
Choice of the regularization parameter in ill-posed problemswith rough estimate of the noise level of dataUNO HÄMARIK, TOOMAS RAUSInstitute of Applied MathematicsUniversity of TartuLiivi 2, 50409 TartuESTONIAuno.hamarik@ut.ee, toomas.raus@ut.eeAbstract: � We consider linear ill-posed problems Au = f in Hilbert spaces. Regularized approximations
ur to solutions u∗ of problem Au = f are obtained by a general regularization scheme, including theTikhonov method, iterative and other methods. We assume that instead of f ∈ R(A) noisy data f̃ areavailable with the approximately given noise level δ: it holds ‖f̃ − f‖/δ ≤ C for δ → 0, but C = constis unknown. We propose a new a-posteriori rule for the choice of the regularization parameter r = r(δ)guaranteeing ur(δ) → u∗ for δ → 0. Note that such convergence is not guaranteed for the parameterchoice by the discrepancy principle ‖Aur − f̃‖ = bδ with b < C and for parameter choice rules whichdo not use the noise level (quasioptimality criterion, Wahba's generalized cross-validation rule, Hansen'sL-curve rule). We give error estimates which in case ‖f̃ − f‖ ≤ δ are quasioptimal and order-optimal.Key words: � ill-posed problem, noise level, regularization, parameter choice, convergence, discrepancyprinciple, L-curve.1 IntroductionWe consider an operator equation

Au = f , f ∈ R(A) , (1)where A ∈ L(H,F ) is the linear continuous op-erator between real Hilbert spaces H and F . Ingeneral our problem is ill-posed (see [16,18]): therange R(A) may be non-closed, the kernel N (A)may be non-trivial. We suppose that instead ofthe exact data f we have only an approximation
f̃ ∈ H with noise f̃ − f .The approximate solution ur of the ill-posedproblem Au = f is found by some regularizationmethod and depends on the regularization param-eter r. The important problem is how to choosethe proper regularization parameter r. If there issome information about the noise level of the data,this information should be used for the choice of
r. Consider now the choice of r in situations witha di�erent amount of information about ‖f̃ − f‖.Case 1. Full information about the noise levelis known: the exact noise level δ with ‖f̃−f‖ ≤ δ isgiven. Then the proper parameter choice r = r(δ)guarantees ur(δ) → u∗ for δ → 0, where u∗ is the

solution of Au = f , the nearest to the initial ap-proximation u0 (see Section 2; often u0 = 0). Inthis situation proper rules for the choice of r arethe discrepancy principle [9,17,18] and its modi�-cation [10] (the Raus-Gfrerer rule [2,11] in case ofnon-selfadjoint problem) and the monotone errorrule [6,14].Case 2. There is no information about noiselevel. In this case parameter r may be chosen bythe quasioptimality criterion [15,16], by the GCV-rule [3,19], by the L-curve rule [8] or by rule of [7].The serious disadvantage of these rules is that con-vergence ur(δ) → u∗ for δ → 0 is not guaranteed(see [1]).In applied inverse and ill-posed problems thesituation is often between extreme cases 1, 2: someapproximate δ is known, but it is unknown, if theinequality ‖f̃ − f‖ ≤ δ holds or not. In thispaper we are interested in the case of approxi-mately given noise level δ: instead of the inequal-ity ‖f̃ −f‖ ≤ δ we assume that ‖f̃ −f‖/δ ≤ C for
δ → 0, where C is an unknown constant. We givea rule for the parameter choice r = r(δ) guaran-teeing ur(δ) → u∗ for δ → 0. For self-adjoint prob-



lems this rule was lately proposed in [4,5], whereconvergence is also proven.2 Regularization methodsWe consider the regularization methods in the gen-eral form (see [17,18]), using in case F = H,
A = A∗ ≥ 0 (referred later as the selfadjoint case)the approximation

ur = (I −Agr(A))u0 + gr(A)f̃ , (2)in general case (in non-selfadjoint case) the ap-proximation
ur = (I −A∗Agr(A

∗A))u0 + gr(A
∗A)A∗f̃ . (3)Here u0 is the initial approximation, I is the iden-tity operator and the function gr(λ) satis�es theconditions (4)�(6):
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r, r ≥ 0. (6)Here p0, γ, γp and γ∗ are positive constants,

a ≥ ‖A‖ for the approximation (2) and a ≥ ‖A∗A‖for the approximation (3), γ0 ≤ 1 and the greatestvalue of p0, for which the inequality (5) holds iscalled the quali�cation of method.The following pairs of regularization methodsare special cases of general methods (2), (3) forproblems with H = F , A = A∗ ≥ 0 and for gen-eral problems respectively.M1 The Lavrentiev method uα = (αI + A)−1f̃and the Tikhonov method uα = (αI +
A∗A)−1A∗f . Here u0 = 0, r = α−1, gr(λ) =
(λ+r−1)−1, p0 = 1, γ = 1, γp = pp(1−p)1−p,
γ∗ = 1/2.M2 The iterative variants of the Lavrentievmethod and of the Tikhonov method. Let
m ∈ N, m ≥ 1, u0 = u0,α ∈ H �initial approximation and un,α = (αI +
A)−1(αun−1,α + f̃) (n = 1, . . . ,m) (method(2)), un,α = (αI + A∗A)−1(αun−1,α + A∗f̃)(n = 1, . . . ,m) (method (3)). Here r = α−1,
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λ
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)m), p0 = m, γ = m,
γp = (p/m)p(1 − p/m)m−p, γ∗ =
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M3 Explicit iteration scheme (the Landweber'smethod). Let un = un−1−µ(Aun−1−f̃), µ ∈
(0, 1/‖A‖), n = 1, 2, . . . (method (2)), un =
un−1 − µA∗(Aun−1 − f̃), µ ∈ (0, 1/‖A∗A‖),
n = 1, 2, . . . (method (3)). Here r = n,
gr(λ) = 1

λ

(

1 − (1 − µλ)r
), p0 = ∞, γ = µ,

γp = (p/(µe))p, γ∗ =
√
µ.M4 Implicit iteration scheme. Let α > 0 bea constant and αun + Aun = αun−1 + f̃ ,

n = 1, 2, . . . (method (2)), αun + A∗Aun =
αun−1 + A∗f̃ , n = 1, 2, . . . (method (3)).Here r = n, gr(λ) = 1

λ

(

1 −
(

α
α+λ

)r),
p0 = ∞, γ = 1/α, γp = (αp)p, γ∗ = b0/

√
α,where b0 = sup

0<λ<∞
λ−1/2(1 − e−λ) ≈ 0.6382.M5 The method of the Cauchy problem: ap-proximation ur solves the Cauchy problem

u′(r) + Au(r) = f̃ , u(0) = u0 (method (2)),
u′(r) + A∗Au(r) = A∗f̃ (method (3)). Here
gr(λ) = 1

λ

(

1 − e−rλ
), p0 = ∞, γ = 1,

γp = (p/e)p, γ∗ = b0.3 Parameter choice for exactlygiven noise level of dataIn regularization methods (2), (3) the error ur−u∗depends crucially on the choice of a regularizationparameter r. If r is too small, the approximationerror is large and if r is too large, the error is largedue to noise.At �rst we consider the choice of r in the casewhen the exact noise level δ with ‖f̃ − f‖ ≤ δis known. Then the most prominent rule for theTikhonov method and for methods M2�M5 is thediscrepancy principle [9,17,18], where the regu-larization parameter r = rD is chosen as thesolution of the equation ∥

∥Aur − f̃
∥

∥ ≈ bδ with
b = const > 1. The second rule in the case ofknown δ is the modi�cation of the discrepancyprinciple [10] (the Raus-Gfrerer rule [2,11] in non-selfadjoint case). In this rule the regularizationparameter r = rMD is chosen as the solution of theequation ∥
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(Kr(A))1/p0 for appr. (2), if p0 <∞,

(Kr(AA
∗))1/(2p0) for appr. (3), if p0 <∞,



where Kr(A) = I −Agr(A).In the Tikhonov method and in the iteratedTikhonov method the Raus-Gfrerer rule and themonotone error rule [6,14] choose the regulariza-tion parameters αRG and αME as the solutions ofthe equations (Aum,α − f̃ , Aum+1,α − f̃) = bδ, b ≥
1, (Aum,α − f̃ , Aum+1,α − f̃)/‖Aum+1,α − f̃‖ = δrespectively. Note that in these methods always
αME ≤ αRG, ‖uαME

− u∗‖ ≤ ‖uαRG
− u∗‖.All rules what we considered guarantee con-vergence ‖ur − u∗‖ → 0 for δ → 0 and order-optimality: if u0 − u∗ = (A∗A)p/2v, v ∈ H,

‖v‖ ≤ %, p > 0, then ‖ur − u∗‖ ≤ Cp%
1

p+1 δ
p

p+1 ,where in self-adjoint case p ∈ (0, p0−1] for r = rDand p ∈ (0, p0] for r = rMD, in non-selfadjointcase p ∈ (0, 2p0 −1] for r = rD and p ∈ (0, 2p0] for
r = rRG = 1/αRG and for r = rME = 1/αME. Theerrors of the approximations (2), (3) have corre-sponding forms
ur−u∗=Kr(A)(u0−u∗) + gr(A)(f̃−f),

ur−u∗=Kr(A
∗A)(u0−u∗) + gr(A

∗A)A∗(f̃−f)(7)and in the case ‖f̃ −f‖ ≤ δ relations (4), (6) yieldcorresponding estimates
‖ur−u∗‖≤‖Kr(A)(u0−u∗)‖+γrδ (∀ r≥0),

‖ur−u∗‖≤‖Kr(A
∗A)(u0−u∗)‖+γ∗

√
rδ (∀ r≥0).(8)If some rule for choice of the regularization param-eter gives parameter r(δ), which nearly minimizesthe corresponding estimate, i.e.

‖ur(δ)−u∗‖≤const inf
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{‖Kr(A)(u0−u∗)‖+γrδ},
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{‖Kr(A
∗A)(u0−u∗)‖+

γ∗
√
rδ},then this rule is called quasioptimal. Quasiopti-mal are the MD-rule, the RG-rule and the mono-tone error rule. The discrepancy principle is notquasioptimal for methods with �nite quali�cation(p0 <∞).It is obvious that if a rule is quasioptimal formethod (2) or (3), then this rule is order-optimalfor all p ∈ (0, p0] or for all p ∈ (0, 2p0] respectively.All these rules are unstable in this sense that ifthe norm of the actual noise in data is only slightly

larger than bδ, then the error of the approximatesolution may be arbitrarily large, irrespective ofthe value of the ratio of the actual and supposednoise level.There are also heuristic parameter choice ruleswhich do not use the noise level δ: the quasiop-timality criterion [15,16], the Wahba's generalizedcross-validation rule [3,19], the Hansen's L-curverule [8] and the rules of [7].Heuristic rules often work well, but as shownby Bakushinskii [1], one cannot prove the conver-gence of the approximate solution.4 Parameter choice for roughlygiven noise levelIn applied ill-posed problems the exact noise levelis often unknown. Therefore in the following weassume that only rough supposed error level δ > 0is given, but we do not know exactly, if ‖f̃−f‖ ≤ δholds or not. We give the rule for the stable pa-rameter choice which guarantees the convergenceof the approximate solution to the exact solution ifonly the ratio ‖f̃ −f‖/δ is bounded in the process
δ → 0:

‖f̃ − f‖/δ ≤ C = const (δ → 0). (9)Let us introduce the function
ϕ(r)=
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∥ for appr. (3).We introduce also the constant γ̃ as follows: if thequali�cation of the method is p0 = ∞, then γ =
γ1/2; if p0 < ∞, then γ̃ = [γp0/(3+2p0)]

1+3/(2p0) forthe approximation (2) and γ̃ = [γp0/(2+2p0)]
1+1/p0for the approximation (3).Note that in m times iterated Tikhonovmethod ϕ(r) = ϕ(α−1) = 1√

α
‖A∗(Aum+1,α − f̃)‖.Rule R. Let b2 ≥ b1 > γ̃ and s ∈ [0, 1] for theapproximation (2), s ∈ [0, 1/2] for the approxima-tion (3). If ϕ(1) ≤ b2δ then choose r(δ) = 1. Inthe contrary case we �nd at �rst r2(δ) > 1 suchthat

ϕ(r2(δ)) ≤ b2δ , (10)
ϕ(r) ≥ b1δ ∀ r ∈ [1, r2(δ)] . (11)For the regularization parameter r(δ) we choosethe parameter r, for which the function t(r) =

rs‖Br(Aur − f̃)‖ has the global minimum on theinterval [1, r2(δ)].



Let us reformulate the rule R for the choiceof the stopping index n(δ) as the parameter r initerative methods. For this rule R' the analogousresults hold as for the rule R.Rule R'. Let s ∈ [0, 1], s ∈ [0, 1/2] for ap-proximations (2), (3) respectively. Let b be theconstant such that b > γ̃. Find n2(δ) as the �rst
n = 1, 2, . . ., for which ϕ(n) ≤ bδ. For the reg-ularization parameter n(δ) we choose n ∈ N, forwhich the function t(n) = ns‖Aun − f̃‖ has theglobal minimum on the interval [1, n2(δ)].Rule R is similar to the rules in [12,13,15,16].In [12,13] for the regularization parameter the pa-rameter r2(δ) was taken. Rule R can be consid-ered as the generalization of rules [12,13], since incase s = 0 these rules coincide, while the func-tion ‖Br(Aur − f̃)‖ is monotonically decreasingwith respect to r. For non-selfadjoint problems theregularization parameter is chosen in the quasiop-timality criterion [15,16] as the global minimizerof the function r‖Br(Aur − f̃)‖, in rule R as theminimizer of the function rs‖Br(Aur − f̃)‖ with
s ∈ [0, 1/2] on the interval [1, r2(δ)].In [12,13] for methods M1�M5 the followingresults are proven: for each f̃ ∈ F we have
lim

r→∞
ϕ(r) = 0; if ‖f̃−f‖

δ ≤ const for δ → 0 then
‖ur2(δ) − u∗‖ → 0 for δ → 0. The �rst re-sult and the continuity of the function ϕ(r) guar-antee that the choice of �nite parameters r2(δ)and r(δ) ≤ r2(δ) according to Rule R is possi-ble. Note that the function ϕ(r) may be non-monotone and therefore in Rule R we must usethe conditions (10)�(11) instead of the inequali-ties b1δ ≤ ϕ(r) ≤ b2δ.The following convergence result is proven in[4,5] for the approximation (2) and in this paperwe prove it for the approximation (3).Theorem 1. If ‖f̃−f‖

δ ≤ const in the process
δ → 0, then in methods M1�M5 rule R guaranteesconvergence

∥

∥ur(δ) − u∗
∥

∥ → 0 for δ → 0 .In the following theorem we give the error es-timate, using notation
ψ(r) := ‖Kr(A

∗A)(u0−u∗)‖+γ∗
√
rmax{δ, ‖f̃−f‖}(compare (8).

Theorem 2. Let A ∈ L(H,F ), f ∈ R(A).Let the parameter r(δ) in approximation (3) bechosen according to Rule R with s ∈ (0, 1/2).Then for methods M1�M5 the following error es-timates hold1. If ‖f̃ − f‖ ≤ max{δ, δ0}, where δ0 :=
1
2‖Br(δ)(Aur(δ) − f̃)‖, then
‖ur(δ) − u∗‖ ≤ C(b1, b∗, d∗)

1

1 − 2s
inf
r≥0

ψ(r). (12)Here
d∗ = max

r,r′,r(δ)≤r≤r′≤r2(δ)+1
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ϕ(r)/δ ≥ b2, R(δ) is the great-est parameter for which ϕ(r) = b2δ and % =
1, 1+(2m/(2m+1))2m+1/8, 1+b20/2e, 1+b20/2, 1+
b20/2e for methods M1�M5 respectively, b0 ≡
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ψ(r). (13)The proof of Theorem 2 will be presented in aforthcoming paper.Proof of Theorem 1. We have from(7) due to(6) and (9) that
‖ur(δ)−u∗‖ ≤ ‖Kr(δ)(A

∗A)(u0−u∗)‖+Cγ∗
√

r(δ)δ(14)(compare (8). To prove the theorem, it su�cesto show the convergence of the right-hand side of(14). In [13] is proved that
√

r2(δ)δ → 0 if δ → 0. (15)From (15) and from the inequality r(δ) ≤ r2(δ),follows the convergence of the second term of (14).To show the convergence of the �rst term of(14) we consider separately the cases a) r(δ) → ∞(δ → ∞), b) r(δ) ≤ r = const (δ → 0). If
r(δ) → ∞ in process δ → 0 then using theBanach-Steinhaus theorem it is easy to show that
‖Kr(δ)(A

∗A)(u0 − u∗)‖ → 0. Consider now thecase b) r(δ) ≤ r = const (δ → 0). Then we proveat �rst that
rs
2(δ)‖Br2(δ)(Aur2(δ) − f̃)‖ → 0, if δ → 0. (16)



We have
Aur − f̃ = AKr(A

∗A)(u0−u∗)−Kr(AA
∗)(f̃ −f),(17)from which with regard the inequality
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2(δ)Cδ.(18)To show the convergence

rs
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∗A)(u0 − u∗)‖ → 0 (δ → 0)(19)we consider separately the cases a) r2(δ) → ∞(δ → 0), b) r2(δ) ≤ r = const (δ → 0). If r2(δ) →
∞ in the process δ → 0 then using the Banach-Steinhaus theorem we can prove similarly as in[18] (p.45) that rp‖BrAKr(A

∗A)(u0 − u∗)‖ → 0if r → ∞ (0 ≤ p ≤ 1/2). Now consider the case
r2(δ) ≤ r = const. Using (17), (5) we get
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2follows the convergence (19) in case r2(δ) ≤ const.Now the convergence (16) follows from (18), (19)and (15).

Taking into account the fact that the parame-ter r(δ) is the global minimum point of the func-tion t(r) = rs‖Br(Aur−f̃)‖ in [1, r2(δ)], from (16)follows the convergence
rs(δ)‖Br(δ)(Aur(δ) − f̃)‖ → 0, if δ → 0.Using (17) we get

rs(δ)‖Br(δ)AKr(δ)(A
∗A)(u0 − u∗)‖ ≤

rs(δ)‖Br(δ)(Aur(δ)−f̃)‖+rs(δ)Cδ → 0, if δ → 0.From this relation with implication of type (20)and with use of the inequality of moments we getthe convergence ‖Kr(δ)(A
∗A)(u0 − u∗)‖ → 0 for

δ → 0 which with (14) proves the theorem.In the following Remarks 1�3 we consider ruleR for the approximation (2).Remark 1. Note that for approximation (2)the analogue of Theorem 2 holds, where in the es-timates (12), (13) 2s is replaced by s and in thede�nition of d∗ ratio r/% is replaced by r.Remark 2. If the function t(r) =
rs‖Br(Aur − f̃)‖ is monotonously increasing onthe interval [r(δ), %r2(δ) + 1], then d∗ ≤ 1/%s. Inmost of numerical examples we had d∗ ≤ 1.Remark 3. One can show that in methodsM1, M2, M3 and M5 coe�cient c(b1, b∗, d∗) ≤ 2.5,if b1 = b2 = 1.5γ̃, b∗ = b2, d∗ ≤ 1/%s.5 ConclusionFor the choice of the regularization parameter rit is recommendable to use the noise level, whileheuristic rules as the L-curve rule, the GCV-ruleetc do not guarantee the convergence of the ap-proximations. If the noise level is given only ap-proximately and inequality ‖f̃ − f‖ ≤ δ is notguaranteed, the discrepancy principle and its mod-i�cation are unstable. If δ with ‖f̃ −f‖/δ ≤ constfor δ → 0 is given, we recommend to use our rulesR and R', guaranteeing convergence and in case
‖f̃ − f‖ ≤ δ also quasioptimal error estimates.Note that for increasing parameter s ∈ (0, 1/2)the error estimate (12) increases and estimate (13)decreases. Therefore, if we are almost sure in in-equality ‖f̃ − f‖ ≤ δ, smaller values of s are rec-ommended.
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