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Abstract: We describe the qualitative behavior of traveling wave solutions for thermodynamic phase
transitions under Landau equation of state and Korteweg’s theory of capillarity.
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1 Introduction

In this paper, we consider thermodynamic phase
transformations modeled by conservation laws
of mass, momentum and energy. We write
these laws in Lagrangian coordinates to de-
rive the following hyperbolic-elliptic system of
equations

vt = ux (1)

ut = Tx (2)

Et = (uT )x + Wx + Fx (3)

Here v denotes the specific volume, u the ve-
locity, and T the stress tensor which is defined
according to Korteweg’s theory of surface ten-
sion by the formula T = −p(v, θ)+ εux− δvxx,
where ε is the viscosity, δ is the capillarity co-
efficient measuring the interfacial surface ten-
sion according to Korteweg [7], θ is the tem-

perature, and p is the equation of state defined
by p(v, θ) = −Ψ(v, θ)v for a nonconvex Lan-
dau free energy Ψ(v, θ) of the following form

Ψ(v, θ) = − c1θ ln θ + c1θ + c2 (4)

+
a

2
θv2 +

b

4
v4 +

c

6
v6

where the coefficients a and c are positive, and
b is negative. These constants are chosen to
simulate two phase equilibrium. The choice
of this energy provides a good model to both
van der Waals fluids and multiphase elastic
materials, in addition to its simple theoreti-
cal description of conservation laws of mixed
type. The interstitial work flux W is added
to take into account the working of long range
interactions [7], and is given by the formula
W = δuxvx and the total energy E is defined
as follows E = e + u2

2
+ δ

2
v2

x where the internal
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energy e is given by e = Ψ − θΨθ. The term
u2

2
represents the kinetic energy, and δ

2
v2

x rep-
resents the interfacial energy. The heat flux F
is given by Fourier’s law F = µθx where µ is
the heat conductivity coefficient. We choose
the temperature θ to be an independent vari-
able instead of the energy and set c1 = 1 to
obtain

vt = ux (5)

ut = −p(v, θ)x + εuxx − δvxxx

θt = µθxx + (q(v, θ) + εux)ux

where the function q(v, θ) = θΨθv = aθv. The
system of equations (5) differs from the equa-
tions modeling the standard adiabatic flow in
the presence of higher order derivatives vxxx

and in having a nonconvex equation of state
of the form

p(v, θ) = −(avθ + bv3 + cv5) (6)

The coefficients a, b, c are selected so that the
pressure p has a critical temperature at θcr =
9b2

20ab
.
The goal of this study is to describe the

characteristics of visco-capillary traveling wave
solutions and type of singularity at different
phases. Slemrod [15] proved the existence of
phase jumps for thermodynamic flows, and Ha-
gan and Serrin [6] showed the existence of phase
transformations in a van der Waals fluids.

2 Traveling Waves in

Phase Transitions

We seek smooth shock wave profiles of system
(5) in the form

(v, u, θ)(x, t) = (v, u, θ)(x− st) (7)

or in scaled form

(v, u, θ)(x, t) = (v, u, θ)(
x− st√

δ
) (8)

for small ε, µ and δ, here s is the speed of the
traveling wave and these profiles satisfy the
following boundary conditions

U(x, 0) = (v(x, 0), u(x, 0), θ(x, 0)) (9)

=

{
Ul = (vl, ul, θl) x→ −∞
Ur = (vr, ur, θr) x→ +∞

where Ul and Ur are constant end states.
The speed s must satisfy the Rankine-Hugoniot
(R-H) jump conditions

s[v] = −[u] (10)

s[u] = [p]

s[E] = [pu]

here the jump notations defined as follows [v] =
vr−vl. For a fixed end state (vl, pl), these con-
ditions define the Hugoniot curve given by

H(v, p) ≡ e− el +
p + pl

2
(v − vl)

= 0 (11)

This curve describes the necessary conditions
for a point to be connected to (vl, pl) by a
shock wave. We substitute (7) in the system
(5), and integrate over (−∞, ξ) to obtain the
following autonomous differential equations

δv′′ = −εsv′ − (p− pl)− s2(v − vl)

µθ′ =
δ

2
sv′2 − s[(e− el) (12)

+ pl(v − vl)−
s2

2
(v − v)2]

Introducing the notation w = v′ and

L(v, θ) = p(v, θ)− pl + s2(v − vl)

M(v, θ) = e(v, θ)− el + pl(v − vl)

− s2

2
(v − vl)

2 (13)
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we rewrite (12) as a first order system of equa-
tions

v′ = w (14)

w′ = −εs

δ
w − 1

δ
L(v, θ)

θ′ =
δs

2µ
w2 − s

µ
M(v, θ)

We seek solutions of (14) with limiting end
states Ul, Ur as x→ ±∞, which correspond to
inviscid waves. We also note that the system
(12) with zero capillarity (δ = 0) is equivalent
to

v′ = − 1

εs
L(v, θ) (15)

θ′ = − s

µ
M(v, θ)

The solvability of the autonomous system
(14) with van der Waals pressure type and
with boundary conditions (9) has been inves-
tigated by Slemrod [15] where he showed the
existence of travelling wave solutions, Grinfeld
[5], and Hagan and Serrin [6]. Here, we present
the main propositions and properties related
to the curves H(v, θ), L(v, θ), and M(v, θ) for
a concrete polynomial equation of state. The
systems (14) and (15) admit travelling wave
solution ( phase transformations) provided there
are trajectories (orbits) connecting two singu-
lar points which satisfy the necessary Hugo-
niot relation H = 0, and simultaneously they
are equilibrium points of M and L. We group
the main properties of curves H, M, L in the
following lemmas:

Lemma 2.1 The Hugoniot curve H(v, θ)
uniquely defines θ as a function of v and tends
to ∞ as v approaches the value
(avl −

√
a2v2

l + 8a)/2a

Lemma 2.2 The function L(v, θ) uniquely de-
fines θ as a function of v < 0, i.e., θ = θL(v)
and L(v, θ) has the following properties:

1. ∂L
∂θ

= −av > 0

2. θL →∞ as v → 0−

3. θL → −∞ as v → −∞

4. θL has two critical values, whenever
θ < θcr

Lemma 2.3 The function M(v, θ) uniquely de-
fines θ as a function of v < 0, i.e., θ = θM(v),
such that

1. ∂M
∂θ

= 1, and dθM

dv
= −∂M

∂v

2. the curve θM has a unique maximal value
v which is smaller than the critical val-
ues of the curve θL

The proofs of these lemmas are simply de-
rived from the explicit form of these curves.
The restriction of v to negative values is phys-
ically meaningful in this particular model. We
also have

H = M +
1

2
(v − vl)L (16)

It was shown by Slemrod that the capillar-
ity can be used as a selection criterion in the
isothermal model (15). Also, there is a pos-
sibility of oscillatory phase jump connections.
In order to answer these questions in the ther-
modynamic model we identifiy the classifica-
tion of critical points of (14) or (15). The sin-
gular points are the intersections of L(v, θ) = 0
and M(v, θ) = 0. There are three possibilities
for these intersections:

A. θL intersects θM at a single point
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B. θL intersects θM at two points, where one
of them is a tangential intersection i.e.;
dθL

dv
= dθM

dv
,

C. θL intersects θM at three points

We linearize the system (14) and (15) around
an arbitrary singular point denoted by (v0, 0, θ0)
for (14), and (v0, θ0) for (15) to get v

w
θ

′

=

 0 1 0
−1

δ
∂L
∂v

− εs
δ
−1

δ
∂L
∂θ

− s
µ

∂M
∂v

0 − s
µ

∂M
∂θ


 v − v0

w
θ − θ0

 (17)

The characteristic equation of the capillary sys-
tem (17) is

λ(λ +
εs

δ
)(λ +

s

µ
)−∆ = 0 (18)

where ∆ denotes the determinant of the
system(18)

∆ = − s

µδ
(
∂L

∂v

∂M

∂θ
− ∂L

∂θ

∂M

∂v
) (19)

the corresponding characteristic equation for
the viscous system (15) is∣∣∣∣ ∂L

∂v
− λ ∂L

∂θ
∂M
∂v

∂M
∂θ
− λ

∣∣∣∣ = 0 (20)

with the characteristic roots

λ1,2 = 1
2
(∂L

∂v
+ ∂M

∂θ
)± (21)√

1
4
(∂L

∂v
+ ∂M

∂θ
)2 + ∂M

∂v
∂L
∂θ
− ∂L

∂v
∂M
∂θ

We observe that if the end states Ul and Ur

are in the same phase and satisfy the Hugo-
niot conditions, then there is a connecting or-
bit for the systems (14) and (15). In addition,

the eigenvalues of the viscous system (21) are
always real and the profiles of the orbits are
monotone. However, the eigenvalues of the
capillary system (14) can be complex numbers
at Ur, provided Ur is in the same phase as Ul,
and δ is large enough. In this case, the cor-
responding connecting orbits are oscillatory.
However, if the end states Ul and Ur are in dif-
ferent phases, then the connecting orbit (phase
transformation) is tangential at the right end
state Ur, which corresponds to a zero determi-
nant, that is ∆ = 0. This leads to real eigen-
values and one of them is zero at the right
end state in the capillary system (18) as well
in the viscous system (21). Thus, the phase
transformations can not be oscillatory.

3 Conclusion

The autonomous differential equations (14) and
(15) admit unique travelling wave solution (dy-
namic phase transition) such that its end states
satisfy the Rankine-Hugoniot conditions and
the right end state is tangential point to the
curves L and M . This type of phase jumps
are monotone. We also observe that diffusion
and capillarity terms lead to the same selec-
tion criterion.
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