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Abstract: - The boundary conditions at the interface between two immiscible fluids were derived for the 
general case of large-amplitude perturbations. The interface was modeled as perturbed free boundary that 
evolves in time, and the non-linear description was performed and analyzed in a wide range of physical 
situations. The differential equations of the interfacial motion thus obtained might be useful in the non-linear 
development of classical hydrodynamic instabilities. They should play an important role in the understanding 
of hydrodynamic phenomena associated with flows involving complex interface evolution including 
parametrical control (electromagnetic field, vibration, etc.).  
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1   Introduction 
The modeling of fluid interfaces (boundaries 
between different immiscible fluids, fluid and gas, 
etc.) presents tremendous challenges, which are 
caused by the interplay between interface dynamics 
and the fluid flow in contacting regions. Fluid 
interfacial motion induced by surface tension plays 
an important role in diverse industrial and natural 
processes [1-12]. Examples of such phenomena are 
studied in touch with capillarity [1,2,7], low gravity 
[3], cavitation [4], hydrodynamic and hydromagnetic 
stability [5,7,9,10], reactive flows [6], crystallization 
[8], interfacial transport [11,12] , etc.  
     The current studies of fluid flows with dynamic 
interfaces between two (or more) layers are devoted 
to the following problems: 
• surface instabilities, 
• parametric control of the interfaces with 

electromagnetic fields, vibrations, etc.,  
• governing equations for the interfaces in diverse 

physical situations: boiling, evaporation, 
crystallization, etc. 

In this paper, a “macroscopic” description was 
introduced when two fluids were separated by so 
called interface, which means a surface with zero 
thickness. And the local dynamic equilibrium 
conditions of a two fluid system (fluid 1 and fluid 2) 
on the moving surface of any shape and amplitude 
was discussed. This situation is a key point for a lot 
of problems for the flows with free surfaces and 
interfaces [8-15]. Thus, the boundary conditions for 
the dynamic interface between two fluids were 
formulated and analyzed here in detail.The paper 

was organized as follows. In Section 2 some 
preliminaries concerning the boundary conditions 
were stated and the problems were discussed. 
Section 3 was denoted to analysis of kinematic 
boundary condition. Then (Section 4) the 
formulation of non-linear dynamical equilibrium of 
the interface between two fluids was considered and 
different cases were analyzed in touch with possible 
external forces. In Section 5 a derivation of a non-
linear dynamical condition was given. Section 6 
dealed with some limit cases including linear 
boundary condition for the small-amplitude 
perturbations. In Section 7 the conclusion was given 
as concern to practical application of the results 
obtained and some planning for further 
developments was done. 
      Parametric excitation of oscillations is done in 
some system by temporal variation of one or several 
parameters of a system (mass, momentum of inertia, 
temperature, stiffness coefficient; for the fluids: 
pressure, viscosity, etc.). Thus, parametric 
oscillations are excited and maintained by 
parametric excitation. Examples of parametric 
oscillations are oscillations of a stiffness coefficient 
due to a temperature variation in a loaded elastic 
solid, which are able to evoke later on its vibrations. 
The oscillations of temperature (pressure) in fluid 
(gas) flow are able to evoke oscillations of its 
pressure (temperature) or (and) viscosity with a 
consequitive oscillations of other flow parameters. 
Electric and magnetic fields may cause the 
oscillations in flow of conductive fluid producing 
the oscillations of other parameters, etc. 



2 Preliminaries 
First some basic definitions, notations and 
experimental knowledge were put together and 
discussed in touch with mathematical simulation of 
the wave film flow and other hydrodynamic 
problems with evolutionary boundary interfaces. For 
example, plane film flow had some kind of 
uncertainty as concern to boundary conditions. It 
was assumed that liquid film was spreading out on 
the rigid surface having the upper free surface or 
some interface with the other fluid as it was shown 
in the Figure: 
 

 
Figure. The evolution of the interface of two fluids. 

 
An orientation of the one normal and two tangential 
vectors on a perturbed interface shown in Figure 
evidenced that boundary conditions have 
dynamically depended  on these vectors’ orientation 
at the each and every point of a domain. 
     If a film thickness was big enough, then Van-der-
Waals forces were neglected. By solution of a film 
stability problem in a linear approach, one did not 
need to state the initial conditions. Then considering 
a parametric excitation or suppression of a 
perturbation of free boundary, normally the solution 
was sought in the same form using the linear 
superposition principle. Therefore a fully determined 
boundary problem required only the statement of the 
boundary conditions on a rigid surface and at the 
interface. The classic boundary condition on the 
body (rigid surface) is zero velocity. Though 
nowadays there are many evidences that tangential 
velocity may be non-zero. The question is stated by 
a lot of researchers starting from Stokes (1845), 
Lamb (1947), Zhukovskii (1948). Later on, it is 
shown in the review [16] that on the unmoisten body 
surface the remarkable slip of fluids is possible. 
Happel and Brenner [17] consider as mostly reliable 
hypothesis that tangential velocity of a fluid at each 
point of a rigid surface has to be counted as 
proportional to a shear stress at the local point, with 

so called coefficient of a slip friction β. They assume 
that β depends only on the fluid and on the body 
surface properties. The conditions of a slip are also 
analyzed in some other papers.  
 

 
3 Kinematic condition 
On a deformable free surface z=a+ χ (x,y,t), or 
interface of two fluids, a kinematic boundary 
condition was considered in the form (continuity of 
normal velocity across the interface): 
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where {u,v,w} is velocity vector, j=1,2 (“fluid 1” 
and “fluid 2”, respectively), χ (x,y,t) is perturbation 
of the interface. In case of a free surface, the second 
fluid is absent and indexes j are omitted.  
     The conditions (1) was scrutinized transforming 
them into the following form (z=a+ χ (x,y,t)): 
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where the second equation was obtained by 
subtraction of the corresponding two equations (1). 
From the second equation (2) followed that the 
tangential velocities in both directions were the same 
for “fluid 1” and “fluid 2” at the interface (continuity 
of tangential velocity across the interface): 
     z = a + χ  ,      u1 = u2 ,      v1 = v2 .                (3) 
Otherwise, if supposed the slipping of fluids at the 
interface, then , , where from with 
account of the second equation in the equation array 
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So that in case (3) there are available the arbitrary 
perturbations by x and y directions. But in case of a 
slip at the interface, the equation (4) must be 
satisfied as a relationship between perturbations by 
coordinates x and y. The result was quite 
unexpected: slip of the phases at the interface 
requested some relation between the perturbations 
while, if the fluids are not slipping at the interface, 
the boundary perturbations might be arbitrary. What 
was more, in case of a slip of fluids at the interface, 
there were impossible any plane perturbations of the 
interface, because if  ∂ 0/ =∂yχ , then 0/ =∂∂ xχ .  
 
 
4 Dynamic conditions  
The dynamic conditions at the interface consist of 
the balance of shear and normal stresses. Therefore 
on a perturbed interface, in case of immiscible 



fluids, the capillary forces should be also taken into 
account. They are big enough by the remarkable 
perturbations. The capillary force was expressed in 
the form: 
                              Kp σσ =  ,                              (5) 
where σ is the surface tension coefficient, K is the 
average curvature of a perturbed interface between 
two fluids. According to the differential geometry, K 
is expressed in an arbitrary point of the interface in 
the following form: 
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In a linear approach, in case of small perturbations 
of the interface, from an equilibrium state, the 
correlation (6) is the well-known Landau formula 
[7], which is obtained as solution of the variational 
problem for the minimum of a full free surface 
energy. It is easily examined that this expression 
contains in its expansion by the small-amplitude 
perturbations only the odd-order terms. This is why 
the linear approximation is successfully applied even 
in case of small-amplitude non-linear perturbations 
of a free surface (interface). It is exact solution with 
accuracy up to second-order terms by perturbations. 
     Normally, in formulation of the dynamic 
equilibrium condition at an interface, in a linear 
approach, all forces are considered by z = a. So that 
only a projection on an unperturbed surface is 
considered. But in case of large-amplitude 
perturbations, the problem is substantially non-linear 
and requires considering the curved perturbed 
surface at each its point. The normal and tangential 
vectors, at each point of the interface, may deviate 
substantially from the stable equilibrium state. 
Therefore all forces should be projected onto the 
normal and tangential vectors at each point of the 
curved surface. 
 
 
5 Derivation of non-linear conditions  
The unit vectors (one normal and two tangential) at 
each and every point of the deformable interface can 
be presented in the form: 
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Using (7) one can determine the stresses on the 
elementary plane having the normal unit vector n. 

For this purpose, first the following expressions of 
the hydrodynamic stresses are represented as [4]: 
        pnn= nx pnx+ ny pny+ nzpnz ,   
        pτx= τxxpnx+ τxypny+ τxzpnz,,                               (8)         
       pτy= τyx pnx+ τyypny+ τyz pnz ,                            
where are: 
pnx = nxpxx + nypyx + nzpzx ,     n= {nx, ny, nz} , 
pny = nxpxy + nypyy + nzpzy ,    τ x= {τxx, τxy, τxz},      (9) 
pnz = nxpxz + nypyz + nzpzz ,    τ y= {τyx, τyy, τyz}.    
Then the following well-known expressions for the 
stress tensor were taken [4]: 

    
x
uppxx ∂

∂+−= µ2 ,    







∂
∂+

∂
∂==

x
v

y
upp yxxy µ  , 

    
y
vpp yy ∂

∂+−= µ2 ,     







∂
∂+

∂
∂==

z
v

y
wpp zyyz µ ,     (10) 

     
z
wppzz ∂

∂+−= µ2 ,   







∂
∂+

∂
∂==

z
u

x
wpp zxxz µ  , 

where the indexes j=1,2 were omitted because the 
expressions for j=1 and j=2 were the same. Here p 
was the pressure, µ was the dynamic viscosity. Now 
substituting the equations (9), (10) into (8), with 
account of (7), yields the following normal and shear 
stresses at the perturbed non-linear interface: 

(11),

11

1

2
22

22







∂
∂








∂
∂+

∂
∂−

∂
∂








∂
∂+

∂
∂−

∂
∂

∂
∂








∂
∂+

∂
∂+







+
∂
∂












−








∂
∂+

∂
∂












−








∂
∂









∂
∂+








∂
∂+

+−=

yy
w

z
v

xx
w

z
u

yxx
v

y
u

y
v

yx
u

x

yx

ppnn

χχχχ

χχ

χχ

µ

.22

1

1

1

1

2

222







∂
∂

∂
∂









∂
∂+

∂
∂−

∂
∂









∂
∂+

∂
∂−

∂
∂









∂
∂+

∂
∂−

−

























∂
∂−








∂
∂+

∂
∂









∂
∂+








∂
∂+








∂
∂+

=

yxy
w

z
v

yx
v

y
u

xy
v

x
u

xx
w

z
u

yxy

p x

χχχχ

χ

χχχ

µ
τ

     The equations for pτx and pτy are symmetric with 
regards to the variables x and y. Therefore here only 
pτx was written explicitly. Then the dynamic 
equilibrium of the interface might be expressed as 
the following general conditions: 
[ ] [ ] [ ] [ ] ,0, 1
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 are 2-D vectors. 
The assignment [ ]  means a jump of corresponding 
parameter of a fluid at interface, e.g. [ ] . 
Here ρ is a density, g is an acceleration due to the 
gravity. In equation (12) the only vertical 
components of the normal and tangential vectors of 
the tangential plate at each point of the interface 
were considered because only one mass force 
(gravitational) acting in a vertical direction was 

21
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taken into account. The first equation in (12) is the 
equilibrium of normal stresses while the other two  
express the equilibrium of shear stresses in two 
perpendicular directions in the tangential plate. In 
general, the gravitation might be directed arbitrary, 
as well as some other volumetrically distributed 
forces (e.g. electromagnetic) might be presented. 
Then, instead of (12) yield the following equations: 

                     (13) 
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For example, if the lower fluid is electroconductive 
one under an electromagnetic field with vertical 
component Hz(x,y,t), then the term [14] 0  
appears in the first equation (13) to the left. Here µ

zzm nH 25, µ
m 

is the magnetic permeability. If the other fluid is 
electroconductive while the first one is non-
conductive, the inverse situation comes into being 
and the sign changes. Then, if the liquids are moving 
on the surface of some vibrating plate, the problem 
might be considered in the same way supposed that 
the inertial coordinate system is touched with the 
vibrating plate. In this case,  will replace vgg + g , 
where  is acceleration due to vibration, e.g. by 
given vibration amplitude A

vg
g and frequency ω, = 

A
vg

gcosωt, where t is time.   
     Substitution (6), (9)-(11) into (13) results in the 
boundary conditions for a general case. For example, 
for electroconductive fluid below a non-conductive 
one, under vertical electromagnetic field yields [14]: 
• normal to the interface: 

( )

( )

•





























∂
∂

+
∂
∂

−









∂
∂

+
∂
∂

+
∂
∂



















∂
∂

+
∂
∂

−







∂
∂

+
∂
∂

+
∂
∂

•

•























∂
∂

∂
∂

−
∂
∂

+
∂
∂






+










∂
∂

−
∂
∂

−
∂
∂

∂
∂













+−•

•



















∂
∂

+







∂
∂

++



















∂
∂

+







∂
∂

+−

y
u

x
v

y
u

x
v

yy
w

z
v

y
w

z
v

x

xx
u

x
w

z
u

x
w

z
u

xx
u

Hg

yxyx
pp

zm

22
1

11
1

11
1

22
2

222
2

111
1

2
21

222
3

22

12

)14(
2
1

2
1

121

µ

µ
χµµχ

χµ

χµ

µχρρ

χχχχ

 

 

,2
2

2

222

2

2

2

2

2

2

2
2

1
1

2
2

2
1

1















∂
∂

∂
∂+

∂∂
∂

∂
∂

∂
∂






−








∂
∂

∂
∂+

∂
∂+

∂
∂

=






∂
∂

−
∂
∂

+







∂
∂









∂
∂

−
∂
∂

+
∂
∂

∂
∂

•

xyyxyxyxyx

z
w

z
w

yy
v

y
v

yx

χχχχχχχχχσ

µµχµµχχ

       

• tangential to the interface in x-direction: 
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• and tangential to the interface in y-direction: 
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(16) 
The equations (14)-(16) were substantially 
simplified for the plane perturbations when 

  or  . Normally, study of a wave 
motion of a perturbed interface is done in 
assumption that all parameters are represented 
through the sum of the stable parameters and 
perturbed values, which are assumed, in most cases, 
as small comparing to the corresponding 
unperturbed ones, e.g.: , etc. 
A linear approximation of (14)-(16) might be got 
taking the following boundary conditions for the 
unperturbed system (boundary surface: z=a=const): 
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Strictly speaking, in general case, there should be u10 
≠ u20, v10 ≠ v20 (tangential slip). Because a general 
case is too complicated, normally different 
simplifications are used: linear case, non-linear 
approximation up to the second-order terms, etc. 
[12,13]. And the correlations similar to (14)-(17) 
might serve as basic by derivation of simpler 



boundary conditions based on some additional 
hypotheses about the physics of the processes. 

 
 

6 Linear case 
For the small-amplitude perturbations, one could 
derive the following linear approximation from (14)-
(17) using asymptotic expansions by x for all 
functions in the vicinity of the unperturbed surface: 
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     If subtract the equation (18) for j=1 from the 
corresponding equation for j=2, might be got 
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Equation (21) thus obtained must be satisfied for any 
deformation χ  of the interface, and the parameters 
of the unperturbed system did not depend on χ . 
Therefore u10 ≡ u20,, v10 ≡ v20  should be. Otherwise, 
by u10 ≠ u20, v10 ≠ v20 yields  
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As (22) showed, a slip on the interface did not 
tolerate arbitrary perturbations, e.g. plane in 
particular. In general, from (1) similar correlation   
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Thus, from kinematic condition yielded that 2-D 
waves were possible if and only if the slip was 
absent. The correlation (23) had obvious physical 
explanation. For plane waves, e.g. ∂ 0/ =∂xχ , it did 
not matter, whether or not there was a slip by y-
direction and 0/ ≠∂∂ xχ , because u1=u2 (see 
Figure). But on the unperturbed interface, a slip of 
phases was possible, and the interface according to 
(19) might keep smooth (without perturbations). If 
no slip (u10=u20), it might cause a perturbation of the 

interface 0/ ≠∂∂ xχ , which was clearly understood 
from the physical point of view as well. 
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     Analysis of the linear boundary conditions (18)-
(20) showed that shear stress on the free surface for 
a liquid moving in a gas might be substantial, in 
contradiction to what was normally assumed by 
many researchers. Thus, this question required 
careful consideration for each specific case. The 
equations (18)-(20) were simplified accounting the 
continuity equation at the interface: 
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and dynamic conditions as follows: 
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     Further, because at z= χ  in (26) w1=w2, the 
derivatives of w1, w2 by x,y should be equal as well. 
This resulted in the last two equations (26) in: 
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When the slip of liquids at the interface was absent, 
then u10=u20, v10=v20, therefore the derivatives by x 
and y equate as well. Thus, the equations (17) 
resulted 

(28).,2
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and, with account of the second equation from (24): 
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The first equation in (27) is satisfied only in the 
following two cases: 
a) µ1 = µ2 , the same viscosity or the same liquids 

(trivial case),  p10 = p20; 
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In the plane flow (e.g. ∂/∂y=0), from (30) follows: 

And further analysis of the equations (31) showed 
that by µ1=µ2, the pressure in both fluids was the 
same so that the interface had no reason to perturb. 
If  µ1≠µ2, the situation depended on the sign of the 
viscosity difference µ2-µ1 and on the velocity 
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decreased by x), and the other fluid was more 
viscous, the pressure in a first fluid was something 
lower than in a second one. Therefore the interface 
had tendency to penetrate into the first fluid, etc. 
     The linear boundary conditions (28) thus 
obtained expressed an equilibrium of the normal and 
tangential forces on the interface between two fluids. 
They correspond to a well-known linear conditions 
for such situations except the normal stresses in x- 
and y- directions projected on a perturbed interface. 
The last ones have a first order by perturbations and 
should be also taken into account when velocities of 
the fluids at the interface were different (slip). 
Otherwise, the above-mentioned terms were omitted, 
and the boundary conditions at the interface of two 
fluids corresponded to the classical ones. 

 
 

7 Conclusion 
In this paper, the non-linear boundary conditions at 
the interface of two fluids (free surface in limit case) 
were considered. The equations of a non-linear 
dynamic evolution of the interface have been 
derived and analyzed. The results might be of 
interest for theoretical study, as well as practical 
applications in flows with free boundaries and 
interfaces between two fluids, which evolve in time 
under some type of a parametric action, due to 
Kelvin-Helmholtz, Tonks-Frenkel, Rayleigh-Taylor 
or some other kind of instability, etc. Further work 
to be done is extention of the results to analysis of 
some problems in touch with instability and 

parametric control of the interfaces accounting real 
peculiarities such as, for example, phase slip at the 
interface and its non-linearity. 
     The derived non-linear boundary conditions were 
applied to show that the well-known linear boundary 
conditions got as a limit case from the obtained ones 
coinside with the known from literature if and only 
if a slip of fluids at the interface is absent. 
Otherwise, if velocities of the fluids at the interface 
differ (slip of phases), the normal stresses by x and y 
projected on a perturbed interface have a first order 
by perturbations and have to be taken into account.  
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