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ABSTRACT
The purpose of this paper is to present the different time
integration scheme used in litterature for the elastody-
namic friction contact problem. Each method is detailed
and treated in term of energy stability (conservation or
dissipation). A modified middle point is employed for
treating the problem and to proof the conservation of the
system energy. The resulting problem is solved with a
Newton method.
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1 Introduction

The frictional contact problems in elastodynamics lead to
mathematically complex models, the properties of which
remain to be fully understood. The analysis of those prob-
lems is of great importance in many engineering applica-
tions. The volume of literature on mechanical theories of
dynamic contact with friction, and particulary on the an-
alytical or numerical solution of problems of this type, is
quiet small. Several authors have attempted the numerical
solution of dynamic contact problems using finite element
methods. This work is one of them. In this article we con-
sider energy consevring time discretization schemes for
the elastodynamic frictional contact problem. Conserv-

ing schemes are developed in a strong form and indepen-
dently of any particular spatial discretization.
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Figure 1:linearly elastic bodyΩ in frictional contact with
a rigid foundation.

Let Ω ⊂ Rd (d = 2 or 3) be a bounded domain which
represents the reference configuration of a linearly elastic
body submitted to a Neumann condition onΓ

N
, a Dirich-

let condition onΓ
D

and a unilateral contact with Coulomb
friction condition onΓ

C
between the body and a flat rigid

foundation, whereΓ
N

, Γ
D

andΓ
C

are non-overlapping
open parts of∂Ω, the boundary ofΩ. We consider the
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strong formulation of the problem

Mü + Ku = f + B∗
N

λ
N

+ B∗
T
λ

T
in V ′,

−λ
N
∈ N

K
N

(B
N

u) onΓ
C
,

−λ
T
∈ ∂2j(λN

, B
T
v) onΓ

C
,

u(0) = u0 , u̇(0) = u1 .

(1)

witch is equivalent to

Mü + Ku = f + B∗
N

λ
N

+ B∗
T
λ

T
in V ′,

λ
N

= PK
N

(λ
N
− rB

N
u) onΓ

C
,

λ
T

= PΛ
T

(Fλ
N

)(λT
− rB

T
v) onΓ

C
,

u(0) = u0 , u̇(0) = u1 .

(2)

with

V = {v ∈ H1(Ω; Rn), v = 0 onΓ
D
},

X
N

= {v
N|Γ

C

: v ∈ V } and X
T

= {v
T |Γ

C

: v ∈ V },

K
N

= {v
N
∈ X

N
: v

N
≤ 0},

NΛ
N

= N
K∗

N

=
(
N

K
N

)−1

,

j(λ
N

, v
T
) = − < µλ

N
, |v

T
| >Γ

C

Λ
T
(Fλ

N
) = {λ

T
∈ X ′

T
: − < λ

T
, w

T
>Γ

C

+ < −Fλ
N

, ‖w
T
‖ >Γ

C
≤ 0,∀w

T
∈ X

T
}.

where< ., . >Γ
C

represente the duality product between
X ′

N
andX

N
and betweenX ′

T
andX

T
. and where

M : V ′−̀→V ′, K : V −̀→V ′,

F
N
∈ V ′, such that< F

N
, v >=< λ

N
, v

N
>, ∀v ∈ V,

F
T
∈ V ′, such that< F

T
, v >=< λ

T
, v

T
>, ∀v ∈ V,

B∗
N

: X ′
N

−→ V ′

λ
N

−̀→ F
N

,

B∗
T

: X ′
T

−→ V ′

λ
T

−̀→ F
T
,

B
N

: V −→ X
N

u −̀→ u
N

,

B
T

: V −→ X
T

u −̀→ u
T
.

2 System discretization

In this paragraph, we study different time integration
schemes in the sens of stability and energy conservation.
We subdevide the time period[0, T ] into discrete steps
of index n, each encompassing the partition[tn, tn+1],
and we delimit the time increment as∆t = tn+1 − tn.
Tomporally discrete approximations of the state values
can be similary indexed, such thatun ≈ u(t

n
).

2.1 Energy analysis

We define the system energy by

J(u, v) =
1
2

< Mv, v > +
1
2

< Ku, u > − < f, u >,

Definition 1 We said the scheme is stable if and only if
we have:

∆J = J(un+1, vn+1)− J(un, vn) ≤ 0.

We choose this definition because it is simple and so
easy to manipulate. Of course, it enable us to establish
some well known results in the literature and also give a
new time integration scheme to have conservation of the
system energy.

2.2 Standard middle point(SMP)

The standard middle point scheme reads as

un+1 = un + ∆t vn+ 1
2 , un+ 1

2 =
un+1 + un

2
,

vn+1 = vn + ∆t an+ 1
2 , vn+ 1

2 =
vn+1 + vn

2
.
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2.2.1 Method presentation

Introducing the SMP scheme into the system (1), we ob-
tain



un+1 = un + ∆t vn+ 1
2 ,

vn+1 = vn + ∆t an+ 1
2 ,

Man+ 1
2 + Kun+ 1

2 = f + B∗λn+ 1
2 ,

−λ
n+ 1

2
N ∈ N

K
N

(B
N

un+ 1
2 ),

−λ
n+ 1

2
T ∈ ∂2j(λ

n+ 1
2

N , B
T
vn+ 1

2 ),

u(0) = u0 , v(0) = u1 .

(3)

whereB∗λn+ 1
2 = B∗

N
λ

n+ 1
2

N +B∗
T
λ

n+ 1
2

T . Formulation (3)
is equivalent to the following problem



Find (un+1, λ
n+ 1

2
N , λ

n+ 1
2

T )(
2M

∆t 2
+

K

2

)
un+1 = f̂ + B∗λn+ 1

2

−2λ
n+ 1

2
N ∈ N

K
N

(B
N

un+ 1
2 ),

−λ
n+ 1

2
T ∈ ∂2j(λ

n+ 1
2

N , 1
∆t B

T
un+ 1

2 ),

u(0) = u0 , v(0) = u1 .

(4)

where

f̂ = f +
2

∆t 2 Mun +
2

∆t
Mvn − 1

2
Kun, (5)

2.2.2 Stability analysis

We start by studying the system energy.

∆J = J(un+1)− J(un)

=
1
2

< M(vn+1 − vn), vn+1 + vn >

+
1
2

< K(un+1 − un), un+1 + un >

− < f, un+1 − un >,

= ∆t < Man+ 1
2 + Kun+ 1

2 , vn+ 1
2 >

− < f, un+1 − un >

= ∆t < B∗
N

λn+ 1
2

N
+ B∗

T
λn+ 1

2
T

, vn+ 1
2 >

= ∆t < λn+ 1
2

N
, vn+ 1

2
N

> +∆t < λn+ 1
2

T
, vn+ 1

2
T

>

≤ < λn+ 1
2

N
, un+1

N
− un

N
>

= 2 < λn+ 1
2

N
, un+ 1

2
N

− un
N

>

≤ −2 < λn+ 1
2

N
, un

N
> .

If un
N
≤ 0 then∆J ≤ 0 and so the SMP scheme is sta-

ble for the frictional contact problem, else we will have
energy dissipation. Hence, we can’t conclude on the sta-
bility of the scheme in the general case.

2.3 Modified middle point (MMP)

We consider the same SMP scheme and we implicit the
contact force to obtain the following MMP scheme:

un+1 = un + ∆t vn+ 1
2 , un+ 1

2 =
un+1 + un

2
,

vn+1 = vn+∆t an+ 1
2 +∆t an+1

N
vn+ 1

2 =
vn+1 + vn

2
.
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This modification allows us to establish the energy con-
servation of the following discretized system



un+1 = un + ∆t vn+ 1
2 ,

vn+1 = vn + ∆t an+ 1
2 + ∆t an+1

N
,

Man+ 1
2 + Kun+ 1

2 = f + B∗
T
λ

n+ 1
2

T

Man+1
N

= B∗
N

λn+1
N

−λn+1
N

∈ N
K

N
(B

N
un+1),

−λ
n+ 1

2
T ∈ ∂2j(λ

n+ 1
2

N , B
T
vn+ 1

2 ),

u(0) = u0 , v(0) = u1 .

(6)

This problem is equivalent to the following problem



Find (un+1, λn+1
N

, λ
n+ 1

2
T )(

2M

∆t 2
+

K

2

)
un+1 = f̂ + B∗λn+ 1

2 ,

Man+1
N

= B∗
N

λn+1
N

,

−λn+1
N

∈ N
K

N
(B

N
un+1),

−λ
n+ 1

2
T ∈ ∂2j(λ

n+ 1
2

N , 1
∆t B

T
un+ 1

2 ),

u(0) = u0 , v(0) = u1 .

(7)

wheref̂ is already defined and we choose

λn+ 1
2

N
=

λn+1
N

+ λn
N

2
.

Lemme 1 The system (6) is stable in the sens of the Def-
inition (1).

Proof 1 Of course, we have

∆J = J(un+1, vn+1)− J(un, vn)

=
1
2

< M(vn+1 + vn), vn+1 − vn >

+
1
2

< K(un+1 + un), un+1 − un >

− < f, un+1 − un >

=
∆t

2
< M(vn+1 + vn), an+ 1

2 + an+1
N

>

+
1
2

< K(un+1 − un), un+1 + un >

− ∆t < f, vn+ 1
2 >

= ∆t < Man+ 1
2 + Kun+ 1

2 − f, vn+ 1
2 >

+ ∆t < Man+1
N

, vn+ 1
2 >

= ∆t < λn+ 1
2

T
, vn+ 1

2
T

> +∆t < λn+1
N

, vn+ 1
2

N
>

≤ ∆t < λn+1
N

, vn+ 1
2

N
>

= < λn+1
N

, un+1
N

− un
N

>

= − < λn+1
N

, un
N

>

≤ 0.

So the system (6) is stable.

Remark : This result gives a new idea about a new time
integration scheme which we are still studying. The
trick of the new scheme is to replace the implicit con-
tact force by sort of linear combination of contact forces
of two successive time stepsαλn+1

N
+ (1 − α)λn

N
and

this method will introduce a new parameter which will
be fixed at the begining or considered as a inconnue and
will be computed in order to establish energy conserva-
tion.

3 Conclusion

Although the mathematical idealization of full conserva-
tion may serve as an aproximation model for actual physi-
cal systems, development of algorithmic methods within a
conservating framework tends to lend greater insight into
the direct effects of numerical discretization on such sys-
tems as well as their physically dissipative analogs. In this
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work, we proof the stability of the elastodynamic problem
with frictional contact using an appropriate time integra-
tion scheme. This scheme gives also others idea about
new time integrations schemes. My hope is to coroborate
this results with numerical results. This is the following
step for a futur work.
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