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Abstract: - In this contribution we deal with the development, theoretical examination and
numerical examples of a method of lines approximation for the Cauchy problem for elliptic
partial differential equations. We restrict ourselves to the Laplace equation. A more general
elliptic equation containing a diffusion coefficient will be considered in a forthcoming paper.
Our main results are the regularization of the illposed Cauchy problem and the proof of error
estimates leading to convergence results for the method of lines. These results are based on the
conditional stability of the continuous Cauchy problem and an approximation by appropriately
chosen finite-dimensional spaces, onto which the possibly perturbed Cauchy data are projected.
At the end of this paper we present and discuss results of some of our numerical computations.
There are multiple applications in material sciences, thermodynamics, medicine etc.; related
problems are shape optimization problems which are important for nondestructive testing, e.g.
for crack location, thermal tomography and other applications.
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1 The Cauchy problem for Pois- This is a well-known improperly posed prob-

son’s equation lem. In 1923 J. Hadamard [6] has given a clas-
We consider the following Cauchy problem for sical example showing that the solution of the
Poisson’s equation on a rectangle problem is not continuously dependent on the
Cauchy data. Without loss of generality, we

Au=finQ=(0,1) x (0, L) (1) can set J =0,fo = 0,f3 = 0. Otherwise,

one has to solve a direct problem for Poisson’s
equation beforehand and add its solution to the

. ou solution of the Cauchy problem with the van-
U = f’t on E’ia 1= 152335 a_y = ¢1 on 21’ (2) lShlIlg f’S.

with given boundary conditions

It is impossible to solve this improperly posed

where
problem by the classical theory of partial differ-
Y, = {(w,O) ER0<z< 1} ential equz?tions and, therefore, it 'h'as reguired
the attention of many mathematicians in the
S = {(0,y) eR2[0<y< L} last 50 years. M.M.Lavrent’ev [11] has dis-
cussed bounded solutions of the Laplace equa-
Y3 = {(1,y) ER|0<y< L} tion with the Cauchy data in a special two-
dimensional domain where the bounded solu-
s = {(z,L)eR}0<z <1} tions depend continuously on the Cauchy data.

Fursikov [5] has extended this approach later to
Here, one tries to identify u and du/dy on ¥4. domains in R" proving an optimal stability es-
The functions f, ¢; are the given Cauchy data. timate with respect to the H%-norm. The latter



is analogous to Hadamard’s classical estimate
for analytic functions which forms the con-
tent of the three-circles theorem. L.E.Payne
[12], [13] studied solutions of more general
second-order elliptic equations which are con-
tinuously dependent on the Cauchy data under
some restrictions on the domains and on the so-
lutions. In 1975, L. E. Payne outlined this prob-
lem in [14]. H. Han has considered the problem
(1), (2) in [7] and gave an H°(£2)-stability esti-
mate.

y
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Figure 1: The Cauchy problem for the Laplace
equation

R.S.Falk [2] presented a three-lines theorem
for the two-dimensional Laplace equation with
the Cauchy data, for which a certain stabil-
ity estimate is given. M.Kubo [10] obtained
an HO-stability estimate for the Cauchy prob-
lem for the Laplace equation on a doubly con-
nected bounded domain. K.S.Fayazov and
M. M. Lavrent’ev [4] studied the Cauchy prob-
lem for elliptic equations with operator coeffi-
cients in space. Using the method of logarith-
mic convexity they proved uniqueness and H'-
stability estimate. In 1995, S.I. Kabanikhin
and A.L.Karchevsky [9] presented an opti-
mization method for solving the Cauchy prob-
lem for an elliptic equation numerically.

In the paper of H. Han and H.-J. Reinhardt
[8] a series of stability estimates for the prob-
lem (1), (2) in Sobolev spaces are given, from
which several regularization methods can be
proposed for computing numerical approxima-
tions (s. the paper of H.-J. Reinhardt, H. Han
and Hao [16]).

'w.r.t. |.|2 =Euclidean norm

2 Method of lines approxima-
tion

It is well-known that elliptic equations can be
approximated by using the method of lines.
One has two choices namely lines parallel to
the z- or y-axis. Our approach requires that
the lines should be chosen parallel to the y-axis.
With mesh points z; = th,i = 0,...,N,h =
1/N, we approximate 88—;2 in the Laplace op-
erator in (1) by the central difference quo-
tient of 2°d order. Therefore, approximations
u;(y) for the solution u(z;,y) of (1), (2) with
fo=0,f3=0,f =0 (s. Fig. 1) can be ob-
tained by the solution of the following system
of ordinary differential equations, ug = uy = 0,

(3)

"4 Uil — 2721‘ + Ujt1
h
with boundary conditions

ui(0) = f1(@i),u;(0) = ¢ () (4)

fori=1,... N — 1. This system can be decou-

pled using the eigenvalues and eigenvectors of
the RV=LN =1 matrix

=0

-2 1 0
1 -2 1 0
Ap = % .................
0 1 -2 1
0 1 -2

which are, in this simple model problem, ex-
plicitly known,

4 LT
Aj = —ﬁsm2 (]hg),
wl) = (sinjkhﬂ),;rzl,___,Nfl,
j=1,...,N — 1. With the orthogonal ma-
trix W = (@W]...|@N 1) consisting of the

normalized' eigenvektors @) = w()/|w)|,
as column vectors and the diagonal matrix
D =diag(\;j)j=1,..,N—1, the system (3) is equiv-
alent to

V' +DV =0 (5)



where V =WU,U = (u,...,un—1). Explicit
solutions of such a system are well-known and
can be written as

= &exp(V—XAiy) +niexp(—v—=\y),
i=1,... N—1.

vi(y)

The boundary conditions at y = 0 determine
the coefficients &;,7;,

N—-1
& = /8% (sinighm fi(e)
j=1
2 00)
- @N_12- ¥ .
m 2 (sinGijhm) f1 ()

_h s1n(zh]7r )

2 sin (zh ) ¢1( )
This yields the following explicit representation
of the solution u; on the i—th line,

ui(y) = (WV)i(y)
N-1
= 2h- E (sin(ikhﬁ)(cosh( —AcY) -
k=
N-1 1 h
2 sin(kjhm) fi(z;) + m

N—1
sinh(v/~Aey) Y sin(kjihr) xj)))
j=1

In the special case f; = 0, the solution can be
written as
N-1
ui(y) =
k=1

(@®), @1), 20

,/_ Nk k
where (-, )2 denotes the Euclidean scalar prod-

T .

uct, &1 = (¢1(z1), ..., 41(rn-1)) &
are the components of @®. If one chooses
¢1(z) = sin(mnz)/mn for some m < N, one
ends up with Hadamard’s classical example (s.
[6]). In this case, the convergence u;(y) —

u(zi,y)(h — 0) can be shown with the error
estimate (cf. Charton [1], 3.1)

>

sinh(v/—Ay) (6)

and w

|u(zi, y) — uily)]

< |sin(m7rwi)|”;7;y exp(mmy)h?, (7)
1=1,...,n—1.

This example is a special case of the situation
when the data functions fq, ¢; have truncated
Fourier series, i.e. fi,¢1 € Djs for some M
where

Dy = {¢ € C'(0,1)|$(0)

1

/sin(kﬂ's)qﬁ(s) ds =0,k > M}.

0

For such fi,¢1 the problem is conditionally
well-posed and the solution of the original prob-
lem is obtained by the formula

u(z,y) =

3 (2 sin(kmz) ((f1(.), sin(kr.)) 1, cosh(kmy)
k=1

+ (¢1(')’SZ;(IW'))L2 sinh(kﬂy))) (8)

For technical reasons, N > M should be as-
sumed. We do not deal with this situation fur-
ther but mention that convergence with order
O(h?) — as in (7) — can be shown. All details
can be found in Charton [1], Chapter 3.

3 Conditional well-posedness
and convergence under certain
boundedness condition
Instead of data with truncated Fourier series,
we now allow data such that the solution of
the Cauchy problem (1), (2) remains bounded
on 4. This is the widely used condition to
stabilize the problem. Using the technique of
logarithmic convexity one can show that, with
fi=0,f, =0, f3 =0, f =0 under the assump-
tion

ullpymg) < B (9)
one obtains the following stability estimate for
the solution of (1), (2),

lu(9)|z, < max(L,1)| 1|7, Y EY/*. (10)

In this case the solution has the form (cf. (8))

u(z,y) = 22 —sm (kmz) sinh(kmy) (11)



with a; = (¢1,sin(k7r))L2,k € N. For (9)
it is required that ¢; is such that the above
series converges for all (z,y) € [0,1] x [0, L].
Based on the assumption of the convergence

o0
of kzl a2 exp(2kmL) the logarithmic convexity

of the square of the Lo-Norm of (11) can be
proved (see [1] Chapter 4.1).

The convergence for h — 0 of the method of
lines approximation is assured by the follow-
ing steps. First, the data function ¢; — note,
that we consider the case f; = 0 — is projected
into the space Djs of functions of truncated
Fourier sine series. We even allow perturbed
data functions ¢5 such that ||¢p1 — @51, < e.
In this situation it is clear that, in general,
#5 ¢ Dy even if ¢1 € Dpr. One has to esti-
mate the projection error of the projected data
and then the error between the true solution
and the method of lines approximation with
projected data in Dps. For the convergence,
the magnitude of pertubations should depend
on the discretization parameter by h = O( /¢)
and the dimension of Dj; has to be chosen in
an optimal way. For the orthogonal projection
Py : D — Dy w.r.t. the Lo-scalar product,
D = {¢ € C'(0,1)|4¢(0) = ¢(1) = 0}, one has
the following estimate provided that (9) holds,

61 — 1 llLocmn)
< E M
— L?(1 —exp(—4nL)) exp(MnL)’

(12)

(Proof see [1], Chapter 4.2)

Besides u the solution of (1), (2), with unper-
turbed data ¢1, let further denote

u* = solution of (1), (2) with ¢7 = Pyé

ue = solution of (1), (2) with ¢°

u} = solution of (1), (2) with (¢5)* = Py
u; . = solution of line method approximation
on i—th line with data ((®5)*); = (¢5)*(z:),7 =
1,...,N—1.

(u})p, = continuation of “Zs(f‘/);—:l,...,N—l in Dyy.

Using u; ., the latter function is given by

—

)h(may)

N-1
2h
j=1

U

>

k=1

™ %

sin(kmjh)uj . (y) | sin(kmz)

The total error essentially consists of three
parts which have to be estimated separately,

u—(u)h = (u—u")+ (u—ug) + (uz — (uf)n)

Using (12) and the stability estimate (10), we
obtain an estimate for the first part
M I

1—
exp(MﬂL))
(13)

) (o) s < Co(L)E (

In our case of Laplace’s equation, the constant
Cs is given by

C»(L) = max(1, L) max (1, C (L)) ,

where

< 2
~ L?(1 — exp(—4nL))

Ci(L)

For the second part one can show, that

V/8 sinh(Mmy)

I =) () 1 < Cp) L= e (14)

with C2(y) > (1 — exp(—7y))~L.
Finally the third part fulfills the estimate

lluz — (u)nllL,

M3y
< Y exp(Mmy) ()" 1

(15)

All estimates hold for arbitrary y € [0, L]
(Proof see [1], Chapter 4.2).

The sum of the three contributions on the right-
hand sides of (13),(14),(15) now estimate the
total error. It is now our aim to choose M and
h such that, with ¢ — 0, the total error con-
verges to zero. In addition one tries to make
the error bound as small as possible. The fol-
lowing theorem summarizes these efforts.
Theorem: For the solution of (1),(2) let (9)
be satisfied and let the series in (11) converge
pointwise for every (z,y) € [0,1] x [0,L] and
uniformly in z. If one chooses

L



then for every y € [0, L) the solutions (u})p of
the line method approzimations converge to u
as € — 0 with the error estimate

1w = (u)n) (- 9)lzs <

emy) )
Co(L)E - (T +g>

Yy
=7

+v8C(y) exp(ﬂy)Lfn a
(In (1) + 7rL)4 exp(my)el L
IA

~—

Y g
+L 602 s

The results can be generalized to the situation
when a positive diffusion coefficient a = a(z)
multiplies the Laplace operator. The method
of lines approximation can then be defined as
above. However, for the stability and conver-
gence analysis, the eigenvectors and eigenval-
ues are not explicitly known and have to be
approximated and computed by some numeri-
cal method. The convergence of the eigenval-
ues and eigenvectors for h — 0 requires the
analysis of discrete Sturm-Liouville eigenvalue
problems. Finally, similar results as above can
be proved where the discrete La-scalar product
has to be replaced by a weighted one using the
coefficient a(x).

4 Numerical results

Besides the theoretical analysis we also per-
formed various numerical experiments for sev-
eral examples. Our computations confirm the
theoretical results, in particular the choice of
the optimal parameter M. One of our exam-
ples is the classical Hadamard example

sin(mmz) sinh(mny)
(mm)?

u(z,y) = ,meN

with corresponding exact boundary data

u(0,y) =u(l,y) = 0 Vyel0,1]

u(z,0) = 0 Vze(0,1)

ou _ sin(mmz)
3_y($’0) - m —- ¢1

We added a random perturbation of maximum
absolute value € to the data ¢;. In the next
step one has to dicretize the perturbed data

and project it onto the space D?A,, where we
used different values for h and M. The solution
of the method of lines can be computed in a
very simple way by just putting the perturbed
and then projected data into the explicit repre-
sentation of the solution of the method of lines
we presented above (see (6)). Note that now
the sum consists of M terms only because of
the preceding projection. In all our numerical
experiments we could observe, that the error
behaved as we could expect in connection with
the respective theoretical work. Especially the
three parts influencing the total error, which
we mentioned in the above theorem, came out
very clearly. In the scope of this paper we can
only present one picture, which shows the typ-
ical kind of results we get with the method of
lines (see Figure 2).
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Figure 2: Exact solution w und approxima-
tions with the method of lines at y = 1 for
m=4,M =4,e =102, h = 35, 55, 165

5 Conclusion

The method of lines in connection with the
data projection described above is a well fitting
regularization scheme for Cauchy problems for
elliptical partial differential equations. Theo-
retical results such as error estimates and a
convergence theorem as well as an easy and fast
computable numerical scheme give us some im-
portant tools to deal with such problems. The
basic theorems can be extended to more gen-
eral elliptic equations, which is carried out in
detail in [1].
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