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Abstract: - In the study of physical, mechanical, and electrical systems one often encounters differential-
difference equations and recurrence relations. The sources from which these equations arise may be quite
different but their mathematical forms are very similar. For example, there is an analogy between mass-spring
systems and electrical systems whereby point masses correspond to inductances and springs correspond to
capacitances [1]. Another area where differential-difference equations occur is in the numerical solution of the
wave equations if the spatial variable is discretized [2]. It’s important to understand how these systems behave
as time evolves and how changes in the parameters of the model influence this behavior. In this paper, we
study systems consisting of point masses joined together by springs. In particular, we present some of the
mathematical methods involved and how they are used to solve these practical problems. By obtaining the
solution for these simple mass-spring systems, we indirectly obtain solutions for many similar applied
problems in mechanics, physics, and engineering.
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1 Introduction

This paper presents how mathematics comes into
play in the modeling process of a simple, yet
fundamental, physical system so that one can
understand how this type of systems behaves subject
to the changes in the parameters. In particular, we
are looking at a simple mass-spring system with
identical masses and spring constants. We find the
solution for this system by two methods: separation
of variables and Laplace transform (Section 2).
Then, we perturb the system by changing one of the
spring constants. This results in the appearance of an
eigenvalue and a vibration that has the form of a
standing wave (Section 3). Lastly, we consider a
rather generic system with various masses and
spring stiffness subject to forcing functions F;(t).

In this case, we obtain the solution by means of
modal analysis (Section 4). In most cases, the study
of infinite mass-spring systems involves differential-
difference equations, which, in turn, result in three
term recurrence relations, whose solutions can be
quickly obtained. To keep the content focused,
lengthy algebras have been eliminated. As such, the
audience are encouraged to verify the results
presented here. The key part in this work lies in the
mathematical modeling of these physical models,
which should be interesting and important to those
who consider working on engineering and science.
In addition, this paper provides a good source for the
teaching of mathematics to engineering students.

2 A Simple Mass-Spring System

Let’s consider a system with infinitely many objects
of the same mass connected by identical springs. In
such a system, the displacement of one object
depends on the displacement of others. So, by a
recurrence relation, if we know the displacement of
any two consecutive objects, then we can determine
the displacement of the third adjacent object. We
assume that the displacement of the object at the
zeroth position, i.e. at n = 0, is b and that its initial
velocity is zero. The other objects are supposed to
have zero initial displacements and zero initial
velocity. From the combination of Newton’s second
law of motion and Hooke’s law, the equations of
motion for this system read as follows:
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Fig.1 An infinite system
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We will solve (1) by two methods: separation of
variables and Laplace transform.



2.1 Solution by Separation of Variables

We seek solutions of the form x_ (t) =c e, where
o is a constant independent of n and t. Substituting
into (1) we obtain kc,,, — (2k —ma?)c, +kc, , =0.
To solve this recurrence relation, we assume
¢, =A" so that ki* —(2k —ma?)A+k =0 whose
solutions are

1 =1 a’® +a\/a2—4a)2
* 20% ) 20°

If «® —4w? >0, it can be shown that A, is real and

+

|2,|<1. Consequently, A} — o as n——o, and

A" =2" > as n—+w. As the solution of this
type is unphysical, we discard it and consider the
case when a? — 4w? <0.

2 [p.2_ 2
L:[l—az}_ria 4o -«

20

Since |4,|=1, and hence it suffices to let
2 [ 2 2
cosp=1- @ sin¢):a4w—2a

20° 20
sothat A, =e'” and A_=e . It follows from that
a =2wsin(p/2), where ¢e(-z,z). Thus, the
general solution of (1) is of the form
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X, (t) = j Tl £ (o) + j 19 £ (5)dg
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Also, for the boundary conditions, we have

b n=0

Xn(0)=r ei”“’(f1+gz)d¢>={0 120 )

where g, (@)= f,(—p). In view of this equation,
we deduce that f, = g,. Hence, (2) yields

b n=0
0 n=0

X (0) = ZJ‘_H e f,(p)de ={

T

Expanding f,(¢) in a Fourier series, we have:

f = c.e"” where ¢ =—J‘ f, (p)e™?d
l(¢) Z n n 272_ . 1(¢) go

n=—w

So, b=x,(0)=4xc,, i.e. c,=b/4z. Also, c, =0
for n =0 because x,(0)=0. f,(¢)=9,(p)=b/4r.
It follows that

b [~ . .
0= [ foxplitg + a]+ exlitno - alide
Therefore, forn =0 (recall that & depends on ¢),
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T J-7/2

where
1 . 2 (72 .
Jo(2) :—j cos(zsint)dt =—j cos(zsint)dt
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denotes the Bessel function of order zero [3]. For
7/2
n=0,weuse J, (z) =£I cos(zsinu —nu)du .
T JO
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X, (t)+x_, (t) = %I [cos(ng + at) +cos(ng — at) [de

-
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=b[J,, (20t) +J_,, (20)]
Similarly,

X, (t) = x_, (t) :% _’fsin(n(pmt) tsin(ng—at)]de

:m ’ sinngcosatdp =0
T J-7
Thus, x, (t) =x_,(t) forall tand n, and the solution
is x,(t)=b[J,, 2ewt)], n=0, 1, +2,... Below are
the plots of the mass-spring motion with spring
constantk = 1, time steph =1, and w=.k/m =0.5.
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As shown in the analysis, x, (t) = x_,(t) for all x and
t, hence the motion of the spring is symmetric. In
plotting, we let the initial state of the mass-spring
systematn=0is b =1. Fig.2 represents the spring
motion with the time step of 0.5 and w=1. Note
that the same motion exists if the time step is
decreased by half and o is double, or if the time

2.2 Solution by Laplace Transforms

We start from a system with 2N +1 objects and
then let N — +oo. We assume that the two ends of
the finite chain are free.
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step is double and  is decreased by half. As the
time step gets smaller, Fig.3 & 4, the spring motion
approaches the initial state, which is x,(0)=b=1
by assumption. The same behavior also exists when
w — 0. This is because as o tends to zero, the
masses tend to infinity, and this greatly reduces the
vibration of the springs.

Applying Laplace transform X (s) =F e %, (t)dt
0

to (3), we have

$°X y =0 (X yu—X_y) n=-N

$*X, =" (Xpy —2X, +X,1) —-N<n<-1
s?Xo —sb=w? (X, —=2X, + X ;) n=0 )
$°X, =0° (Xpy —2X, +X,4) 1<n<N

$2Xy =—0* (X = Xy.1) n=N

The equations (4a) & (4e) describe the two free ends
of the chain. Putting X, =x", (4b) becomes the

quadratic equation @®u® —(s° +20*)u+ w® =0,
whose solutions are

py =1+ (s® £svs? +4a)2)/2a)2



Note that x#, 4 =1, p, >1, and O<u_ <1. The

solutions of (4) are of the form X, =C,u! +C,u".
It follows that X, = X _,. Hence, it suffices to only

consider n>0. Letting p=s/o and &=sh/w?,
we obtain for n = N and n = 0, respectively,

@+ p*)Cyul +Cou™)=Ciul ™t +Cout  (5)
2(Copt, +Cou ) =(2+p*)(C, +C,) —¢ (6)

where in the last equation, we used (4c) and the fact
that x, =x,. From (5) and (6), we obtain a

nonhomogeneous system for C, and C,:

ay Ay Cz —-&
ay = ul —p 7+ pPul
8y =24 —2-p*

ay = u —p) "+l
a21 :2#+ _2_p2

Using Cramer’s rule and the fact that x, >1 and
0< u_ <1, we conclude that

&ay) — &y

Ay 8y, — a8y

C,

We have C;, >0 as N—>+wo and C, >0 as
N — —oo. Thus for fixed n,as N — +o,

n
b [l+ sz—s\/sz+4a)2J

X

" Js? + 4e?
Now,

(s—Vs? +4w%)? =2(s? —sVs? + 4w® +20°)
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. It follows that
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Taking the inverse Laplace transform, the solution is
found to be x,(t)=bJ,,(2mt), which is the same

result obtained earlier by the separation of variable
method. This is a direct follow from the formula

|_{JV(<f;1><)}=[a/(p+,/p2 +a2)}v(1/1/p2 Ta). It

can be found in [5] (formula #39, p.1145).

3 A Perturbed Mass-Spring System
We now consider the same system as in Section 2
except that we replace one of the springs by a spring
of variable stiffness k’. This system is governed by
the equations below:

—00<¢— - — 40
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Fig.9 A perturbed system
K'(X; —Xg) —K(Xo —X4) n=0
k(X —X.)—Kk(X, —X < -
mx.n _ ( n+l n) ‘ ( n n—l) ns< l (7)
K(X, —X;) —K'(X; — %) n=1
k(xn+l_xn)_k(xn _Xn—l) nx2

Assuming again that the solutions are of the form

X, (1) =16, we get mx, =—-ma®1 e'™. Setting

1 =-ma?, the system (7) becomes
k'(/ll_/io)_k(/io_/tﬂ n=0
k(A1 —4,)—k(4, -2 <-—

,Uﬂ«nz ( n+l n) ' ( n n—l) n<-1 (8)
k(4, =) —K'(4, — 4) n=1
k(/lml_;tn)_k(/ﬁtn _;tn—l) nxz2

Using the same analysis as before, we obtain, for

n221 ﬂn :/Iz, and //i’i :1+(Hiﬂ4ﬂk+ﬂ2)/2k

Proceeding with the same procedures, we obtain

_ A", n=>1
X, (t)=1.6e"" where A, =4
nA", n<0

are solutions that go to zero as n — oo . Note that
in going through the mathematics, it is found, for
u<-4k, k'-k>0. Similar analysis shows that

there is no eigenvalue for #>0. Note that the

spring response is the real part of the solution, which
is Re[ x, (t)] =4, cos[et] . Therefore, the vibration

of the spring exhibits a symmetric characteristics.



Obviously, A(n) controls the amplitude of the
spring motion, which decreases as n — +o. There-
fore, the vibration dies out at both ends. The same
phenomenon happens as the difference in the spring
stiffness k* and k increases. This can be seen in
Fig.12 and Fig.13 and when compared with Fig.10.
On the other hand, as this difference decreases,
k'— k, we are coming back to the original simple

iy > ke whhinesteg =1

4 Mass-Spring Systems with Various

Masses and Spring Stiffness
Suppose now we consider a finite discrete system
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Fig.16 A finite system

To get the infinite mass-spring system, we just need
to let the number of masses go to infinity at both
ends. In reality, the two ends of either system, finite
or infinite, must be connected to something to hold
it still before vibrations can exist. Thus it suffices to
look at a finite discrete system, Fig.16. We are to
seek a solution for this system by the modal analysis

mass-spring system discussed in Sections 2.1 and
2.2. As such, the spring vibrates with amplitudes,
which are becoming constant, Fig.15. In addition,
as the masses are double, Fig.11, the motion on the
right of n = 0.5 is inverse symmetric to that on the
left. Below are the plots of the motion of the mass-
spring system in the intervals —-5<n<5 and
0<t<l.

method. By Newton’s second law of motion,

[m]{x(O)} + kX1 ={F (O} (9)

For illustrations, we let m; = m, =2m, m, =4m,

and assume all the springs have the same stiffness k.
Thus, the mass and stiffness matrices are

2m 2k —k
[m]_[ 4m ] [k]_[—k 2k —k}
2m —k 2k

where {x(t)}=[x, (t) X, (t) x;(t)]" is a displacement
vector. Using the method of modal analysis, we first
solve the free vibration problem or homogeneous
system. In doing so, we again assume a solution of
the form X(t) =G exp(iwt) and substitute it into (9),

we obtain the eigenvalue problem



([k] - & [m]){u} = {0}

To understand the relationship between the finite
and infinite systems, one can observe the behavior
of the eigenfrequency o as the dimensions of [k]
and [m] get larger. The above equation has a non-

trivial solution if and only if det([k]-?[m]) = 0.
Upon solving this characteristic equation, we get

, =%\/3—\/§Q

@, =Q , Where Q = /k/m.

W, =% 3+450

Consequently, the natural modes of the system are

~1+4/5 ” lil} " 0
,{up, =01, {u}; = 2
k! ~(1++/5)

{u}, = 2

0
In order to exploit the usefulness of the eigenmodes
toward obtaining the solution, we normalize them
with respect to the mass matrix [m]. As such, we
assume the normalized modal vectors are of the
form {u}, =c,{u}, for i = 1,23. By the ortho-
gonality relation of modal vectors, we have
{0} [mKU}; =5 . Itfollows that

@, =%{u}l, @, = %{u}z, @, ZOT%?%
1 0.283 0.5 0
[(]=——|0458 0  0.329
Jm [ 0 05 —0.532}

To allow interaction among the modes, we express
the displacement X(t) as a linear superposition of

the normal modes so that {x(t)}=[U]{<(t)}, where

{EMI={&, (1) &, (1) &)} for some coefficients
&, &,, &. Upon substitution into (9), we get

[MITHE O} + KITHE O} ={F (1)}

Applying the orthogonality relation of eigenvectors

1

[01" [MITKE (0} + [T [KITHE (03 = [T17 {F (1)}

sothat & (t) + &, (t)=N, () forj=1,2,3, where

N(t)=[0] {F(t)}. Using the initial conditions we
solve this second order differential equations for &; .
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e

Fig.17 Natural modes of vibration

5 Conclusion

In short, this paper presents how mathematics comes
into play in the modeling process of simple, yet
fundamental, physical systems so that one can
understand how this type of systems behaves subject
to the changes in the parameters; masses and spring
stiffness. In particular, we look at several simple
mass-spring systems and present some of the well
known mathematical methods involved in obtaining
the solutions for these systems. By obtaining the
solution for these simple mass-spring systems, we
indirectly obtain solutions for many similar applied
problems in mechanics, physics, and engineering.
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