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Abstract:

We study the attainable order of a piecewise polynomial collocation method for the numerical

solution of linear integral equations with weakly singular or other nonsmooth kernels. In particular, the
kernel may have the form K(¢,s) = g(¢,s)|t — s|™", 0 < v < 1, where g is proposed to be smooth only
on [0,b] x ([0,b] \ {d}), 0 < d < b. We show that the proposed method is of maximal possible order if

the grid is chosen appropriately.
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1 Introduction

Let R = (—o0,00), N={1,2,...}, No = {0} UN.
For Q@ C R"™, by C™(Q2) we denote the set of
m times continuously differentiable functions x :
QO — R, C%Q) = C(Q). The set Cla,b] of con-
tinuous functions z : [a,b] — R is a Banach space
with respect to the norm ||z|c(,, = max |z(t)].

a<t<b

Let us consider an integral equation_of the form
b
ut) - [ K(t.sjulshds =50 0=t <b, (1)
0

with f € C[0,b] and K(t,s) = g(t,s)|t — s|77,
0 < v < 1, where g is a sufficiently smooth func-
tion on [0,b] x [0,b]. Solutions of integral equa-
tions of this type will in general contain singular-
ities in their derivatives at the endpoints of the
interval [0, ], even for smooth forcing functions f
(see, for example, [1,5,6]). Therefore difficulties in
constructing of high order numerical methods for
solving (1) arise. To overcome these difficulties,
one can thicken near 0 and b, the grid which is
used to built approximate solution [1,5,6].

In the present paper we study the case if g is
proposed to be smooth only on [0, b] x ([0, 5]\ {d}),
with d € (0,b). In this case the derivatives of
the solution wu(s) of equation (1) may have sin-
gularities at s = d, also [4,5]. Therefore, to get

numerical algorithms of higher order for solving
(1), we shall thicken the grid near s = d, too.
In fact, we shall construct a piecewise polynomial
collocation method for the numerical solution of
a wide class of weakly singular integral equations
and show that it is of maximal possible order if
the grid is chosen appropriately.

2 Smoothness of the solution
We consider a kernel K in the form

K(t,s) = g(t,s)k(t,s) (2)

with g and & satisfying the following assumptions
(A1) and (A2), respectively.

(A1) The function g = g(t,s) is m times (m > 1)
continuously differentiable with respect to ¢
and s for t € [0,b], s € [0,b]\ {d}, 0 < d < b,
and its derivatives are bounded in the re-
gions [0,b] x [0,d) and [0,b] x (d,b]. Let p
(0 < p < m) be an integer defined as follows:
p = 0if g may have a discontinuity across the

line s = d; p > 1if g € CP~1([0,b] x [0, b]).

(A2) The function kK = k(t,s) is m times (m is
fixed in the assumption (A1)) continuously
differentiable with respect to t and s for
t,s € [0,b], t # s, and there exists a real



number v, —oco < v < 1, such that the esti-

mate
oN' (o oY
—_ — 4+ — t <
‘((‘%) <8t+85> At s)| <
1, if v+i<O0,
cg 1+ |Injt—s|, if v+i=0, (3)
[t —s|7v 7, if v+i>0,

holds with a positive constant ¢ for all £, s €
[0,0], t # s and for all 4,5 € Ny, i + j < m.

For i = j = 0, condition (3) yields

1, it v<O0,
|k(t,s)| <ecg 1+ |Inft—s|, if v=0,
It —s|7", it v>0.

Thus, a kernel (2) is at most weakly singular for
0 <v < 1. For v < 0, the kernel (2) is bounded
but its derivatives may have diagonal singularities.
Most important examples of kernels of type (2) are
given by

K(t,s)=g(t,s)|t—s|7", O0<v<l,

K(t? 8) = g(t,s) In |t - S|a

where ¢ is a function which satisfies the condition
(A1).

For equations (1) with smooth kernels, the
smoothness of the kernel K and the forcing func-
tion f determines the smoothness of the solution u
on the closed interval [0, b]. If we allow weakly sin-
gular kernels of type (2), with smooth coefficient
functions g: [0,b] x [0,b] — R, then the result-
ing solutions are typically nonsmooth at the end-
points of the interval of integration [0,b], where
their derivatives become unbounded. If g is pro-
posed to be smooth only on [0,b] x ([0,0] \ {d}),
where 0 < d < b, then the derivatives of the so-
lution wu(t) of equation (1) may have singularities
at t = d, also (see Lemma 1 below). In order to
characterize those singularities we introduce a set
of functions Cg;;y [0, 0].

Let meN,veR, v<1,0<d<b, pe€ Ng,
p < m. Define Cy77[0,0] as the collection of con-
tinuous functions w : [0, ] — R which are m times
continuously differentiable in (0,b) \ {d} and such

that the estimate

‘u(j)(tﬂ <

/

1, if j<1l—v, pe{0,1,...,m};

1+ |Int| + |In(b —t)|,
if j=1-v, pe{l,...,m};
1+ |Int|+ |In|d —¢t|| + |In(b —t)],
if j=1—v, p=0;
C tlfufj_i_(b_t)lfufj’
ifl-v<j<l—v+p pe{l,...,m};
V=0 4 [In|d —t|| + (b —t)17v79,
ifj=1-v+p, pe{l,...,m—1};
v =d o |d — | VIR (b — ) v,
ifj>1—-v+p, ped{0,...,m—1},

(4)

holds with a positive constant ¢ = ¢(u) for every
€ (0,b)\{d} and j =1,...,m.

The following result characterizes the regular-
ity properties of solutions to equation (1), see [4,5].

Lemma 1. Let the conditions (A1) and (A2)
about the kernel (2) be fulfilled. Let f € Cg;;y[O,b],
with m,v,d,p, fized in the assumptions (A1) and
(A2). If the integral equation (1) has an integrable
solution u € L1(0,b) then u € C’;Y’ZI;V[O, b].

3 Piecewise polynomial interpola-
tion

Forgiven N =4n,n e N, b, d,r,rg € R, 0 < d < b,
r,rg > 1, let
AN:{to,tl,...,tNZOZto <t <... <tN:b}

be a partition (a grid) for the interval [0,b] with
the following nodes tg, ..., tN:

Jor 5)

b—d/j\™ (

t2n+]_d+T<%> 7]:1, , g
b—d(n—7j\"

t3n+]—b— 2 ( nj> 7.7:1) y 1

Then Ay is called a graded grid for [0,b]. In the
present context the so-called grading exponents
r,rq will always satisfy » > 1 and r4 > 1. These
parameters characterize the accumulation of nodes



to,t1,...tx near the points of possible unbounded-
ness of the derivatives of the solution u of equation
(1) (see Lemma 1). For larger r and r4 the grid
Ay is thicker near 0, d and b. We use two different
parameters r and ry because the order of singular-
ity of the solution u can be different at points 0, b
and d. If r = r4 = 1 then the grid points (5) are
uniformly located in the intervals [0, d] and [d, b].
It follows from (5) that an estimate

ti—ti 1) <cN! 6
jzrglﬁfN(g j-1) <c (6)

hy =

holds with a positive constant ¢ which is indepen-
dent of N.

For m € Ny, let S;,?)(AN) and S,(n_l)(AN) be
the spline spaces of piecewise polynomial functions
on the grid An:

SW(AN)={ueCl0,] 1 u|, € mm,j=1,..., N},
S(l (An) = {u u‘ ETI’m,j—l N}.

(7)

In (7) 7, denotes the set of polynomials of degree

is the restriction of w
to the subinterval o; = [tj Lt (3 =1,...,N).

Note that the elements of S, )(AN) may have
jump discontinuities at the interior grid points

tye ot

not exceedlng m and u!

In every subinterval [t;_1,¢;], j=1,..., N we
define m € N interpolation points
ng +1
g=1,....m; 5=1,...,N,
where
—-1<m<...<np <1 (9)

is some fixed system of m parameters on the in-
terval [—1,1], which is the same for every j and
N.

To a given continuous function « : [0,b] — R
we assign a piecewise polynomial interpolation
function Pyu = Pnym—1u € S( i(AN) which in-
terpolates u at the nodes (8). Let Py = Py 1 :
C[0,b] — ﬁr:i(AN) be an interpolation oper-
ator which assigns to every continuous function
u : [0,0] — R its piecewise interpolation function
Pyu:

Pyue S\ {(AN) ue Clo,b],

(PNU)(@',Q) (f]q) = my g=1,...,N.
(10)

Thus, (Pyu)(t) is independently defined in every
subinterval [t;_1,t;] (j = 1,...,N) and may be
discontinuous at t =¢;, j =1,...,N —
treat Pyu as a two-valued function at these points.
Ity =
tion on the interval [0, b].

Let E and F' be Banach spaces. By L(E,F)
we denote the Banach space of all linear bounded
operators A : £ — F' with the norm [|Al| (g F) =

sup  ||[Az||r. It follows from [5] that Py €
T€E,||z|| <1

ﬁ(C[tj_l,tj], C[tj_l,tj]) (] =1,... ,N) and Py €
L(C[0,b], L>(0,b)). Moreover, the norms of these
operators are uniformly bounded in V:

1; we can

—1, nym = 1 then Pyu is a continuous func-

max

jmax || Py ooy

ot Clag) =€ NV EN,

IPn | £cfop, o0y S €0 N EN. (11)

Here c is a positive constant which is independent
of j and N. On the basis of (11) we obtain that

lu — Pyul g (o,p) — 0 as N — o0 (12)

for every u € C|0,b]. A consequence of this is

Lemma 2. Let S : L*(0,b) — C[0,b] be a
linear compact operator. Then

1S — PnS|lzpeeo,p),00,0) — 0 as N — oo.

In the following we present a result about the
rate of the error [|u — Pyl o0 (0,p)-

Lemma 3. Let u € Cmpy[O b, m € N,
—o00o < v <1, pe{0,1,...,m}. Let the node
points (8) with grid points (5) and parameters (9)
be used. Let Py : C[0,b] — m__li(AN) be deter-
mined by the conditions (10).

Then

H“_PN“HLOO(O,b) < Cen, (13)

where ¢ is a positive constant not depending on N
and en = en(m,v,p,r,rq) is defined as follows:

ey=N"", (14)



for

m<l—v,p>0,r>1 rqg>1;
m=1—v, p=0, r>1, rg>1;
m=1—-v,p>0,r>1, rg >1;
l-v<m<l—v+p, p>0,

m
r> , ra > 1
ml—l/
m:l—y+p7p>07r21 y rd > 1
—v
m>1—l/+p,p207
m m
r > s Td 2
1—v 1—v+p
en=N""InN (15)
for
m=1—v, p=0,r=1, rg > 1;
m=1—v, p=0,r>1, rg=1;
m=1—v, p>0,r=1, rqg > 1;
m=1—v+p, p>0, r> mn , ra=1;
1—v
eN = N—r(l—u) (16)
for
l-v<m<l—v+p, p>0,
L<Sr< g2
m>1—I/+P,p207
1§T< m 7Td2 m ;
1—v 1—v+p
ey =N~ min{r(1-v),rq(1—v+p)} (17)
for
m>1—l/+p,p20,
1< <—m 1< <
r s 1<rg < 5—y
= 1y ST U4y
eN = N-—Ta(1—v+p) (18)
for
m>1_l/+p7p207
> M l<ry<c
r T :
N

Proof. We follow the approach and techniques
of [5]. It follows from (11) that
u(t)—v(®)],

[u= Pyl ooy < ¢ max  max

where ¢ is a positive constant not depending on
N and v is an arbitrary element of the space
an__l%(AN). Thus, in order to study the rate of
the error |[u — Pyu| (o), we have to estimate
|u(t) —v(t)] for a suitable v(t) on every subinterval
[ti—1,t;], 7=1,...,N = 4n. In particular, taking

o(t) = u(tj)+u’(tj)(t—tj)+%u”(tj)(t—tj)%. .
1

+ mu(m_l)(tj)(t — ;)"

where t € [tj_1,t;], j =1,...,n, and using (4) for
the derivatives of u € CZ;V[O, b], we can estimate
u(t) — v(t) on the subinterval [t;_1,¢;] C [0, 4],

)2
7 =1,...,n;in a similar way we can derive the es-
timates for u — v (with a suitable v € an__l%(AN))

on other subintervals [tj_l,tj] C [%l,bL j=n+
1,...,4n; see [2] for a detailed proof.

4 Collocation method

We look for an approximation uy to the solution
u of equation (1) determing uy from the following
conditions:

tzfi,p

b
() - / Kt s)yun(s)ds — f(1)] =0,
0

uy € S5 (AN), m>1,

M >
p=1,....m;i=1,...,N,
(19)
with {& }, given by (8).
Theorem 1. Let the following conditions be
fulfilled:
1) Keop[0,b], v<1,0<d<b;
2) f€Cl0,b];

3) the homogeneous integral equation
b
u(t) = /K(t, s)u(s)ds, 0<t<b, (20)
0
has only the trivial solution v = 0;

4) the collocation points (8) with grid points (5)
and parameters (9) are used.



Then equation (1) has a unique solution u* €
C[0,b]. For all sufficiently large N, say N > Np,
the collocation conditions (19) determine for every
choice of parameters —1 < m < ... < nmp <1 a
unique approzimation uy € S?(ﬂ__li(AN) to u* and

sup |uj(t) —u*(t)| >0 as N —oo. (21)
te(0,b]

Proof. We consider equation (1) as the equa-
tion

u=Tu+ f (22)
in the Banach space L°(0, b), with the operator T
b

defined by (Tu)(t) = [ K(t,s)u(s)ds. It follows
0

from the assumtion 1) that 7' is compact as an op-
erator from L>°(0,b) to C[0,b] and from L*°(0,b)
to L*°(0,b), also. Since equation u = T'u has only
the trivial solution v = 0, then there exists the in-
verse operator (I —T)~t € L(L>(0,b), L>(0,b))
and equation (22) has a unique solution u* =
(I —T)"'f € L>(0,b). Since f € C0,b] and
T e L(L*>*(0,b),C]0,b]), then u* € C[0,b].

The collocation conditions (19) can be written
in the form

uy = PNTuy + Py f, (23)

with Py : C[0,6] — S (Ay), defined in Sec. 3.
By Lemma 2,

T~ PNTHL(LOO(O,b),LOO(O,b)) — 0 for N —oo.

(24)

Using (24) we obtain that (I — PyT) is invert-

ible for all sufficiently large N, say for N > Ny,
and

|(I — PNT <c

-1
) Hc(Loo(o,b),Loo(o,b))— v N2> No,

(25)
where c is a positive constant which is independent
of N. This shows that for N > Ny equation (23)
has a unique solution u%, = (I — PyT) "' Py f. We
have for it and u*, the solution of equation (22),

(I = PAT) (" — uiy) =
(I-PNT)u"—(I-PnT)uy=u"—PNTu*—Pyn f
=u" — Pyf— (Pyu* — Pnf) =u" — Pyu™.
Therefore,

uw* —uly = (I — PyT) " Hu* — Pyu®).

Taking the norms and using (25), we have

H“*_“*NHLoo(o,b) SCHU*_PNU*HLW(O,b)’ N=No,
(26)
where ¢ is a constant which is independent of N.
Since u* € C]0,b], the convergence (21) follows
from (12) and (26).
Theorem 2.
fulfilled:

Let the following conditions be

1) K(t,s) = g(t,s)k(t,s) is subject to the con-
ditions, stated in the assumptions (A1) and

(A2) (see Sec. 2);

2) f € CZZ;V[O,Z)], with m,v,d, p, fized in (A1)
and (A2);

3) equation (20) has only the trivial solution
u = 0;

4) the collocation points (8) with grid points (5)
and parameters (9) are used.

Then for all sufficiently large N, say N > Ny,
the collocation conditions (19) determine for every
choice of parameters —1 < m < ... <Ny <1l a
unique approrimation uy € S,S:L])L(AN) to u*, the
exact solution of equation (1). The following error
estimate holds:

sup |u*(t) - u*N(t)‘ <cen, N2>Ng, (27)

0<t<b

where ¢ 1s a positive constant not dependending on
N and ey is defined by the formulas (14)—(18).

Proof. Due to Theorem 1 we have to prove only
the estimate (27). By Lemma 1, u* € ng;;”[o, b].
Now the estimate (27) follows from Lemma 3 and
the inequality (26).

5 Superconvergence phenomenon
Theorem 2 suggests that by using a collocation
method based on piecewise polynomials of degree
m — 1 (m > 1) and graded grids of type (5), one
can reach a convergence order

sup |u*(t) — uj ()] < N7,
0<t<b

NZN07 (28)

for sufficiently large values of grid parameters r
and rq, see (14)—(18) and (27).



In (28) the order m cannot be improved,
whereas piecewise polynomials of the order m — 1
are used for the approximation. Nevertheless, as
it will be seen from Theorem 3 below, the con-
vergence order at the collocation points will be
higher than O(N~"™) for a special choice of collo-
cation parameters (9). Actually, we shall assume
that the points (9) are the nodes of a quadrature
formula

1

[ oeds =Y wign) + Bulg), (29)

“I1<m<...<nn<1,

which is exact for all polynomials of degree m.

Note that the weights wy (k = 1,...,m) will
not be used in our algorithms. The existence of a
quadrature formula (29) which is exact for poly-
nomials of degree m is used in the proof of the
following

Theorem 3. Letv € R, v < 1, m € N,
0<d<b, pe{0,1,...,m+1}. Assume that the
following conditions are fulfilled.

(i) The kernel K(t,s) = g(t,s)k(t,s) in equa-
tion (1) satisfies the conditions (A1) and
(A2) with m + 1 instead of m.

(i) f € CJ (0,0

(113) The integral equation (20) has only the triv-
ial solution u = 0.

(iv) The collocation points (8) with grid points
(5) and parameters (9) are used, where r and
rq are chosen so that
fm<1l—v,p>0, thenr>1,rg>1;
fm=1—v,p=0, thenr >1,rg>1;
ifm=1—v,p>1, thenr>1,r;>1;
ifl—v+p>m>1—v, p>1, then
r> 1 m , g > 1;

fm=1—v+p p>1, thenr >
rqg > 1;
. m
ifm>1—v+p, p>0, then r > —,
v
m

>
rd*l—y—i—p

(v) The quadrature formula (29) is exact for all
polynomials of degree m.

Then for all sufficiently large N, say N > Ny,
the collocation conditions (19) determine a unique

approzimation uy € S(ili(AN) to u* € CI0,b],

m

the exact solution of equation (1). For N > Ny
the following error estimate holds:

q=1,...,1n23);1,...,N UN(§0) =0 (&0)|
N~ if v<O,
eN™{ N~'InN, if v=0,
N-O=v) " if »>0.

Here c is a positive constant which is independent
of N.
Proof. See [2,3].
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