid,  can  be  implemented  easily  and  the
training  of  the  models  is  very  efficient.  In  addition,
most  of  the  benefits  of  the  more  complex
alternatives  of  dynamical  extension  are  still  retained.
We call  the  proposed  model  KSDG- SOM from  Kernel



Supervised  Dynamic  Grid  SOM, since  it  is  a  model
trained  in  kernel  space  and  although  it  is  SOM based
it  tightly  integrates  unsupervised  and  supervised
learning  components.
As  a  kernel  the  Gaussian  one  is  used.  The  Gaussian
kernel  mapping  implements  more  elaborate  soft
class  separation  boundaries  than  the  hard
separation  onto  Voronoi  regions  obtained  by
evaluating  directly  at  the  input  space  the  inner
products  of  the  patterns  and  the  prototype  vectors.
As  with  other  kernel  methods  [35 ,39 ],  we  aim  to
exploit  a  nonlinear  transformation  of  the  input
space  onto  a  high- dimensional  feature  space.
Intuitively,  the  SOM  based  learning  constructs
Voronoi  regions  over  this  high- dimensional  space  in
which  the  extra  dimensions  enhance  the  possibilities
of  defining  more  elaborately  the  cluster  boundaries.
The  KSDG- SOM  has  been  designed  in  order  to
automatically  detect  the  appropriate  level  of
expansion ,  so  that  the  number  of  clusters  is
controlled  by  a  properly  defined  measure  of  the
algorithm  itself,  with  no  need  for  any  a  priori
specification.  This  is  quite  important  for  many  data
mining  applications  where  very  little  (or  nothing)
can  be  claimed  about  an  a  priori  estimate  of  the
number  of  clusters.  To  fullfill  the  needs  of  the
association  rule  extraction  framework  we  have
performed  slight  modifications  to  the  expansion
phase,  in  order  to  obtain  cluster  sizes  in  the  range
30  to  80  genes,  that  can  be  conveniently  handled  by
the  association  rule  extractor.
Details  on  the  design  and  implementa tion  of  KSDG-
SOM  algorithms  can  be  found  in  [38 ]. At  the  context
of  the  present  work,  we  augment  the  KSDG- SOM
with  powerful  mutual  information  based  distance
metrics.  These  metrics  automatically  yield  pattern
clusters  that  are  characterized  by  the   maximization
of  the  mutual  information  between  patterns  of  the
same  cluster  and  at  the  same  time  the  maximization
of  the  statistical  independence  between  genes  of
different  clusters .  In  addition,  the  main  advantages
of  the  KSDG- SOM model,  i.e.  the  dynamic  adaptable
growing  and  the  potentiality  to  account  for  the  a
priori  functional  information  are  still  retained.

3  Mutual  Information  

The  mutual  information  metric  has  the  capacity  to
measure  a  general  dependence  among  random
variables.  We  utilize  it  in  order  to  identify  sets  of
patterns  that  more  probably  are  associated.  The
outcome  is  that  the  extraction  of  fuzzy  association
rules  is  performed  on  a  much  smaller  space  making
the  final  problem  computationally  tractable  even  for

large  pattern  sets.  
The  entropy  of  a  pattern  is  a  measure  of  the
uncertainty  information  content  in  that  pattern.  For  a
random  vector  X  with  probability  distribution

P X=xi,i=1 ,,K
x  with  Kx  the  number  of

possible  values  of  X ,  the  Shannon  entropy   is
defined

H X =−∑
i=1

Kx
P X=xi⋅l nP X=xi

Higher  entropy  for  patterns  imply  more  uniform
distribution.  Similarly  the  joint  entropy  of  X and

Y  is  a  measure  of  the  total  uncertainty  contained

in X  and  Y . It  is  defined  as

H X ,Y =−∑
i= 1

K
x
∑
j=1

K
y
P X=xi,Y=yj⋅l nP X=xi,Y=yj

where  Kx,K y is  the  number  of  possible  values  of

X  and  Y respectively.  The  mutual  information

between  X  and  Y is  a  measure  of  information

about  X (or  Y ) contained  in  Y  (or  X ). It  is
given  by:

          

I X ,Y =H Y −H Y |X  =H X H Y −H X ,Y  =

∑
i= 1

N
x

∑
j= 1

N
y

P X=xi,Y=yi l n
P X=xi,Y=yj

P X =xiP Y=yj

(1)
The  probabilities  of  equation  (1)  can  be  estimated
with  the  empirical  counts  from  the  N   training
patterns  as

P X=xi,Y=yi≈
# xi,yj

N

P X=xi≈
# xi

N

P Y=yj≈
# yj

N
The  KSDG- SOM partitions  the  set  G of  patterns  into
k  disjoint  subsets  as  G=X 1∪X 2∪∪X k .
The  cost  function  that  the  KSDG- SOM  learning
minimizes  is  defined  as  the  sum  of  pair - wise  mutual
information  between  their  formed  clusters  over  all
the  possible  combinations,  i.e.,

cost(Part ition)=∑
i≠ j

I X i , X j 

where  Partition  denotes  a  particular  partition
scheme.  The  motivation  of  this  cost  function  is  to
derive  statistically  independent  clusters.  
This  optimization  is  performed  with  the  KSDG- SOM



learning  rules  with  the  mutual  information  as  the
distance  metric.These  rules  are  described  in  detail  in
[38 ].
We should  note  that  the  optimization  is  performed
by  the  dynamic  growing  algorithm  efficiently  but
approximately.  In  addition  the  cost  function  can
easily  account  for  a  supervised  bias  in  order  to  tend
keeping  patterns  with  a  priori  similar  functional
classes  together  onto  the  same  cluster.

4  Fuzzy  Association  Rules  

For  a data  set  D={t 1 , t 2 ,, t n }  with  attributes  A  and
fuzzy  sets  associated  with  each  attribute,  the
purpose  of  fuzzy  association  is  to  detect  interesting
and  potentially  useful  regularities.  These  regularities
are  expressed  in  terms  of  fuzzy  association  rules  of
the  form:  

if   P={a 1 ,,an }  is  V={f 1 ,, f m }  then

P '={a ' 1 ,,a ' n }  is  V '={f ' 1 ,, f ' m }

where  f i , f i
'  are  fuzzy  sets  related  to  attributes

a i ,a ' i  respectively  and  P ,P '  are  disjoint
itemsets  in  the  sense  that  they  do  not  share
common  attributes.  The  purpose  is  to  detect  the
interesting  rules,  i.e. those  that  have  enough  support
and  high  confidence  value.  
The  Apriori  algorithm  [1]  computes  frequent
itemsets  from  a  set  of  patterns  by  performing
multiple  iterations.  Each  such  iteration  involves:
● candidate  generation
● candidate  counting  and  selection

Exploring  the  knowledge  about  infrequent  itemsets,
obtained  from  the  previous  iterations,  the  algorithm
prunes  a  priori  those  candidate  itemsets  that  cannot
become  frequent.  After  discarding  every  candidate
itemset  that  has  an  infrequent  subset,  the  algorithm
enters  the  candidate  counting  step.
However,  the  crisp  association  rules  as  those
extracted  by  the  Apriori  algorithm , require  a  coarse
discretization  of  the  attribute  ranges  to  a  few
discrete  "items".  For  example  for  the  gene
expression  data  application  presented,  for  each  gene
we  use  a  three - level  discretization  of  the  possible
range  of  values:
a)  Low  expression  values  (i.e.  underexpressed

genes).
b)  Insensitive  (i.e.  genes  not  affected  across

experiments).
c)  High  expression  values  (i.e.  overexpressed

genes).

It  is  evident  that  the  loss  of  information  is
significant.  In  order  to  represent  intervals  with  non-
sharp  boundaries,  we  can  utilize  a  fuzzy  set
representa tion  of  items  for  generating  fuzzy
association  rules.  The  assignment  of  meaningful
linguistic  terms  to  the  fuzzy  sets  makes  these  rules
very  informative  to  the  human  expert.  For  the
example  application  of  gene  expression  analysis,  a

quantitative  gene  expression  value  v g  is  mapped

to  a  three  dimensional  vector
[μ Lv g ,μ I v g ,μ H v g ]  whose  components  refer  to

the  membership  value  at  the  corresponding  linguistic
term  (i.e.  Low ,  Insensitive ,  High ). We used  triangular
membership  functions   that  consider  each  gene  as
Underexpressed,  Insensitive  and  Overexpressed
according  to  the  two- fold  and  four- fold  changes  in
expression  levels.
For  example  in  Figure  1,  the  Overexpressed  linguistic
variable  starts  assuming  non  negative  values  at  the
two- fold  expression  level  increase  relative  to  the
normal  conditions  and  takes  the  value  1  at  the  four -
fold  change.  Therefore,  genes  that  increase  their
expression  by  four  fold  or  more  are  considered
Overexpressed  to  a  degree  of  one.  

Figure  1  Illustration  of  the  fuzzification  of  the  gene
expression  values.

Suppose  that  we  have  N   transactions  each   with  n
attribute  (item)  values,  a  set  of  membership
functions,  and  a  prespecified  minimum  support  s
and  confidence  c. The  steps  of  the  fuzzy  association
rule  extraction  algorithm  are  as  follows:

1. Transformation  of  the  quantitative  values  a ij  of

each  transaction  t i , i=1 ,,N , for  each  attribute

a j , j=1 ,,n ,  to  its  membership  values  at  its

corresponding  linguistic  partition.  This  is
represented  as

-
2 2- 4 4

In sen siti
v e

Overexpress
edUn derexpress

ed

fo ld expres s ion 
change

m em bersh ip  fu nct ion  
valu e

1

0



μ ij
1
R j

1
,μ ij

2
R j

2
,,μ ij

l
R j

l


using  the  utilized  membership  functions.  Here
R j

k
 denotes  the  k th   linguistic  variable  (e.g.

Underexpressed ,  Insensitive ,  Overexpressed  etc.)

of  the  attribute  a j ,  μ ij
k

 is  the  fuzzy

membership  value  for  attribute  a j  at  the  range

R j
k

,  and  l  is  the  number  of  fuzzy

partitions  used  for  the  fuzzification  of  the

quantitative  values  of  the  attribute  a j .

2. Computation  of  the  scalar  cardinality  or  fuzzy

count  for  every  region R j
k

of  attribute  a
j  at

the  transaction  data  (consisting  of  N  records)  as

c o u n t j
k
=∑

i=1

N

μ ij
k

3. Check  whether  c o u n t j
k

 of  each

R j
k

, j=1 ,,n ,  is  greater  than  or  equal  to  the

requirement  for  minimum  support  s,  and  if  so,
insert  the  item  at  the  list  of  frequent  1- itemsets  (

F 1 ).  Therefore   F 1={R j
k

|  c oun t j
k
≥s } for

1≤ j≤n.

The  meaning  of  the  equation  above  is  that  we
include  the  corresponding  linguistic  partition  k  for
attribute  j, at  the  frequent  1- itemsets  if  its  fuzzy

count  c o u n tj
k

 fullfils  the  minimum  support

requirement.  

4. Set  r=1 ,  where  r  represents  the  number  of
items  that  are  kept  in  the  current  frequent
itemsets.

5. Generate  the  candidate  set  C r1  from   F r  in
a manner  similar  to  that  of  the  Apriori  algorithm.

6. For  each  newly  formed  (r+1) - itemset  R ,  with

items  R 1 ,R 2 ,,R r1  in  C r1 ,  do  the

following  substeps.
(a)  Compute  the  fuzzy  value  of  each  transaction

data  t i  as  μ iR=μ iR 1
∧μ iR 2

∧∧μ iR r1
,  where

μ iR
j

 is  the  membership  value  of  t i in  region

R j.

If  the  minimum  operator  is  used  for  the
intersection,  we  have  

μ iR=
r1
m i n
j=1

μ i R j

At  this  point  we  should  note  that  the  fuzzy
product  operation  is  an  alternative  choice  that  is
usually  preferable  since  it  better  utilizes  the
available  information:

μ iR=∏
j=1

r1

μ iR
j

(b)  Computation  of  the  scalar  cardinality  (i.e.
fuzzy  support)  of  R  in  the  transaction  data  as

co u n tR=∑
i=1

N

μ iR

(c)   if  c o u n tR  is  larger  than  or  equal  to  the

support  s then  insert  R in  F r1

7. if  F
r1  is  null  then  go  to  the  next  step;  else

set  r=r1 and  repeat  steps  6- 7.

8. Construct  the  fuzzy  association  rules  for  all  the
frequent  q - itemsets  R  with  items
R 1 , R 2 ,, R q , q≥2 ,  using  the  following

substeps:
(a.)  Form  all  possible  association  rules  as
R 1∧Rk−1∧Rk1∧∧RqRk   (1-i temset  consequent)

∧for all i R i  ∧for all j R j

i∈Premise, j∈Co n s eq u en t

   (k- i temset  consequent) ,k1

for  k=1 ,q.
(b.)  Compute  the  confidence  values)  of  all  the
fuzzy  association  rules  as

∑
i=1

N

μ i S

∑
i= 1

N

μ i⋅R 1∧∧μ i⋅Rk− 1∧μ i⋅R k 1∧∧μ i⋅Rq 

  

The  numerator  of  the  former  equation  expresses
the  fuzzy  support  of  the  whole   itemset   S  over

each  transaction  i, μ i S .  The  denominator

corresponds  to  the  fuzzy  support  of  the  Premise
summed  over  all  the  transactions.  Therefore,  the
equation  quantifies  the  degree  to  which  the
fullfillment  of  the  Premise  condition  associates
with  the  fullfillment  and  of  the  Consequent
condition.  The  expression  for  the  k- itemset



consequent  ( k1 ),  is  taken  similarly  by
considering  items  of  the  premise  of  Equation  0 at
the  denominator  of  Equation  4 .

9.  Extract  the  rules   with  confidence  values  larger
than  or  equal  to  the  predefined  confidence  c.

We  should  note  that  we  have  based  the  fuzzy
association  rule  extraction  software  on  the
implementation  of  the  Apriori  algorithm  obtained
from  the  WEKA  [25 ]  data  mining  packages
implemented  in  the  Java  programming  language.  In
addition  to  adapting  the  algorithm  to  the  fuzzy  case,
we  customized  the  code  in  order  to  extract  the
patterns  for  fuzzy  association  rules  directly  from
the  KSDG- SOM nodes.

5  Results  and  Discussion   

This  section  first  describes  briefly  the
characteristics  of  the  particular  DNA  microarray
data  analyzed.  Then  we  proceed  with  the  application
of  the  KSDG- SOM for  the  analysis  of  these  data  and
we  discuss  the  extracted  fuzzy  association  rules.
We  have  applied  the  KSDG- SOM  to  analyze
microarray  expression  data  from  the  budding  yeast
Saccharomyces  cerevisiae.  These  data  are  public
available  from  the  Stanford  web  site.  They  were
generated  by  studying  this  fully  sequenced
organism  with  microarrays,  containing  essentially
every  Open  Reading  Frame  (ORF). The  samples  used
were  collected  at  various  time  points  during  the
diauxic  shift,  the  mitotic  cell  division  cycle  and
sporulation.  The  data  set  consists  of  80- element
gene  expression  vectors  for  6,221  genes.
The  source  of  these  profiles  were  eight  different
microarray  experiments  under  different  conditions.
These  conditions  can  be  categorized  into  the
following  four  types:  1.  the  mitotic  cell  division
cycle,  2.  sporulation,  3.  temperature  and  reducing
socks,  4.  gene  expression  in  the  budding  yeast
during  the  diauxic  shift.
For  example,  data  for  the  last  condition  were
obtained  from   [29 ].  With  a  fluorescence - ratio
method,  Derisi  et.  al.   [29 ]  measured  the  relative
abundance  of  mRNA for  the  entire  yeast  genome,   in
yeast  growing  in  a  fresh  medium  to  examine  the
changes  in  expression  that  take  place  with  the
metabolic  shift  from  anaerobic  to  aerobic
metabolism,  with  seven  samples  taken  at  2- hour
intervals.  Measured  levels  of  expression  of  genes  in
this  experiment  reflect  metabolic  reprogramming
that  occured  during  the  diauxic  shift.
Annotation  for  these  genes  was  derived  from  the

Functional  Classification  Catalogue  of  the  Munich
information  center  for  protein  sequences  (MIPS)
Comprehensive  Yeast  Genome  Database  (CYGD)
available  at
http:/ / mips.gsf.de /proj / yeast /CYGD/db / index.html
Specifically,  we  present  5  from  the  19  top- level
functional  categories  that  include  a  total  of  1974
genes:
1. Cell  Fate  (423  ORFs)
2. Cell  Rescue,  Defense  And  Virulence  (273    ORFs)
3. Cellular  Communication /Signal  Transduction

Mechanism  (59  ORFs)
4. Cellular  Transpor t  And  Transpor t  Mechanisms

(480  ORFs)
5. Metabolism  (1059  ORFs)
The  gene  expression  data  is  arranged  in  a  table
whose  rows  correspond  to  the  genes  and  columns  to
the  individual  log- transformed  gene  expression
values  of  each  gene   in  a  particular  experimental
condition  represented  by  the  column.  The  weighted
K- nearest  neighbors  imputation  method  presented  in
[30 ] is  applied  in  order  to  fill  up  systematically  the
missing  values.  This  data  imputation  approach
detects  the  K most  similar  genes  in  expression  to  the
one  with  missing  values  and  estimates  them  by
weighting  the  values  of  these  genes  at  the  same
columns  with  their  similarity.
The  format  of  the  extracted  rules  displays  the  genes
involved  at  the  Premise  and  those  at  the
Consequence .  Therefore  by  examining  them  we  can
obtain  evidence  on  some  possible  gene  regulation
relations  at  the  presented  application.  However  these
rules  should  be  further  elaborated.  Multiple
conditions  either  at  the  Premise  or  the  Precondition
are  in  an  implied  conjunctive  form.  Next  to  the
premise  we  present  the  fuzzy  Support  Count , i.e.  the
sum  over  the  number  of  experimental  conditions  that
support  the  association  weighted  by  the  degree  of
this  suppor t.
Finally,  the  confidence  of  the  rule  is  displayed  next
to  the  rule.  For  example,  at  the  rule   

YAL001C=High   and   YAL003W=High   == >
YAL002W=High       conf:(1)

the  overexpression  of  the  genes  YAL001C  and
YAL003W is  associated  with  an  overexpression  of  the
gene  YAL002W.  This  pattern  is  observed  in  at  least
40  of  the  total  80  experimental  conditions  since  we
require  a  minimum  fuzzy  support  of  40.  Also  the
confidence  is  1,  i.e.  for  all  the  conditions  for  which
YAL001C  and  YAL003W  are  both  overexpressed,  we
observe  also  an  overexpression  of  YAL002W.

Similarly  at  the  rules:



YAL001C=Low   == >  YAL003W=Low
YAL004W=Low      conf:(1)  
YAL003W=Low   == >  YAL001C=Low
YAL004W=Low      conf:(1)
YAL004W=Low   == >  YAL001C=Low
YAL003W=Low      conf:(1)

we   observe  that  the  underexpression  of  the
corresponding  genes  at  the  Premises  (e.g.  YAL001C,
YAL003W  and  YAL004W)  is  closely  associated  with
the  underexpression  of  two  genes  at  the
Consequences.  

The  KSDG- SOM  growing  phase,  clusters  together
genes  according  to  the  mutual  information  metric,
while  at  the  same  time  it  penalizes  a  large  number
of  genes  in  order  to  avoid  large  cluster  sizes.
Therefore  the  search  over  large  spaces  for
association  rules  is  avoided  and  the  standard
implementation  of  the  fuzzy  Apriori  algorithm  with
a  provision  for  hashing  items  for  fast  access  works
very  effectively.  In  particular,  we  have  extracted
rules  for  the  whole  6221  gene  set  of  yeast  within  a
few  minutes  on  a Pentium  4  machine.
The  KSDG- SOM  has  also  the  provision  for
incorporating  a  priori  functional  classes.  This
advantage  can  be  further  explored  for  the  restriction
of  the  search  space  for  the  detection  of  fuzzy
association  rules.  A comparison  with  the  number  of
fuzzy  association  rules  found  with  the  Pearson
Correlation  metric  reveals  that  the  mutual
information  metric  reveals  more  association  rules.
Although,  we  have  not  yet  performed  a  detailed
study,  it  seems  there  is  a  considerable  overlap
between  rules  extracted  according  to  the  mutual
information  metric  and  the  Pearson  correlation  one,
but  the  former  succeeds  at  the  discovery  of  about
20% more  rules,  that  are  probably  characterized  by
nonlinear  associations  and  thus  remain  hidden  to
the  linear  statistical  dependence  analysis  tools  (e.g.
the  Pearson  correlation).
In  addition,  in  order  to  consolidate  the  validity  of
our  results,  we  constructed  'randomized '  data  sets,
consisted  of  all  the  expression  values  for  each
transcript  in  the  original  data  set  being  shifted  with
respect  to  the  values  of  the  other  transcripts  by  a
random  number  of  experiments.  The  objective  of
using  this  randomized  data  set,  is  to  study  how
many  association  rules  would  be  produced  in  a  data
set  with  the  same  values  as  the  original  data  set,  but
in  which  the  data  dependencies  are  destroyed  by  the
randomization.  We observed  that  at  the  randomized
data,  no  association  rules  are  produced  with  a  large
fuzzy  support  value  (more  than  60.0).  

6  Conclusions  

We  have  presented  an  approach  to  confront
effectively  the  difficult  computa tional  problem  of  the
extraction  of  fuzzy  association  rules  for  the
description  of  pattern  dependencies  and  interactions
from  large  transaction  data.
The  association  rules  that  we  have  discovered
represent  clearly  a  fraction  of  all  the  possible
pattern - to- pattern  interactions.  However,  the  rules
that  we  have  mined,  represent  a  considerable  number
of  non- random  patterns  of  interest.  From  those
rules,  new  hypotheses  can  be  stated  that  could
ultimately  be  confirmed  or  rejected  on  the  basis  of
specialized  experiments  for  each  application  domain.
We  described  a  two  stage  approach  to  the  problem
that  obtains  computa tionally  manageable  plausible
solutions.  The  first  stage  clusters  patterns  that  more
probably  are  associated.  Therefore  our  approach
integrates  the  clustering  machinery  with  that  of  the
fuzzy  association  rule  extraction.  Thereafter,  the
second  stage,  the  fuzzy  association  rule  extraction
algorithm  follows,  confronting  a  significantly
reduced  problem.
The  clustering  phase  is  accomplished  by  means  of  a
Kernel  Supervised  Dynamic  Grid  Self- Organized  Map
(KSDG- SOM).  We  adapted  the  criteria  for  dynamic
expansion,  in  order  to  obtain  clusters  of  manageable
size  for  the  association  rule  extraction  algorithms.
The  mutual  information  metric  controls  the
development  of  the  KSDG- SOM clusters.  This  metric
allows  the  formation  of  pattern  clusters  that
maximize  the  mutual  information  for  patterns  of  the
same  cluster  and  to  minimize  it  between  different
clusters.
In  addition  the  KSDG- SOM  is  capable  of
incorporating  a  priori  information  for  the  known
functional  characteristics  of  patterns.  This
supervised  bias  on  training  can  focus  the  model  at
the  detection  of  more  appropriate  rules  that  exploit
domain  knowledge.
After  this  initial  pattern  clustering  we  concetrate  on
whether  a  pattern  can  be  explained  properly  by
means  of  the  patterns  of  the  same  node.  Fuzzy
association  rules  are  extracted  for  the  patterns
allocated  at  the  same  node.
An  important  criterion  that  we  impose  for  the  KSDG-
SOM  growing  phase,  is  the  minimization  of  the
number  of  patterns  in  each  cluster  in  order  to
restrict  the  search  over  large  spaces.  Thereafter,  the
mutual  information  metric  with  the  provision  for
incorporating  a  priori  functional  classes  constructs
highly  appropriate  clusters  for  the  detection  of  fuzzy



association  rules.  A comparison  with  the  number  of
fuzzy  association  rules  found  with  the  Pearson
Correlation  metric  reveals  that  the  mutual
information  metric  reveals  more  association  rules.
Clearly,  this  "line"  of  research  requires  much  more
work.  Also,  the  current  work  will  be  extended  by
considered  more  effective  computationally
algorithms  for  association  rule  extraction,  e.g.  the
EClat  algorithm  [34 ]  and  by  further  tuning  the
interface  between  the  mutual  information  clustering
and  the  fuzzy  association  rule  extraction  machinery.
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