
Certification of Directional Derivatives Computed by Automatic
Differentiation

MAURICIO ARAYA-POLO LAURENT HASCOËT

Project TROPICS
INRIA Sophia-Antipolis

2004 Route des Lucioles - BP 93, FR-06902 Sophia Antipolis.
FRANCE

http://www-sop.inria.fr/tropics

Abstract: Automatic Differentiation (AD) tools assume differentiability of the function implemented by the
given program. However, due to switches in the control flow, most programs are only piecewise differentiable.
Thereby, sometimes the derivatives are wrong, unfortunately this fact is overlook by everyday use of AD.
There exist extended models of AD that return useful generalized derivatives for some classes of piecewise
differentiable functions, but there is little hope of doing so for all cases. In contrast, our goal is to evaluate,
along with the derivative, the size of the differentiable neighborhood around the current input. This “safe
neighborhood” is essential to use the derivatives consistently. We investigate several models to compute
this neighborhood and study their complexity. We propose one model of acceptable cost. We present a first
implementation and experiments made with our AD tool tapenade.

Key-Words: directional, derivative, validity, automatic, differentiation, control-flow

1 Introduction

The context of this work is Automatic Differentiation
[1,2,3]. AD is an innovative strategy which, given a
program that evaluates a function F , builds a new
program that evaluates the derivatives of F . To com-
pute the derivatives AD takes advantage of the fact
that programs are a sequential set of instructions,
and the instructions represents elementary functions,
hence the application of the calculus rules is suitable.

There exists two fundamental modes of AD: for-

ward and reverse. The forward mode computes di-
rectional derivatives, i.e. the first-order effect on the
output resulting from a small modification of some
inputs following a given direction. The reverse mode
computes gradients, i.e. given a linear combination
of the output, it returns the direction in the input
space that maximizes the increase of the combined
output.

Currently, AD models do not include verification of
the differentiability of the functions. Mainly the non-
differentiability problem is introduced by conditional
statements (test). The tests are part of that the
control flow structure of the original program, this
structure is preserved in the differentiated version of
the original program. If the derivatives depends on
the test, the resulting derivatives can be totally diffe-
rent even if the variation of the input values is very
small, because a switch in the test can lead us to
a totally different derivative instruction. Therefore,
it may happens that AD returns some derivatives,
that may not be valid because the original functions
were not continuous differentiable in their complete
dominion.

We propose a new method which validate the
derivatives obtained using AD. To validate the
derivatives we evaluate the interval around the input

1

data where no non-differentiability problem arises.
Practically, this requires to analyzing each condi-
tional statement at run-time, in order to find for
which data it will switch, and propagate this infor-
mation as a constraint on the input data. We also
discuss the complexity of this mode and some alter-
natives. Finally, we develop a mode that is focused
in the validity of the directional derivatives.

This paper is organized as follows: in Section 2
we give the basics concepts of AD. In Section 3 we
state the problem. In Section 4 we proposed a gene-
ral approach and we develop the directional validity
method. In Section 5 we present the numerical result
of experiments with the proposed method. Finally,
we discuss the future work and the conclusions in
Section 6.

2 A Brief Introduction to Automatic Di-
fferentiation

In this section, we present the framework of this
work and then we introduce the forward mode of AD,
which computes directional derivatives.
A program P is a set of concatenated sequences of
instructions Ii, when the control flow is fixed (in exe-
cution time) the program runs only one sequence of
instructions. In particular (no control flow), program
P has the following form:

P = I1; I2; ...; Ip−1; Ip

Each instruction Ii represents an elementary function
fi from the mathematical model or function F . In
the other hand, the mathematical model F is the
composition of elementary functions fi:

F = fp ◦ fp−1 ◦ ... ◦ f2 ◦ f1 with

F : X ∈ IRn → Y ∈ IRm, and Y = F (X)

where n is the dimension of the input space and m is
the dimension of the output space, X input variables
and Y output variables.

Programs also includes special instructions to ma-
nage the control flow. Mainly there are two kinds of
such instructions: loop cycles and conditional state-
ments. The conditional statements or tests (T1 in
Table 2.1), are the key point in our work, because

this kind of instruction represents piecewise func-
tions, which are the source of the problem.

subroutine SUB1(x, y, o1)

I1 x = y ∗ x
I2 o1 = x ∗ x + y ∗ y

T1 if (o1 > 190) then
I3 o1 = −o1 ∗ o1/2

else
I4 o1 = o1 ∗ o1 ∗ 20

endif
end

Table 2.1: Sample code

It is important to mention that there are some
intrinsic instructions (instructions provided by the
programming languages) underlays conditional state-
ments (example: min, max, log, etc.), hence, intro-
ducing more tests.

2.1 Forward Mode of Automatic Differentiation
(FMAD)

When the chain rule is applied to elementary func-
tions, the results are jacobian matrices f ′

i , where
x0 = X represent the input variables, and xp−1 =
fp−1◦ ...◦f2◦f1 are the intermediate variables. Using
the previous notation, the derivative of a function F ,
F ′, is the multiplication of the jacobians f ′

i ,

F ′(X) = f ′

p(xp−1) · f
′

p−1(xp−2) · ... · f
′

1(x0)

F ′ : X ′ ∈ IRn → Y ′ ∈ IRmxn

with dY = F ′(X)dX

where dX represents the directional variation of the
input values.

Every jacobian f ′

i times vector has a corresponding
I ′i instruction. Thus, differentiated program P ′ has
the following sequence of instructions:

P ′ = I ′1; I1; I
′

2; I2; ...; I
′

p−1; Ip−1; I
′

p; Ip

From a computational point of view, the differentia-
ted program is composed by the original instructions

2

necessary to compute the derivatives, plus the ins-
tructions which represent the derivatives. Also, as we
can see in the Table 2.2, the differentiated program
maintains the flow control structure of the given pro-
gram.

subroutine SUB1 D(x, xd, y, yd, o1, o1d)

I ′1 xd = yd ∗ x + y ∗ xd
I1 x = y ∗ x

I ′2 o1d = 2 ∗ x ∗ xd + 2 ∗ y ∗ yd
I2 o1 = x ∗ x + y ∗ y

T1 if (o1 > 190) then
I ′3 o1d = −(o1d ∗ o1)
I3 o1 = −(o1 ∗ o1/2)

else
I ′4 o1d = 40 ∗ o1d ∗ o1
I4 o1 = o1 ∗ o1 ∗ 20

endif
end

Table 2.2: Direct differentiated code of example

Notice that in Table 2.2 the derivatives are ex-
pressed like xd, yd, o1d, being xd, yd ∈ dX inputs and
o1d ∈ dY output.

3 The Problem, No Validated Derivatives
Sometimes the derivatives depend on the tests,
then we have different derivatives depending on
the switch of the test. If the test has the form
“if . . . then . . . else” then we have two sets of the
derivatives, each one corresponding to the branches
of the test, in our program example the control flow
will follow instructions I ′3; I3 or I ′4; I4 depending sign
on the test.

The problem arise when for some input the
program evaluates the sequence of instructions
I1; I2; T1; I3, and for other slightly different input
value the program evaluates I1; I2; T1; I4. The di-
fference between the first and second input value may
be very small, but small enough to switch the test T1.
The derivative instruction I ′3 and I ′4 may be totally
different. So, small changes in the input values may

switch the test returning completely different deriva-
tives.

Note that more complicated forms of conditional
statements just introduced more sets of derivatives
but not more complexity to the problem.

-1.5e+06

-1e+06

-500000

 0

 500000

 1e+06

 1.5e+06

 0 1 2 3 4 5 6

o1
d

x

Evaluation of program P’, xd,yd = 1,1.

Figure 1: Derivatives at discontinuity on o1 = 190.

On the Figure 1, we can observe that the test T1

introduces a discontinuity on the graph, consequently
the derivatives computed by program P ′ return to-
tally different figures around the discontinuity.

4 Methods
We device a method that returns a certain interval
of solutions where the derivatives are not compromise
by conditional switching. To do that, we develop a
formalization that relates the tests, the inputs values
and the variations of the inputs variables. Our idea
is to evaluate the largest interval around the current
input data, such that there is not differentiability pro-
blem if the input remains in this interval. In the case
when this interval is notably too small, this will be
a warning to the user against an invalid use of these
derivatives.

In this Section, we present our strategies to solve
the problem through the computation of the interval
of validity. In Section 4.1, we define the neighborhood
of validity. In Section 4.2, we show how the pre-

3

vious strategy is implemented in computation model.
In Section 4.3, we discuss about the neighborhood
of validity. In Section 4.4, the directional strategy
is presented. Finally in Section 4.5, we present the
computational model for the directional strategy.

4.1 Neighborhood of Validity

Programs can be seen like a composition of blocks Bi

and tests, these blocks are sequences of elementary
instructions, the tests are build up from the interme-
diates variables within the block before the test.

X
B1−→ (X1 T1) · · ·

Bn−→ (Xn Tn)
Bn+1

−→ Y

where Xi in vector (Xi Ti) represents the intermedi-
ates variables before the test Ti.

Once AD is applied to a program, the new aug-
mented program includes the derivatives and the
original control structure of the program.

X ′, X
B′

1−→ (X1 T1) · · ·
B′

n−→ (Xn Tn)
B′

n+1

−→ Y, Y ′

where B′

1 = I ′2; ...; I
′

i. Let us consider a conditional Ti

in isolation. It uses variables from Xi, which depends
differentially on the input X (at first order) by:

∆Xi = J(Bi; . . . ; B1) · ∆X = J(Bi) · ... · J(B1) · ∆X

We can admit without loss of generality, that Ti is
just a test on the sign of one variable xj ∈ Xi. There-
fore, the conditional will switch if −∆xj ≤ xj , be-
cause the small change ∆xj makes the sign of the
test change. Thus, we can state the condition on
∆X upon which the program control does not switch
for this test Ti:

< J(Bi) · ... · J(B1) · ∆X|ej > ≥ − < Xi|ej > (1)

For the entire program, the computed derivatives will
be valid if the variation ∆X of the input X satisfies
all the constraints (1) for each test Ti. This gives a
system of constraints on ∆X. The solution of this
system is the neighborhood around the inputs values
that returns valid derivatives.

4.2 Computing the Neighborhood of Validity

To implement the previous method we need to com-
pute several jacobians, the cost to compute each ja-
cobian in forward mode of AD is proportional to the
dimension of the inputs space.

Observing equation (1), and recalling that we must
solve it for ∆X, we must isolate ∆X. A powerful
way to do that is to transpose the jacobians in the
dot product, yielding the equivalent equation:

< ∆X · J(B1)
t · ... · J(Bi)

t · ej > ≥ − < Xi|ej > (2)

The right side of the dot product is directly com-
puted by the reverse mode of AD, which computes
gradients. Unfortunately, the reverse mode is very
expensive in terms of memory consumption, because
requires store large number of intermediate variables.

4.3 Discussion on Neighborhood of Validity

We consider the model of Section 4.1 complete in
the sense that it returns one constraint on ∆X for
each test encountered during the execution of the
program. However, in real situations, the number of
tests is so large that this complete model is not prac-
tical. This section investigates strategies to reduce
the cost of this model.

A first idea would be to somehow combine cons-
traints as they come, in order to propagate just one
at each time. But a constraint for a test Ti is actually
of the form given by equation (1), which represents a
half-space. Unfortunately the intersection of two half
spaces is not a half-space in general.

Second idea is to reduce the size of the problem.
The size of the system of equations comes from the
number of constraints and inputs. The two alter-
natives are: to select certain constraints or/and to
select certain directions of derivation.

The user can identify which tests must be ana-
lyzed. Another possibility would be to drop some
constraints automatically, because some them may
be redundant. To detect the redundant constraints,
we calculate an index of relevance of constraints. The
index is calculated using a measure of distance from
the constraint to the space of solution already com-
puted. Consequently, we eliminate the useless ones.

4

This strategy is inspired by the cutting-plane me-
thods [6].

Alternately, the user can identify certain directions
of the input; This allow us to simplify the constraints
and focus on the relevant domain of validity. Also, we
can use the forward mode of AD because the needed
derivatives will be directional ones. This idea is the
inspiration for the strategy in the next section.

4.4 Directional Validity

The model of Section 4.1 is expensive in memory con-
sumption and run-time. We propose a new strategy
which is focused in the directional derivatives. The
goal is give to the user information about the va-
lidity of the derivatives in the input space regarding
specific directions in the input space. Note that the
repetition of the procedure for all directions returns
the same information of model of Section 4.1.

The idea behind the following strategy is evalua-
te how much we can change the input X without
switch the particular test Ti. Thus, the size of this
change defines the “safe neighborhood” where deriva-
tives may lay.

Let us consider just one test T0, this test is build
upon the intermediates variables computated by B0,
also we have the test sign variable t0 from a parti-
cular input X. If the test is t0 ≥ 0 then we have
a constraint ti ≥ 0. Small changes in X produce
the variation on test (∆t0), like ∆t0 = ti − t0, then
because the sign of the constraint we obtained:

∆t0 + t0 ≥ 0 or ∆t0 ≥ −t0 (3)

To build ∆t0 we use the following expression,

∆t0 = J(T0) · ∆B0 (4)

where ∆B0 represents the variation of the interme-
diates variables of block B0 due the input variables
X, and J(T0) is the jacobian matrix of the test T0.
Then we need ∆B0, which has the following form:

∆B0 = J(B0) · β · Ẋ (5)

where Ẋ represents the normalized directional varia-
tion of the input and β is the scalar that hold the

magnitude of the this variation. Replacing expre-
ssions (4) and (5) on expression (3) we obtain:

J(T0) · J(B0) · β · Ẋ ≥ −t0

β ≥
−t0

J(T0) · J(B0) · Ẋ
(6)

Expression (6) satisfy the constraint over the test,
and β store the information about how much the in-
put variation can increase following the given direc-
tion Ẋ of the input space.

To compute the directional dominion of validity
around the input X, we repeat the computation of β
before every test in the program, thus, updating the
value of β.

4.5 Computing the Directional Validity

To implement the directional method we insert an
instruction before every test of the program P ′, this
instruction computes the value β for the test and up-
date the global value β of the program.

For a general program P , the domain-validated
program P̌ is as follows:

P̌ = B′

1; V1; T1; . . . ; B
′

n; Vn; Tn; B′

n+1

where Vi is the instruction that computes the value
of β. The values of β are propagated forward and
updated for every instruction Vi. To the end, we ob-
tained the value of β which holds the information of
the whole program P̌ ; The interval of validity (“safe
neighborhood”) is build up from the β value.

The next section presents some experiments using
our new model.

5 Experimental Results
In this Section, we show how this new mode works
and how the results are expressed. In Section 5.1,
we presents the numerical results for the example al-
ready given in Section 2.2. In Section 5.2, we applied
the new mode over two real-life programs.

5

5.1 Basic Example

The interval of validity has the following form:
[gmin, gmax], where gmin represents the maximum
size of the derivatives in opposition to the given di-
rection, conversely, the gmax is the maximum size of
the derivative following the given direction.

In Table 5.1, we can see how the interval change
around the critical point (where the test switch). Be-
fore the switch, the interval is [n.p., 0.005], which
means that derivate is close to a discontinuity in
the given direction, but in the opposite direction is
n.p., where n.p. means that there is no differential
problem. Conversely, after the test, the interval is
[0.004, n.p.], because the critical point lay behind the
evaluated point in the given direction.

x y o1d gmin gmax

3.62 3.62 1456628.2 n.p. 0.026
3.63 3.63 1484149.2 n.p. 0.016
3.64 3.64 1512117.1 n.p. 0.005
3.65 3.65 -38513.4 0.004 n.p.
3.66 3.66 -39235.4 0.014 n.p.
3.67 3.67 -39969.0 0.023 n.p.

Table 5.1: Results from validated code of the example
with direction (xd,yd) = (1,1).

5.2 Real-life Examples

We conduct a large number of tests on real-life pro-
grams, with satisfactory results, even when the ma-
thematical model was not completely suitable.

program lines code # tests # validated tests

STICS 21.163 2.682 542
CEA 19.789 1.864 189

Table 5.2: Real-life programs settings.

The results require close analysis from the end-user
in order to be useful, but from our point view, the
results are promising in the sense that they are con-
sistent with the predicted behavior.

6 Conclusion
We proposed a novel method to tackle the problem of
non-differentiability in programs differentiated with
Automatic Differentiation. The method computes
intervals following a given direction of input data.
In these intervals, the returned derivatives have no
problem of differentiability.

The computational cost of the new mode is
marginal (3%) with respect the computational cost
of the forward mode.

This question of derivatives being valid only in a
certain domain is a crucial problem of AD. If deriva-
tives returned by AD are used outside their domain
of validity, this can result in errors that are very hard
to detect. AD tools must be able to detect this kind
of situation. The method we proposed is one possible
way to warn the user from abusive use of the deriva-
tives.

The future work is expand the model of validation
to the reverse mode of AD.

Acknowledgement The present work has been partially
supported by CONICYT-INRIA Sophia-Antipolis coope-
ration agreement.

References:

[1] Berz, M., Bischof, G., Corliss, G., and Griewank, edi-
tors. Computational Differentiation: Techniques, Ap-

plications, and Tools. SIAM, Philadelphia, PA, 1996.

[2] Corliss, G., Faure, Ch., Griewank, A., Hascoët, L.,
and Naumann, U. Automatic Differentiation of Algo-

rithms, from Simulation to Optimization, Springer,
Selected papers from AD2000, 2001.

[3] Griewank, A., Evaluating Derivatives: Principles and

Techniques of Algorithmic Differentiation, Frontiers
in applied mathematics, SIAM, pp. 251-302, 2000.

[4] Hascoët, L., Pascual, V., TAPENADE 2.1 User’s

guide. Technical report #224. INRIA, 2004.

[5] Kearfott, R. B., “Treating Non-Smooth Functions as
Smooth Functions in Global Optimization and Non-
linear Systems Solvers”, Scientific Computing and

Validated Numerics, ed. G. Alefeld and A. Frommer,
Akademie Verlag, pp. 160-172, 1996.

[6] Boyd, S., Vandenberghe, L., “Localization and
Cutting-plane Methods, Lecture topics and notes”,
EE392o Optimization Projects, Stanford University,
www.stanford.edu/class/ee392o (URL). 2004.

6

