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Abstract: - In [1], [2] we have proposed an optimal mean square combination of an arbitrary number of 
estimates. In particular, for two estimates, the combination represents the Millman and the Bar-Shalom-
Campo formulae for fusion of uncorrelated and correlated estimates respectively. In this paper, we present an 
application of this combination to the filtering problem. New suboptimal reduced-order robust filter for 
dynamic systems with different types of observations is proposed. Example demonstrates the effect of the 
common process noise on the fusion of the state estimates based on observations through several sensors. 
 
Key-Words: - Dynamic system, Kalman filter, suboptimal filter, data fusion, decomposition, minimum mean-
square error, Millman’s formula, multisensor 

 
1 Introduction 
The integration and fusion of information, from a 
combination of different types of observed 
instruments (sensors), is often used in the design of 
high-accuracy control systems. Typical 
applications that can benefit, the use of multiple 
sensors, are industrial tasks, military command, 
mobile robot navigation, multi-target tracking, and 
aircraft navigation (see [3], [4] and references 
therein). In recent years, there has been growing 
interest to fuse multisensor data to increase the 
accuracy of estimation parameters and system 
states. This interest is motivated by the availability 
of different types of local sensors having different 
spectrum characteristics. The observations, used in 
the estimation process, are assigned to a common 
target through association process. If it is decided 
that all local sensors observe the same target, then 
the next problem is how to combine (fusion) the 
correspondence local estimates? 
 In [1] and [2], we have derived the fusion 
formula (FF) which represents an optimal mean 
square linear combination of local estimates with 
weights depending on cross covariances of 
estimation errors. The main purpose of this paper is 
to show how to apply the FF in the filtering 
problems with different types of observations for 
more accurate overall state estimate. 

This paper is organized as follows. In Section 2, 
we present the statement of filtering problem with 
different types of observations. In Section 3, we 
propose new suboptimal filter which is derived by 
using the FF. The parallel structure of filter allows 
fast processing of observations. The obtained 
filtering algorithm reduces the computational cost 
and real-time processing requirements. We also 
demonstrate the relationship between the FF and 
well-known, the Millman and the Bar-Shalom-
Campo formulae.  In Section 4, the suboptimal 
filter is numerically tested.  Examples demonstrate 
the high-accuracy of the proposed filter. Finally, 
Section 5 is the conclusion. 

     
 
2 Statement of Filtering Problem with 

Different Types of Observations 
For simplicity, consider a discrete-time linear 
dynamic system with additive white Gaussian 
noise, 
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where nR∈kx  is state vector, and rR∈kv  is a 

Gaussian random noise, ( )kk Q0,N~v . 

Suppose that overall observation vector 
mR∈kY  is composed of N different types of 

observation subvectors (local sensors) 
(N)
k

(1)
k y,,y � , 

 

,
y

y
Y

(N)
k

(1)
k

k

�
�
�

�

�

�
�
�

�

�

= �    (2) 

 

where N,1,i,y (i)
k �=  are determined by the 

equations 
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with { } { }(N)
k

(1)
k w,,w �  are zero-mean, white 

Gaussian observation noises, ( )(i)
k

(i)
k R0,~w N . 

N,1,i �= , mmm N1 =++� . The initial state 
is modeled as a Gaussian random vector, 

( )000 P,xN~x . The N+1 noises { }kv , 

{ } N,1,i,w (i)
k �= , and the initial state 0x are 

mutually independent.  
 It is required to estimate the state kx  of the 

system given by overall observations kY . 
 If we rewrite the observation model (2),(3) in 
equivalent form 
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and apply the Kalman filter (KF) equations to the 
model (1), (4). We can produce the optimal 
estimate opt

kx̂  of the state kx , based on overall 
observations mR∈kY . However, there are several 
limitations for the KF practical implementation, 
such as computational cost and capacity of data 

transmission. Also numerical errors of the KF 
design are drastically increased with the state and 
observation dimensions, for instance, in 
multisensor intelligent systems [3].  Hence, the KF 
may be impractical to implementation. So reduced-
order suboptimal filters are preferable as there is 
no need to estimate states by using overall 
measurements kY  simultaneously. In this paper, 
we show that the FF may serve as an alternative to 
solve this filtering problem.   
 
 
3 Suboptimal Linear Filter 
The derivation of new suboptimal reduced-order 
filter is based on the assumption that the overall 
measurement vector kY  consists of the 
combination of the different subvectors 

(N)
k

(1)
k y,,y � , which can be processed separately. 

According to (1) and (3), we have N unconnected 
dynamic subsystems ( N,1,i �= ) with state 

vector  nR∈kx  and observation subvector (local 

sensor) imR∈(i)
ky : 
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Where i  is the fixed-number of subsystem. Next, 
let us denote the local estimate of the state 

kx based on the local observation (i)
ky  by (i)

kkx̂ . To 

find (i)
kkx̂  we apply the KF to the subsystem (5) [5], 

[6]. We have 
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Where N,1,i �= , and (ii)

kP  is the filtering error 
covariance, i.e. 
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Thus using the KF matched to (5) at fixed “i”, we 
have N  local Kalman estimates  
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based on the observations (1)

ky , …, (N)
ky , 

respectively, and corresponding local Kalman error 
covariances 
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The new suboptimal estimate sub

kx̂  of the state 

vector kx based on the overall measurements kY , 
(2) or (3), is constructed from the local estimates (8) 
by using the FF [1], [2]: 
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where nI is the nn ×  unit matrix, and (N)

k
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are nn ×  the time-varying weighting matrices 
determined from the mean-square criterion, 
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The following theorem completely defines the 
suboptimal overall estimate sub

kx̂  and its overall 
error covariance  
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Theorem 1 (Fusion Formula): [1],[2].  Let 

,,x̂ (1)
k �  (N)

kx̂  are the local Kalman estimates (8) 

of an unknown state - kx and the weighting 

matrices   (N)
k
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k c,,c �  are given by  
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where (ii)

kP , the local Kalman error covariance (9) 
is determined by the KF (6), and 

( ) ji,PP
T(ji)

k
(ij)
k ≠=   is cross-covariance,  
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Theorem 2: The cross-covariance (ij)

kP  satisfies 
the following recursion: 
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where the gain (i)

kK  is determined by the KF (6).   
 
The formula (10) is called fusion formula (FF). 
 
Corollary 1: If (N)

k
(1)
k x̂,,x̂ �  are unbiased 

local Kalman estimates then the suboptimal 
estimate sub

kx̂   in (10) is unbiased. 

Corollary 2:- The overall error covariance sub
kP   is 

given by 
 

 ( )�
=

=
N

1ji,

T(j)
k

(ij)
k

(i)
k

sub
k cPcP . (16) 

   
    Thus the local Kalman filters (6), the FF (10) 
and (13) and the recursive (15) completely define 
the new suboptimal filter.  
  
 In particular case at 2N = , the FF (10) and (13) 
reduces to the Bar-Shalom-Campo formula [7]: 
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If the two estimates (1)

kx̂ and (2)
kx̂  are uncorrelated, 

i.e. 0PP (21)
k

(12)
k ==  in Eq. (17), then we have the 

Millman formulae for the weights [5, 6]: 
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Remark 1: The local Kalman estimates ,,x̂ (1)

k �  
(N)
kx̂  are separated for different types of sensors. 
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Therefore, they can be implemented in parallel for 
various types of observations (i)

ky , i = 1 , …. N. 
 The proposed filter is also robust, since it can be 
corrected even if one of the parallel local Kalman 
estimate (i)

kx̂  diverges. In this case, the 

corresponding weight matrix (i)
kc  in the weighting 

sum , FF, will tend to zero, thereby indicating that 
the diverging estimate (i)

kx̂  will be discarded in the 
weighting sum of the FF.     
 
Remark 2: We may note, that the local Kalman 
filter gains (i)

kK , the error covariances (ij)
kP , and 

the weights (i)
kc  may be precomputed, since they 

do not depend on the present observations kY . But  

only on the noises statistics kQ  and (i)
kR , and the 

system matrices (i)
kkk H,G,F , which are the part of 

system model (1), (3). Thus, once the observation 
schedule has been settled, the real-time 
implementation of the suboptimal filter requires 
only the computation of the local Kalman estimates 

(N)
k

(1)
k x̂,,x̂ �  and the final fusion estimate sub

kx̂ . 
 
 
4 Examples 
 

4.1 Identification of a Scalar Unknown  
To estimate the value of a scalar unknown θ  from 
two types of observations the system and 
observation models are 
 
  ,x,xx kk1k θ≡=+   (19) 
 
 ,wxy (1)

kk
(1)
k +=   ,wxy (2)

kk
(2)
k +=  (20) 

 
where ( ) ;1,2i,r0,~w i

(i)
k =N  ( )2

0 ,~x θσθN .  
    
The KF gives the optimal mean-square 
estimate, opt

kx̂ , of an unknown θ≡kx   based on 
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Using the “step-by-step” induction, we obtain the 
exact formula for the optimal mean square error  
(MSE)  
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 Together with the KF (21), we apply the 

suboptimal filter. Let denote the local Kalman 
estimates of the unknown θ≡kx  based on the 

single observations (1)
ky  and (2)

ky  by (1)
kx̂  and (2)

kx̂ , 
respectively. Using the system model with state 

kx  and single observation (i)
ky , 
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Next, using the FF (17), one can obtain  
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where the local  mean square error,  (11)
kP and (22)

kP  
are determined by (24), and the cross-covariance 

(12)
kP , according to Eq. (15) is determined by  
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Using (24)-(26), one can obtain the exact 
expressions for (1)
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kc  and (12)

kP , respectively, 
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And finally, using (16), the overall MSE takes the 
form 
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It is seen from Fig.1, for the case 1r1 = ,  2.0r2 =  

and 12 =θσ that the difference between opt
kP  and 

sub
kP  is negligible.  

 

 
 
Fig.1. Illustration of the optimal and suboptimal 
mean square errors: opt

kP  (solid line) and sub
kP  

(dotted line). 
 
 
4.2 Data Fusion of Multisensor’s Estimates  
 

Consider a scalar system described by 
 ,T,0,1,k,vaxx kk1k �=+=+   (29) 
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where  
 ( )q0,~vk N , ( )2

0 ,~x θσθN , 

  ( ) N,1,i,r0,~w i
(i)
k �=N . 

 

This represents the model which takes N sensor 
modes. The parameters are subject to a = 0.9, 

20T = , q = 0.01, = 0.5, = 1, and 
.4,3,2,1N =  An optimal Kalman filter ( opt

kx̂ )  and 

a  suboptimal filter ( sub
kx̂ ), consisting of N local 

Kalman filters (N)
k

(1)
k x̂,,x̂ �  as presented in  

Section 3, were used to estimate kx . The 
observation noise variances were set as follows:    
r1 = 0.2, r2 = 0.1, r3 = 0.06 and r4 = 0.04. Fig.2 
shows the time histories of the optimal opt

kP  and 

suboptimal sub
kP  mean square errors as a function 

of number of sensors  .4,3,2N =  Note that in the 
case of single sensor ( 1N = ), the optimal Kalman 
filter and the suboptimal filter are identical.  From 
the results in Fig.2, it can be seen that mean square 
errors, opt

kP  and sub
kP , are reduced depending upon 

number of sensors. This means that larger the 
number of sensors, higher is the estimation 
accuracy. And also as in example 4.1 the 
differences between opt

kP  and sub
kP  are negligible 

for any number of sensors .4,3,2N =   
 

Fig.2. The optimal opt
kP (solid line) and suboptimal 

sub
kP  (dotted line) mean square errors as a function 

of number of sensors N. 
 
 
5 Conclusion 
 
In this paper, we present new suboptimal filter for 
discrete-time linear systems with different types of 
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observations. This filter represents the optimal 
linear combination of arbitrary number of local 
Kalman filters. Each local Kalman filter is fused by 
the minimum mean square error criterion. The new 
filter has parallel structure and is very suitable for 
parallel processing of observations. The examples 
demonstrate the efficiency and high-accuracy of 
the proposed filter. 
    The filter can be widely used in the different 
areas of applications: industrial, military, space, 
communication, target tracking, inertial navigation 
and others. 
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