A Sliding Mode Control Scheme for Induction
Motors Using Neural Networks for Rotor Speed
ESU ma‘t,l%r Patricia Gomez

. Garrido Departamento de Ingeniar
Francisco J. Maseda Departamento de Ingeniar de Sistemas y Autoatica.
Oscar Barambones Departamento de Ingeniar de Sistemas y Autoatica. E.U.L.T.1 Bilbao,
Departamento de Ingeniar de Sistemas y Autoatica. E.U.L.T.I Bilbao, Plaza de la Casilla.
de Sistemas y Autoéatica. E.U.L.T.I Bilbao, Plaza de la Casilla. 48012 Bilbao (Spain)
E.U.L.T.I Bilbao, Plaza de la Casilla. 48012 Bilbao (Spain)
Plaza de la Casilla. 48012 Bilbao (Spain)

48012 Bilbao (Spain)

Abstract— This paper tackles the problem of the speed control a strong dependence with the precision of the mathematical
of an induction motor in a very general sense. On the one model of the system employed. The modelling errors of
hand, the power of feedforward artificial neural network to the system mathematical model can have two fundamental

capture and emulate detailed nonlinear mappings is used to on th hand th b iginated f
implement a rotor speed estimator, and on the other hand a sources. Chihe one nan €se errors can be originated irom

robust control strategy based on the sliding-mode controller type the existence of some unmodelled dynamic of the system,
is performed. The proposed control scheme also make use of thewhich should be referred as modelling structural errors, and on

field oriented control theory to simplify the proposed control  the other hand these errors can be originated from the existence
design. The stability analysis of the presented control scheme of the some errors in the parameters of the system model

under parameter uncertainties and load disturbances is provided fi hich should b f d delli tri
using the Lyapunov stability theory. Finally simulated results equations, which shou e reierred as modelling parametric

show that the presented controller with the proposed observer €rTOrs.
provides high-performance dynamic characteristics and that this T gvercome the above errors it is possible to design the
scheme is robu.st with respect to plant parameter variations and estimators of the machine quantities using Artificial Neural
external load disturbances. . . .
Networks, which do not require a mathematical model of the
keywords: Neural Netwoks, Induction Motor Control, Ro-drive system and therefore the performance of this approach

bust Control, Modelling, Simulation. do not exhibit any dependence with the modelling errors.
In ANN based estimators, if the ANN uses a supervised
|. INTRODUCTION training technique, then the estimator is based on information

Traditionally. mathematical-model-based analvsis tecﬁyailable for the training and this information is obtained from
nigues have fflll’ways been used for the analysis of tze inductig nstem input and output measurements previously calculated
motor drives. There are many techniques, but they mainf))/r training purposes._ o
differ in their complexity and the many assumptions used. On the other hand, it has been proved that Artificial Neural
One of the most popular techniques is the field oriented contR¥gtwork can approximate a wide range of nonlinear functions
theory and it has been utilized extensively for the developméft any desired degree of accuracy under certain conditions
of various high performance induction motor drive control§Omidvar, 1997).

(Vas 1994, Leonhard 1996, Bose 2001). Due to the above mentioned characteristics, in the past few

In general, when space vector theory is used for the contd§ars active research has been carried out in Artificial Neural
of a variable speed drive system, the stator and rotor voltaljgtwork applied to identification and control of complex dy-
space vector equations (in the appropriate reference framejigfnical systems (Narendra, 1990, Weersooriya 1991, Huang
the machine considered are solved together with the equat#t98. Pinto 2000, Wai 2002).
of motion and the equations governing the controller and Although diverse neural architecture and learning algo-
converter. This results in a system of first-order non-lineathms can be used, we have chosen a particular one, the
differential equations, plus several algebraic equations. In tmsultilayer feedforward network and the so-called backpropa-
way, it is possible to compute or estimate various machimgation with momentum algorithm which is a gradient descent
guantities, as for example, rotor speed, flux linkages, elelgorithm of the performance function. Properly trained back-
tromagnetic torque, etc. However, it should be noted that theopagation networks tend to give reasonable answers when
accuracy of this computed or estimated machine quantities llasy are presented with inputs that they have never computed



(Haykin 1994). 1. NEURAL NETWORK MODEL FOR SPEED ESTIMATION

On the other hand, as it has been pointed out by severa n artificial neural network will be designed to estimate

autho_rs (Slotine 1991, Barambones 2002), adaptive CONtHRL rotor speed. Various input variables to the neural network
techniques and robgst control methods are two complementary, e considered, among them: stator voltages and currents,
approaches to dealing with model uncertainty. stator and rotor fluxes, etc. One may attempt to use excessive
In this context, the idea of combining neural and robugfymber of inputs variables to achieve required performance
control methods as a way to improve the performance aggg ropustness against some motor parameters changes, but
robustness in presence of model imprecissions of contigl course an excessive number of correlated variables is not
systems is developed in this paper combining neural netwqikeful at all. Next, we will determine an adequate input
estimation scheme with sliding-mode robust controller, whiGfgriable set to the neural network.
are applied to the control of induction motor drive. Since the motor voltages and currents are measured in a
The field-oriented technique guarantees the decoupling g¥tionary frame of reference, it is also convenient to express
torque and flux control commands of the induction motofhe induction motor dynamical equations in this stationary
so that the induction motor can be controlled linearly as raference frame.

separated excited D.'C' motor. Howeve_r, thg gontrol perfofhe rotor voltage equations of a squirrel cage induction motor
mance of the resulting linear system is still influenced b

uncertainties, which usually are composed of unpredictab gve in the stationary frame may be written as (Bose 2001):

parameter variations, external load disturbances, and unmod-

d . ) ) d .
elled and nonlinear dynamics. Many studies have been madigr = 0= Lmias + wWrLmiqs + Ry iar + Ly —iar
on the motor drives in order to preserve the performance under +wy Ly igr Q)
these parameter variations and external load disturbances, such ) d . _ .
as nonlinear control, optimal control, variable structure systenfar = 0= ~Wrlmias + L Ziqs = wrLytar + Ry igr
control, adaptive control and neural control (Lin 1993, Ortega d .
1993, Marino 1998). Lo iar @)

This paper presents a new sensorless vector control schefie e is the voltage?. is the inductanceR is the resistance,
consisting, on the one hand of an artificial neural netwogkiS the current andw, is the rotor electrical speed. The
o . - )
based speed estimation algorithm, and on the other hand, %fu%scriptr denotes the rotor values, the subscripdenotes

hew variable structure control. __the stator values and the subscrigtandq denote the dg-axis
The rotor speed estimation scheme based on an artificidinponents in the stationary reference frame.

neural network utilizes stator voltage and current measuredI th the stat it i in the stai
values to calculate the rotor speed. n the same way, the stator voltage equations in the station-
ary frame may be written as:

The variable structure control presented here, unlike the

traditional variable structure designs (Sabanovic 1981, Utkin — Riis 4L d . iy d. 3)
1993), has a integral sliding surface. The traditional sliding Vds = s ds T L gy tds T Lm gy b

surfaces requires an acceleration signal, but it is well known _ , d. d.

that transforming the sensed or the estimated speed into an Vos = Bslgs + Ls at'e T L ' “)

acceleration signal is very sensitive to noisy effects. In order
to remove the drawbacks mentioned above it is proposed @y an arrangement of equation 2, the rotor speed can be
new variable structure control with an integral sliding surfacderived:
in order to regulate the induction motor speed. d d
Using this novel variable structure control in the induction Lmﬁiqs + Ryigr + Lr£z'qr
motor drive, the controlled speed is insensitive to variations wy = L it L (5)
in the motor parameters and load disturbances, and besides mds rhdr
the acceleration signal used in conventional variable structureEquation 5 reveals that the rotor speed can be found through
speed control is not required. This new variable structugalculations of stator and rotor currents. The stator currents are
control provides a good transient response and exponengaby to measure, while the rotor currents are quite difficult, if
convergence of the speed trajectory tracking in spite of paet impossible, to measure.
rameter uncertainties and load torque disturbances.

This report is organized follows. The artificial neural From equations 3 and 4, the rotor derivative with respect
S feport IS organized as loflows. The artiliclal Neurgy, o can pe found in terms of stator voltages and currents
network design for the rotor speed estimation is introduce

. . : wqwich are easy to measure:
in Section 2. Then, the proposed variable structure robust Y

speed control is presented in Section 3. In the Section 4, d . 1 R . Ly d .
artificial neural network computation is carried out. Then, P R N SR T ©)
some simulation results are presented in section 5. Finally, d . 1 R . Ls d
some concluding remarks are stated in Section 6. atter T op te T e T L ™



Integrating the previous equations, it is obtained: Besides, the momentum term allows a network to respond

‘ 1 R. L. not only to the local gradi_ent, but also to recent trends in
lr = F /(vds — les> dt — T lds (8) the error surface. Acting like a low-pass filter, momentum
m m m allows the network to ignore small features in the error surface.

igr = L/ (vqs _ Rsiqs> dt — kiqs (9) Without momentum the network may get stuck in a shallow
Ly, Ly, Ly, local minimum, however with momentum the network can

Substituting equations 6, 7, 8 and 9 in the equation Slide through such a minimum (Hagan 1996).
relationships between speed and stator variables are concludem the backpropagation algorithm it is useful to rearrange

as a function mapping: the elements of the weight matricég; and the bias vectors
Wy = f(Vds, Vgss ids, iqs) (10) b into a vectord which contains all the adjustable parameters
of the network. Then, the cost function in the backpropagation

where f() represents a nonlinear function. algorithm is chosen to be:

Therefore, can we conclude that the rotor speed is a non- | kT
linear function of the stator voltages and currents, and then Je(0) = — Z [y(n) —ya(n))? (12)
these variables will be an adequate input signals to estimate T n=k
the rotor speed using an artificial neural network. wherek denotes the time instant, the parameteis referred

The artificial neural network is modelled as a massivelp as the update window size and equals the number of time
parallel interconnected network of elementary processors iBptants over which the gradient of the cost functidnis
neurons. This highly connected array of elementary processéf§nputed, andy; is the desired output of the neural network.

defines the SyStem har:dWare. Va.r.ious SOﬂWar? algorithms arqhe backpropagation a|gorithm begins by |n|t|a”y assigning
then crafted to synthesize a mapping between input and outgifall randomly chosen values for the weights and biases,
variables by learning a set of interconnecting weights and neyqd then during the training process this values are iteratively

ron thresholds from training examples. From a computationgjusted to minimize the neural network cost function.
point of view, neural networks come with the advantage of

massive parallelism. The adjustable parameter can be updated following a gra-

dient descendent with momentum procedure,
In the proposed design a multilayer feedforward artificial

neural network (FANN) was adopted as the neural network Ok +T) = 0(k) + A0 (k) (13)

paradigm. The neural network has four input signals, the staighere the increment term of the adjustable parameters is
voltages and currentsiys, vgs, iqs andigs, and one output, a7.(0
w,-, Which is the estimated rotor speed. AO(k) = —a 59( ) + pAO(k —T) (14)

The number of hidden layers and the number of nod@gereq is the learning rate ang is the momentum constant.
per layer are not definitive. There are no general guidelines

for determining a priori which combinations of neurons an@nd the partial derivatives of with respect to an adjustable
hidden layers will perform the best for a given problem. |[Rarameters is given by,

this problem, the number of hidden layers and the number of k+T—1

: : o 0Jp(8) 2 dy(n)
neurons in each hidden layer were chosen heuristically on a % T g [y(n) — ya(n)] 20 (15)
trial and error basis. The FANN selected has three hidden n=k

layers. These hidden layers have a tansigmoid activation
function, and the output layer has a linear activation function. The period of time comprising’ time instants is called
Then the output of the FANN will be, an epoch, so that each adju_stable p_arameter is quated once
every epoch. The update window siZ& the learning rate
y(k) = Ta( W3lo( W'y (u(k) +b1) +b2) +b3)  (11) « and the momentum constapt are three parameters that
has an important role in the performance of the algorithm.
If the learning rate is made too large, the algorithm becomes
unstable, and if the learning rate is set too small, the algorithm
takes a long time to converge. Usually, increasing the update
The training algorithm selected to train the neural networkindow size T’ has the same effect as lowering the value
is the backpropagation with momentum. This algorithm is af the learning ratex. On the other hand, the magnitude of
extension of the conventional error backpropagation trainirtige effect that the previous weight change is allowed to have
algorithm (Narendra 1990). It is based on the minimizatiois mediated by a momentum constant, which can be any
principle of a cost function of the error between the desiretumber between 0 and 1. When the momentum constant is set
output and the actual output of a FANN. The minimization i® 0, a weight change is based solely on the gradient.
achieved by varying the adjustable parameters of the FANNThe training is terminated whelfy (k) — yq (k)| falls below
in the direction of the gradient descent of the cost functiona. user specified tolerance. The most important and large step

whereWy, W, andW3 are the weight matrice$;, b, andbs
are the bias vectors, = [igs, iqs, Vds, Vgs] are the input and
y = w, is the output of the neural network.



in the backpropagation algorithm is the computation of thEhe slip frequency can be calculated from the equation 21,

partial derivatives of the output of the network with respect to L. e
each of its adjustable parameters. These partial derivatives are Wy = Tm 1/2(1: (22)
T dr

used in computing the gradient gf everyT instants. In this -
sense, the main inconvenient of the backpropagation algorithntience, the angular position of the rotor flék can be
is the computational expense it entails in the calculations @lculated from,

these partial derivatives. )
0. = /wedtsz,»dt—i—/wsl dt (23)
IIl. VARIABLE STRUCTURE ROBUST SPEED CONTROL

In general, the mechanical equation of an induction mot¥fherew, denotes the ANN stimated rotor speed.

can be written as: Taking into account the results of field-orientation vector
Jto,, + Bw,, + Ty =T, (16 control presented in equation (19), the equation of induction
motor torque (17) is simplified to:
whereJ and B are the inertia constant and the viscous friction 3 L
coefficient of the induction motor system respectively; is T, = Zp L"” Vg, = Krig, (24)

the external loady,, is the rotor mechanical speed in terms _ _
of angular frequency, which is related to the rotor electricdthere K is the torque constant, defined as follows:

speed byw,, = 2w, /p wherep is the pole numbers arifl. 3p L -
denotes the generated torque of an induction motor, defined Ky = 4L, Var (25)
as (Bose 2001): .
whereS, denotes the command rotor flux.
3p L, . ) . .
T, = IPTT('L/);TZZS — Ygrias) (17) Then, the mechanical equation (16) becomes:

where 5, and y¢, are the rotor-flux linkages, with the Wy + a Wy, + f = big, (26)
subscript ‘e’ denoting that the quantity is refereed to thgnere the parameters are defined as:
synchronously rotating reference framg; and i, are the

: \ s B Kr Ty,
stator currents, ang is the pole numbers. o= b= — f= = (27)

The relation between the synchronously rotating referencey . \ve are going to consider the previous mechanical
frame and the stationary reference frame is performed by t@&uati(;n (26) with uncertainties as follows:

so-called reverse Park’s transformation:

Zq cos(6..) —sin(6,) ., U, = —(a+ Aa)wy — (f + Af) + (b+ Ab)ig,  (28)

. d
zy | = | cos(fe —27/3) — S}n(‘ge —2m/3) [ r } where the termg\a, Ab and A f represents the uncertainties
Te cos(0 +2m/3)  —sin(fe + 2m/3) 218 of the termsa, b and f respectively.

where 6, is the angle position between the d-axis of the Let us define the tracking speed error as follows:

synphronously rotating referenc_e_frame and the a-axis of Fhe e(t) = wnn(t) — w (1) (29)
stationary reference frame, and it is assumed that the quantities
are balanced. wherew, is the rotor speed command.

Using the field-orientation control principle (Bose 2001), Taking the derivative of the previous equation with respect
the current component;, is aligned in the direction of the to time yields:
rotor flux vectory,,, and the current componeift, is aligned SN e ek
in the direction perpendicular to it. With this condition, it is €(t) = b — ty, = —ace(t) +u(t) +d(t) (30)
satisfied that: where the following terms have been collected in the signal

=0, Y4 =[] (19) w(t),

: . , o u(t) =big(t) —awy, (t) = f(t) —up(t)  (31)
With the above mentioned proper field orientation, the _ : .
dynamics of the rotor flux is given by (Bose 2001): and the uncertainty terms have been collected in the signal

€ e d(t)y
War | Yir _Lm e (20) d(t) = —Nawn(t) — Af(E) + AbiE(1)  (32)
dt T, T,
L, i+ watl, = 0 1) I\_Iow, we are going to define the sliding variatfi¢t) with
T, an integral component as:
L, . . . t
where T, : R is the rotor time c?nstant and the slip S(t) = e(t) _/ (k — a)e(r) dr (33)
frecuency iswy = w. — w,, Wherew, is the stator supply 0

frequency andu,. is the rotor electrical speed. wherek is a constant gain.



In order to obtain the speed trajectory tracking, the follow- When the sliding mode occurs on the sliding surface (34),
ing assumption should be formulated: then S(t) = S(¢t) = 0, and therefore the dynamic behavior

(A1) The gaink must be chosen so that the teti— a) is of the tracking problem (30) is equivalently governed by the
i . following equation:
strictly negative, and therefore < 0.

Then, the sliding surface is defined as: St)=0 = &) =(k—a)e(t) (38)
t
S(t) =e(t) — / (k—a)e(r)dr =0 (34) Then, under assumptiof 1), the tracking erroe(t) con-
0 verges to zero exponentially.
The variable structure speed controller is designed as: It should be noted that, a typical motion under sliding mode
u(t) = ke(t) — Bsgn(S) (35) control consists of aeaching phaseluring which trajectories

starting off the sliding surfac& = 0 move toward it and
where thek is the previously defined gair is the switching reach it in finite time, followed bgliding phaseduring which
gain, S is the sliding variable defined in egn. (33) asgh(-) the motion will be confined to this surface and the system
is the sign function. tracking error will be represented by the reduced-order model

In order to obtain the speed trajectory tracking, the follomﬁss)’ where the tracking error tends to zero.

ing assumption should be formulated: Finally, the torque current commang}, (¢), can be obtained

(A2) The gainf must be chosen so that > |d(t)| for all directly substituting eqgn. (35) in eqn. (31):
time.
o | i (t) = 1 ke~ Asga(S) +aw), i, + 7] (39)
Theorem 1:Consider the induction motor given by equa- b

tion (28). Then, if assumption&4 1) and (A2) are verified, )

the control law (35) leads the rotor mechanical spegd(t) Therefore, the proposgd variable structurg spegd control
so that the speed tracking erreft) = wy, (t) — w?, () tends rgsolves the speed. tr.ackl.ng problem for the induction motor
to zero as the time tends to infinity. with some uncertainties in mechanical parameters and load

The proof of this theorem will be carried out using thdorque.

Lyapunov stability theory.
IV. ARTIFICIAL NEURAL NETWORK COMPUTATION
Proof : Define the Lyapunov function candidate: ) e )
A multi-layer feedforward artificial neural network is pro-

1 posed to approximate the rotor speed. This neural network
vit) = §S(t)S(t) (36) has three hidden layers, the first hidden layer has 7 neurons,
Its time derivative is calculated as: the second has 9 neurons and the third hidden layer has 15
) ) neurons. The activation functions used in the three hidden
V(t) = S(t)S(t) layers are tansigmoid functions. The output layer has one
=S-[¢—(k—a)e neuron and the activation function is a purelin function. The
=S [(~ae+u+d) —(ke—ae) inputs to the neural network are the stator voltages and currents
and the output is the estimated rotor speed. The network
=§-[ut+d—ke weights are adjusted such that the network output error is
=S -[ke— Bsgn(S) +d— ke minimized. The technique used to train the network is the
=S -[d— Bsgn(9)] backpropagation with momentum algorithm (Hagan 1996).
<—(B8-1d))S| Figures 1,_ 2 3,4,5 show the \{va_lveform of ArtificiaI_NeuraI
<0 37) Network training data. This training data are obtained by

means of forcing the induction motor to follow a ramdomly
It should be noted that the egns. (33),(30) and (35), and thenerated step reference speed, while ramdomly load changes
assumption(.A 2) have been used in the proof. are simultaneously applied to the drive.

Using the Lyapunov’s direct method, sinégt) is clearly The signals of figures 2, 3, 4, 5 are the d and g components
positive-definite,V (¢) is negative definite and’(¢) tends to of the stator currents and voltages that are applied to the
infinity as S(¢) tends to infinity, then the equilibrium at theAC induction motor. This signals are filtered firstly, in order
origin S(t) = 0 is globally asymptotically stable. Thereforeto eliminate the high frequency components, and then are
S(t) tends to zero as the tintetends to infinity. Moreover, all utilized as the network input data to train the neural network.
trajectories starting off the sliding surfade= 0 must reach it The signal shown in figure 1 is the speed response of the
in finite time and then they will remain on this surface. Thisnotor drive in the presence of the previous stator voltages and
system’s behavior, once on the sliding surface is usually calledrrents input signals, and this signal serves as the network
sliding mode(Utkin 1993). target to train the neural network.
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The parameters of the neural network training algorithm wasThe block ‘VSC Controller’ represent the proposed sliding-
selected as follows: a learning rate®f= 0.25, a momentum mode controller, and it is implemented by equations (33),
gain of 4 = 0.35 and an epoch of" = 5 time instants. (39). The block ‘limiter limits the current applied to the
r‘potor windings so that it remains within the limit value, being

Figure 6 shows the learning curve of the artificial neura

. : o )
network. In this figure it is represented the average squar'@oplememed by a saturation function. The blodk® — abe

error versus number of trainin h hich mz%kes the conversion between the synchronously rotating and
- g epochs, which represent as? tionary reference frames, and it is implemented by equa-
of training patterns. sta y . ' , plem y €d
tion (18). The block ‘Current Controller’ consists of a three
Once the neural network was well trained, the rotor spe@gsteresis-band current PWM control, which is basically an
can be obtained from the network output. instantaneous feedback current control method of PWM where
the actual currentif;.) continuously tracks the command
current ¢*,.) within a hysteresis band. The block ‘PWM
In this section we will study the speed regulation perfotnverter’ is a six IGBT-diode bridge inverter with 780 V DC
mance of the proposed neural network based speed estimatdtage source. The block ‘Field Weakening’ gives the flux
and the designed sliding-mode field oriented control, versaemmand based on rotor speed, so that the PWM controller
reference and load torque variations by means of simulatidnes not saturate. The block?: Calculation’ provides the
examples. current reference’ from the rotor flux reference through the
The block diagram of the proposed robust control schemesguation (20).
presented in Figure 7. The function of the blocks that appearThe block ‘ANN’ is the Artificial Neural Network designed
in this figure are: in section Il to estimate the rotor speed. The blogk °

V. SIMULATION RESULTS
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Calculation’ provides the angular position of the rotor flux )
vector, and it is implemented by the equation (23). Finally, The following values have been chosen for the state observer

the block ‘IM’ represents the induction motor. and the rotor speed adaptation algorithm:

The induction motor used in this case study is a 50 HP, 460 70
V, four pole, 60 Hz motor having the following parameters: a— 0 75 \—9
R, =0.08Q, R, =0.20Q, Ly =30mH, L, =30mH, and 0o -1 1|’
L, =29mH. 1 0

The system has the following mechanical parametérs:
0.05kg.m? and B = 0.15 N.m.s. It is assumed that there is
an uncertainty of around 20 % in the system parameters, t
will be overcome by the proposed sliding control. In this example the motor starts from a standstill state and

Finally, the following values have been chosen for the
|gg{nroller parameters; = —90, 5 = 25.



250

we want that the rotor speed follows a speed command of
w, = 50rad/s when the drive is bearing a load torque of
Tr, = 20 Nm. Then, at timet = 0.3 s, the load torque steps 2008
from T;, = 20 Nm to T, = 200 Nm. Later, at timet =
0.6 s the reference speed steps fram = 50rad/s to w, = 150} /
200rad/s. Therefore, In this example it is presented changes
both in the reference speed and in the load torque.

Rotor Speed (rad/s)

Figure 8 shows the desired rotor speed (dashed line) and ,
the real rotor speed (solid line). As it may be observed, sof- ! E—
the rotor speed tracks the desired speed in spite of system |
uncertainties. Moreover, the speed tracking, practically, is not |
affected by the load torque change at time 0.3 s, because
when the sliding surface is reached (sliding mode) the system

50 L L L L I I

becomes insensitive to the boundary external disturbances. 02 04 08 e 1 12 14
Nevertheless, both at the starting of the simulation and at
time t = 0.6 s, that is, when the reference speed steps to a Fig. 8. Reference and real rotor speed signals (rad/s)

new value, the motor can not follow this reference change
instantaneously due to the physical limitations of the system.
However, after a transitory time in which the motor accelerates
until the final speed the trajectory tracking is obtained. ac0f ]

Figures 9 and 10, show the d and q components of the s ]
stator current. It may be observed that in the initial state, the
current signal presents a high value because it is necessary a
high torque to increment the rotor speed. Then, in the constant; **®
speed region, the motor torque only has to compensate the> | 1

friction and the load torque and so, the current is lower. At I
time ¢t = 0.3 s the current increases because the load torque ™
has been increased. Finally, at time= 0.6s there is an 200 i

increment in the frequency of the current signal because the
rotor reference speed has been increased.

—400 L L L L I I

Figures 11 and 12, show the d and g components of the 0 02 04 0% e °° 1 12 14
stator voltage.

. . Fig. 9. Stator Currentyy (A
Figure 13 shows the motor torque. As in the case of the 9 ator Currentzq (4)

stator current (fig. 9 and 10), the motor torque has a high
initial value in the speed acceleration zone. Then the value
decreases in a constant region and next, at ime 0.3s, and the inputs to the neural network are the measured stator
the motor torque increases due to the load torque incremenitages and currents, for which it has been proven that they
Finally at timet = 0.6 s the torque also increases due to thare an appropriate input variable set to the neural network.
step increment in the rotor reference speed which implies an
acceleration zone.

In this figure it may be seen that in the motor torque appear
the so-called chattering phenomenon, which usually appea

the sliding mode controller type. However this high frequenc q q | techni h t the slid
changes in the torque do not represent a problem for th) e speed control technigues. Due to the nature of the slid-

system because they will be filtered by the mechanical systé'?\q control this control scheme is robust ur_1der uncertainties
inertia. caused by parameter error or by changes in the load torque.

The closed loop stability of the presented design has been
VI. CONCLUSION proved through Lyapunov stability theory.

In this paper a new sliding mode vector control with artifi- Finally, by means of simulation examples, it has been shown
cial neural network rotor speed estimation has been presentbdt the proposed control scheme performs reasonably well
The artificial neural network employed is a feedforward muln practice, and that the speed tracking objective is achieved
tilayer neural network and its weights and biases are updatater uncertainties in the parameters and load torque. Also
using a backpropagation with momentun training algorithnit.is observed a robust speed estimation performance even at
The output of the neural network is the estimated rotor spestép load changes or under variable speed reference operation.

In addition, it is proposed a new variable structure control
ich has an integral sliding surface to relax the requirement
the acceleration signal, that is usual in conventional sliding
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