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Abstract: - In the study of physical, mechanical, and electrical systems one often encounters differential-
difference equations and recurrence relations.  The sources from which these equations arise may be quite 
different but their mathematical forms are very similar.  For example, there is an analogy between mass-spring 
systems and electrical systems whereby point masses correspond to inductances and springs correspond to 
capacitances [1].  Another area where differential-difference equations occur is in the numerical solution of the 
wave equations if the spatial variable is discretized [2].  It’s important to understand how these systems behave 
as time evolves and how changes in the parameters of the model influence this behavior.  In this paper, we 
study systems consisting of point masses joined together by springs.  In particular, we present some of the 
mathematical methods involved and how they are used to solve these practical problems.  By obtaining the 
solution for these simple mass-spring systems, we indirectly obtain solutions for many similar applied 
problems in mechanics, physics, and engineering. 
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1   Introduction 
This paper presents how mathematics comes into 
play in the modeling process of a simple, yet 
fundamental, physical system so that one can 
understand how this type of systems behaves subject 
to the changes in the parameters.  In particular, we 
are looking at a simple mass-spring system with 
identical masses and spring constants.  We find the 
solution for this system by two methods: separation 
of variables and Laplace transform (Section 2).  
Then, we perturb the system by changing one of the 
spring constants. This results in the appearance of an 
eigenvalue and a vibration that has the form of a 
standing wave (Section 3).  Lastly, we consider a 
rather generic system with various masses and 
spring stiffness subject to forcing functions .  
In this case, we obtain the solution by means of 
modal analysis (Section 4).  In most cases, the study 
of infinite mass-spring systems involves differential-
difference equations, which, in turn, result in three 
term recurrence relations, whose solutions can be 
quickly obtained.  To keep the content focused, 
lengthy algebras have been eliminated.  As such, the 
audience are encouraged to verify the results 
presented here.  The key part in this work lies in the 
mathematical modeling of these physical models, 
which should be interesting and important to those 
who consider working on engineering and science.  
In addition, this paper provides a good source for the 
teaching of mathematics to engineering students.   
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2   A Simple Mass-Spring System 
Let’s consider a system with infinitely many objects 
of the same mass connected by identical springs.  In 
such a system, the displacement of one object 
depends on the displacement of others.  So, by a 
recurrence relation, if we know the displacement of 
any two consecutive objects, then we can determine 
the displacement of the third adjacent object. We 
assume that the displacement of the object at the 
zeroth position, i.e. at n = 0, is b and that its initial 
velocity is zero.  The other objects are supposed to 
have zero initial displacements and zero initial 
velocity.  From the combination of Newton’s second 
law of motion and Hooke’s law, the equations of 
motion for this system read as follows: 
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Fig.1  An infinite system 
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We will solve (1) by two methods: separation of 
variables and Laplace transform. 



2.1 Solution by Separation of Variables 
We seek solutions of the form  where ti

nn ectx α=)( ,
α  is a constant independent of n and t.  Substituting 
into (1) we obtain   
To solve this recurrence relation, we assume 

 so that  whose 
solutions are 

.0)2( 1
2

1 =+−− −+ nnn kccmkkc α

n
nc λ= 0)2( 22 =+−− kmkk λαλ

 

2

22

2

2

2
4

2
1

ω
ωαα

ω
αλ −

±⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=±  

 
If , it can be shown that 04 22 >− ωα +λ  is real and 

1<+λ .  Consequently,  as ∞→+
nλ −∞→n , and 

 as .   As the solution of this 
type is unphysical, we discard it and consider the 
case when  

∞→= −
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Since ,1=±λ  and hence it suffices to let 
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so that  and .  It follows from that ϕλ ie=+

ϕλ ie−
− =

,)2sin(2 ϕωα =  where ),( ππϕ −∈ .  Thus, the 
general solution of (1) is of the form 
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Also, for the boundary conditions, we have 
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where )()( 22 ϕϕ −= fg .  In view of this equation, 
we deduce that .  Hence, (2) yields 21 gf =
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Expanding )(1 ϕf  in a Fourier series, we have: 
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So, 00 4)0( cxb π== , i.e. .40 πbc =   Also, 0=nc  
for 0≠n  because  .0)0( =nx .4)()( 21 πϕϕ bgf ==   
It follows that 
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Therefore, for n = 0  (recall that α  depends on ϕ ), 
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denotes the Bessel function of order zero [3].  For 

0≠n , we use ∫ −=
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Similarly, 
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Thus, )()( txtx nn −=  for all t and n, and the solution 
is [ ],)2()( 2 tJbtx nn ω=    Below are 
the plots of the mass-spring motion with spring 
constant k = 1, time step h = 1, and 

,0=n ,1± ,...2±

5.0== mkω . 



 
Fig.2 

 

 
Fig.4 
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Fig.3 

 

 
Fig.5 

 

 
Fig.7 

 
As shown in the analysis,  for all x and 
t, hence the motion of the spring is symmetric.  In 
plotting, we let the initial state of the mass-spring 
system at n = 0 is b = 1.  Fig.2 represents the spring 
motion with the time step of 0.5 and 

)()( txtx nn −=

.1=ω   Note 
that the same motion exists if the time step is 
decreased by half and ω  is double, or if the time 

step is double and ω  is decreased by half.  As the 
time step gets smaller, Fig.3 & 4, the spring motion 
approaches the initial state, which is 1)0(0 == bx  
by assumption.  The same behavior also exists when 

.0→ω   This is because as ω  tends to zero, the 
masses tend to infinity, and this greatly reduces the 
vibration of the springs. 

 
 

 

2.2   Solution by Laplace Transforms 
We start from a system with  objects and 
then let .  We assume that the two ends of 
the finite chain are free. 
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Applying Laplace transform  

to (3), we have 
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The equations (4a) & (4e) describe the two free ends 
of the chain.  Putting , (4b) becomes the 
quadratic equation  
whose solutions are 
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Note that 1=−+µµ , 10,1 <<> −+ µµ and .  The 
solutions of (4) are of the form .  
It follows that .  Hence, it suffices to only 

consider .  Letting 
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we obtain for n = N and n = 0, respectively, 
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where in the last equation, we used (4c) and the fact 
that .  From (5) and (6), we obtain a 
nonhomogeneous system for  and : 
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Using Cramer’s rule and the fact that 1>+µ  and 
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We have  as  and  as 
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Taking the inverse Laplace transform, the solution is 
found to be ),2()( 2 tbJtx nn ω=  which is the same 
result obtained earlier by the separation of variable 
method.  This is a direct follow from the formula 
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can be found in [5] (formula #39, p.1145). 
 
 
3   A Perturbed Mass-Spring System 
We now consider the same system as in Section 2 
except that we replace one of the springs by a spring 
of variable stiffness k’.  This system is governed by 
the equations below: 
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Fig.9  A perturbed system 
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Assuming again that the solutions are of the form 

 we get .  Setting 
, the system (7) becomes 
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Using the same analysis as before, we obtain, for 
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Proceeding with the same procedures, we obtain 
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are solutions that go to zero as .  Note that 
in going through the mathematics, it is found, for 

±∞→n

,4k−<µ  0' ≥−kk .  Similar analysis shows that 
there is no eigenvalue for .0>µ   Note that the 
spring response is the real part of the solution, which 
is Re[ ] =)(txn ]cos[ tn αλ .  Therefore, the vibration 
of the spring exhibits a symmetric characteristics.  



Obviously, λ (n) controls the amplitude of the 
spring motion, which decreases as   There-
fore, the vibration dies out at both ends.  The same 
phenomenon happens as the difference in the spring 
stiffness k’ and k increases.  This can be seen in 
Fig.12 and Fig.13 and when compared with Fig.10.  
On the other hand, as this difference decreases, 

 we are coming back to the original simple 

.±∞→n

,' kk →

mass-spring system discussed in Sections 2.1 and 
2.2.  As such, the spring vibrates with amplitudes, 
which are becoming constant, Fig.15.  In addition, 
as the masses are double, Fig.11, the motion on the 
right of n = 0.5 is inverse symmetric to that on the 
left.  Below are the plots of the motion of the mass-
spring system in the intervals 55 ≤≤− n  and 

.10 ≤≤ t  
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4   Mass-Spring Systems with Various 
Masses and Spring Stiffness 
Suppose now we consider a finite discrete system 
 
 
 
 
 
 

 
Fig.16  A finite system 

 
To get the infinite mass-spring system, we just need 
to let the number of masses go to infinity at both 
ends.  In reality, the two ends of either system, finite 
or infinite, must be connected to something to hold 
it still before vibrations can exist.  Thus it suffices to 
look at a finite discrete system, Fig.16.  We are to 
seek a solution for this system by the modal analysis  

 
method.  By Newton’s second law of motion, 
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For illustrations, we let  ,231 mmm == ,42 mm =  
and assume all the springs have the same stiffness k.  
Thus, the mass and stiffness matrices are 
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where [ ]Ttx tx txtx )()()()}({ 321=  is a displacement 
vector.  Using the method of modal analysis, we first  
solve the free vibration problem or homogeneous 
system.  In doing so, we again assume a solution of 
the form )exp()( tiutx ω

rr
=  and substitute it into (9), 

we obtain the eigenvalue problem 
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To understand the relationship between the finite 
and infinite systems, one can observe the behavior 
of the eigenfrequency ω  as the dimensions of [k] 
and [m] get larger.  The above equation has a non-
trivial solution if and only if det   
Upon solving this characteristic equation, we get 
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Consequently, the natural modes of the system are 
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In order to exploit the usefulness of the eigenmodes 
toward obtaining the solution, we normalize them 
with respect to the mass matrix [m].  As such, we 
assume the normalized modal vectors are of the 
form iii ucu }{}~{ =  for i = 1,2,3.  By the ortho-
gonality relation of modal vectors, we have 
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To allow interaction among the modes, we express 
the displacement )(txr  as a linear superposition of 
the normal modes so that )}(]{~[)}({ tutx ξ= , where 

 for some coefficients Tt t tt )}()()({)}({ 321 ξξξξ =
,1ξ  ,2ξ  .3ξ   Upon substitution into (9), we get 
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Applying the orthogonality relation of eigenvectors 
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so that  for j = 1, 2, 3, where )()()( 2 tNtt jjjj =+ ξωξ&&

)}.({]~[)( tFutN T=   Using the initial conditions we 
solve this second order differential equations for jξ . 

 

              

 

 
Fig.17   Natural modes of vibration 

 
 
5   Conclusion 
In short, this paper presents how mathematics comes 
into play in the modeling process of simple, yet 
fundamental, physical systems so that one can 
understand how this type of systems behaves subject 
to the changes in the parameters; masses and spring 
stiffness.  In particular, we look at several simple 
mass-spring systems and present some of the well 
known mathematical methods involved in obtaining 
the solutions for these systems.  By obtaining the 
solution for these simple mass-spring systems, we 
indirectly obtain solutions for many similar applied 
problems in mechanics, physics, and engineering.  
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