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Abstract: TCP WestwoodNR is a sender-side modification of the TCP congestion window algorithm 
that improves upon the performance of TCP New Reno in wired as well as wireless networks.  The 
improvement is most significant in wireless networks with lossy links, since TCP  WestwoodNR relies 
on end-to-end bandwidth estimation to discriminate the cause of packet loss  congestion or wireless 
channel effect) which is a major problem in TCP New Reno.  
The key idea of our improvement consists in increasing the throughput of the transmission by 
modifying the algorithm of congestion avoidance. The rationale of this strategy is simple: in contrast 
with  TCP Reno, which reduce ”blindly” to slow start threshold the congestion window after three  
duplicate ACKs, TCP WestwoodNR stabilize during a certain period the congestion window to    new 
threshold larger then ssthresh, then it increases it linearly. 
The proposed mechanism is particularly effective over wireless links where sporadic losses due to 
radio channel problems are often misinterpreted as a symptom of congestion by current TCP schemes 
and thus lead to an unnecessary window reduction. 
Experimental studies reveal improvements in throughput performance, as well as in fairness. In 
addition, friendliness with TCP New Reno was observed in a set of experiments showing that TCP 
New Reno connections are not starved by TCP WestsoodNR connections. 
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1 Introduction 
There is not doubt any more today: the world 
of telecommunications is in blooming. It opens 
the way to new objectives and challenges for 
the development of news transmission 
techniques but also for the setting to systems. 
Today, the great majority of the networks are 
made up of a central infrastructure, equipped 
with broad band transmission capacity, and 
most of the time built on the basis of wired 
network. As this one does not allow a wide 
mobility to equipments to which it is 
connected, a news generation of networks was 
defined. By this one, peripherals hitherto 
dedicated in a fixed place, are equipped with 
radio operator equipment which can enter in 
dialogue with others while ensuring a more or 
less broad mobility. 
This inauguration of new behaviors revealed 
some weaknesses in the data transmissions 
following up the heterogeneity of the 
propagation environment. The wired networks 
initially conceived for end to end 

communications forwarded exclusively by 
cabled way are put today 
at contribution for transit between and to the 
wireless networks. These modifications of 
behavior are not without consequences for the 
majority of the algorithms designed for control 
of information. For example a data loss could 
be interpreted in various manners according to 
whether it comes from a saturation of a link in 
the network or a loss caused by a little reliable 
propagation environment, or as a consequence 
of a technical deficiency which has occurred in 
equipment carrying out transmission. 
Algorithms developed until now do not make 
the distinction between these different 
interpretations. 
We can observe that if no modification is 
made, they will contribute to make the 
performances of transmission rather disastrous 
on heterogeneous networks. In fact, 
information transport protocols as previously 
conceived and which are based on the packets 
losses to adjust their parameters are less 
powerful than the algorithms in which our 



estimation is based on the bandwidth available 
for adjusting these parameters, as well. 
Random losses of packets suitable for wireless 
network an ill-treated. We are interested in the 
problem of evolution of the congestion 
window during the detection of a loss. 
We present in section 2 an outline of the 
evolution of the congestion window in TCP 
Westwood.  Our contribution will be detailed 
in section 3.  After that, in section 4, we will 
simulate our proposal in the wired and wireless 
networks.  In section 5, we explain the choice 
of our new parameter.  Then in section 6, we 
verify if our contribution does not affect the 
other properties of TCP Westwood.  And we 
conclude by the perspectives which can open 
our work. 
 
 
2 An overview of TCP Westwood 
In TCP Westwood the sender continuously 
computes the connection BandWidth Estimate 
(BWE) which is defined as the share of 
bottleneck bandwidth used by the connection. 
Thus, BWE is equal to the rate at which data is 
delivered to the TCP receiver. The estimate is 
based on the rate at which ACKs are received 
and on their payload. After a packet loss 
indication, (ie, reception of 3 duplicate ACKs, 
or timeout expiration). The sender resets the 
congestion window and the slow start 
threshold based on BWE. More precisely, 
cwnd = BWE x RTT. 
To understand the rationale of TCPW, note 
that BWE varies from flow to flow sharing the 
same bottleneck; it corresponds to the rate 
actually achieved by each INDIVIDUAL flow. 
Thus, it is a FEASIBLE (ie, achievable) rate by 
definition. Consequently, the collection of all 
the BWE rates, as estimated by the connections 
sharing the same bottleneck, is a FEASIBLE 
set. 
When the bottleneck becomes saturated and 
packets are dropped, TCPW selects a set of 
congestion windows that correspond exactly to 
the measured BWE rates and thus 
reproduce the current individual throughputs. 
The solution is feasible, but it is not guaranteed 
per se to be fair share. An important element of 
this procedure is the RTT estimation. RTT is 
required to compute the window that supports 
the estimated rate BWE. Ideally, the 
RTT should be measured when the bottleneck 
is empty. In practice, it is set equal to the 
overall minimum round trip delay (RTTmin) 

measured so far on that connection (based on 
continuous monitoring of ACK RTTs). 
We note that in TCPW, congestion window 
increments during slow start and congestion 
avoidance remain the same as in Reno, that is 
they are exponential and linear, 
respectively. A packet loss is indicated by (a) 
the reception of 3 DUPACKs, or (b) a coarse 
timeout expiration. In case the loss indication 
is 3 DUPACKs, TCPW sets 
cwnd and ssthresh as follows: 
if (3 DUPACKs are received) 
ssthresh = (BWE * RTTmin) / seg_size; 
if (cwnd > ssthresh) /* congestion avoid. */ 
cwnd = ssthresh; 
endif 
endif 
In the pseudo-code, seg_size identifies the 
length of a TCP segment in bits. Note that the 
reception of n DUPACKs is followed by the 
retransmission of the missing segment, as in 
the standard Fast Retransmit implemented by 
TCP Reno. Also, the window growth after the 
cwnd is reset to ssthresh follows the rules 
established in the Fast Retransmit algorithm 
(i.e., cwnd grows by one for each further ACK, 
and is reset to ssthresh after the first ACK 
acknowledging new data). During the 
congestion avoidance phase we are probing for 
extra available bandwidth. Therefore, when n 
DUPACKs are received, it means that we have 
hit the network capacity (or that, in the case of 
wireless links, one or more segments were 
dropped due to sporadic losses). Thus, the slow 
start threshold is set equal to the window 
capable of producing the measured rate BWE 
when the bottleneck buffer is empty (namely, 
BWE*RTTmin). The congestion window is set 
equal to the ssthresh and the congestion 
avoidance phase is entered again to gently 
probe for new available bandwidth.. Note that 
after ssthresh has been set, the congestion 
window is set equal to the slow start threshold 
only if cwnd > ssthresh. It is possible that the 
current cwnd may be below threshold. This 
occurs after time-out for example, when the 
window is dropped to 1 as discussed in the 
following section. During slow start, cwnd still 
features an exponential increase as in the 
current implementation of TCP Reno. In case a 
packet loss is indicated by a timeout 
expiration, cwnd and ssthresh are set as 
follows: 
if (coarse timeout expires) 
cwnd = 1; 



ssthresh=(BWE.RTTmin) /seg_size; 
if (ssthresh < 2) 
sthresh = 2; 
endif; 
endif 
The rationale of the algorithm above is that 
after a timeout, cwnd and the ssthresh are set 
equal to 1 and BWE, respectively. Thus, the 
basic Reno behavior is still captured, while a 
speedy recovery is ensured by setting ssthresh 
to the value of BWE. 
 
 
3 Modifying congestion avoidance 
algorithm 
We propose in this part how to improve the 
throughput without increasing the number of 
packets lost.  
On the basis of the observation, we do not note 
a fluctuation of the curve of bandwidth used 
only when there is a loss of packet. In fact, the 
packet loss is sign of congestion, it is also the 
cause of the release of the congestion 
avoidance phase which decreases considerably 
the size congestion window.  
We estimate that the reduction of the 
congestion window cwnd is still very 
significant; we propose to reduce this 
variation. During a congestion detection, we 
propose to not reduce cwnd to ssthresh but to 
divide this reduction interval by two. Instead of 
beginning the window incrementing from this 
new threshold, we stabilize it with this 
threshold to form a stage. When the stage 
coincides with the initial curve we swing 
towards a linear increase.  
Thus, we preserve the same shape of the curve 
and where there is a fall of the window size, 
we replace the fall by the stage.  
Now, we propose to calculate the period during 
which the window cwnd will remain constant. 
This period is not fixed but varies according to 
the maximum size of cwnd during the 
congestion detection. In fact, the larger cwnd, 
the longer the stage. Thus, to estimate the 
length of the stage, it is necessary to calculate 
the time that 
the congestion window takes to be incremented 
during the part of the curve starting from 
threshold ssthresh to reach the new 
Newssthesh threshold, which is the stage 
value. The incrementing is carried out from the 
incrementing function described in the 

algorithm of congestion avoidance of TCP 
Westwood. 
Our proposal is described in this pseudo code: 
Newssthresh = ssthresh + (cwnd - ssthresh)/2 

 (1) 
New increment = ssthresh (2) 
if (cwnd > ssthresh) then 
when ack receved : 
New increment = New increment +1/New 
increment (3) 
If (New increment < Newssthresh) then 
cwnd = Newssthresh (4) 
else 
cwnd = New increment (5) 
 
The New increment variable is used as meter 
in the stage phase to calculate its duration. This 
variable is even useful to us as an increment in 
the linear increase phase in the curve. 
 
 
4 Simulation 
To make sure that our theoretical idea is 
verified by simulations, we chose to treat 
different cases of networks. In this part, we 
will see what happens in the case of a wired 
network  resenting bottleneck and in the case 
of a wireless network presenting random 
packets loss.  
We will indicate by TCP WestwoodNR+ the 
protocol TCP Westwood applied to New Reno 
integral our contribution. 

 
 

Figure 1 — Simple topology with bottleneck 
 
 
4.1 Wired Network case 
The figure 1 shows a network topology that we 
simulate with 2 portions including a 100-Mbps 
link intercalated by a bottleneck with a 
bandwidth of 5 Mbps and delay a 35 ms. 
To visualize the modification that we carried 
out, we chose to represent on the same graph 
the evolution of the congestion window and its 
threshold ssthresh which enables us to clearly 
distinguish the modification. 
The figure 2 represents, in red, the new pace of 
evolution in time of the congestion  window. 
We clearly observe the existence stages. 



 
Figure 2 — Evolution of cwnd of TCP WestwoodNR+ in wired 

network 
 
Graphically, we can conclude that the fixed 
objectives are carried out since the amplitude 
of the cwnd size decreased and we also 
observe that there is no increase in the packets 
loss. Following this curve, we can deduce the 
bandwidth utilisation ratio. 
The figure 3 shows us a graph with two phases. 
Even if the use of the bandwidth fluctuates a 
little more at the beginning of simulation, the 
second phase is much more stable. The 
throughput calculation proves this tendency 
since we have under the same conditions an 
average throughput of 4.538 Mbits/s whereas it 
was 4.436 Mbits/s before our contribution, 
which gives us an improvement of the 
throughput of 2.30%.  
We conclude that our contribution presents a 
throughput improvement and verifies our 
starting conditions. But, the improvement is 
not very significant. Let us observe now what 
happens in the wireless  network. 

 
Figure 3 — Use of the bandwidth in TCP WestwoodNR+ 

 
 
4.2 Wireless Network case 
We integrated our contribution in TCP 
WestwoodNR and we applied it in the case of 
a network presenting packets loss. 

 
Figure 4 — Evolution of cwnd in the wireless network 

 
That is what we obtain: a curve 4 presenting 
stages intercalated by linear incrementing 
phases. We notice that the stages don’t have 
the same length, this is explained by the 
random aspect of the packets loss which leads 
to a variable size of the congestion window at 
the  decrementation time. Although the curve 
of cwnd presents clearly this random aspect , it 
does not affect the threshold ssthresh 
calculation. We notice that it very little varies 
since the 7th second of simulation. In fact, our 
contribution preserves the characteristics of 
TCP Westwood. 
Thus, we obtain a graph 5 of the bandwidth use 
which does not vary with each packet loss. It is 
also another characteristic of TCP Westwood 
that we find. The curve evolves exponentially 
to reach and stabilize very close to physical 
limit of the bottleneck fixed to 5 Mbit/s. 
Our contribution presents an improvement in 
the window evolution cwnd and in the use of 
the bandwidth. The average throughput of 
simulation is of 4.913 Mbit/s where as it was 
4.510 Mbit/s given an improvement of 8.94% 
(see figure 6). 
This improvement is considerable since our 
theoretical work stroke is of a maximum 
improvement of 10.86%. In fact, we will not 
be able to have an improvement 

 
Figure 5 — Use of the bandwidth in wireless network 

 
Figure 6 — Throughput befor and after the modification 

 
only when the throughput found is included 
between the throughput of reference before our 
contribution which is 4.510 and the physical 
bandwidth of the bottleneck which is 5 Mbit/s. 
 



 
5 Choice of the new threshold 
The choice of the Newsstresh threshold of 
equation 1 is the result of several simulations. 
Our principal objective is to place this stage at 
a value between ssthresh and cwnd. 
- a value of Newsstresh too close to cwnd and 
we fall into the case where we are still in 
congestion. 
- a value very close to ssthresh and our 
contribution will not be significant.  
To know on which level the stage should be 
placed, we have made several simulations by 
dividing the interval between ssthresh and 
cwnd on several values. The general form of 
the equation is: 
Newssthresh = ssthresh+(cwnd - ssthresh)/cte 

 (6) 
According to the values of cte we find different 
throughputs. We preserve the constant which 
gives us the best throughput. but we have 
noted according to simulations that the best 
throughput in without loss network intervenes 
for different cte value in case of a network 
presenting the random packets losses. 
- the best cte value for the wired network is 3.6 
to have a throughput of 4.718 Mbit/s. 
- the best cte value for the wireless network is 
2 to have a throughput of 4.913 Mbit/s. 
Following this divergence, we choose to 
privilege wireless case since the contribution is 
better there. We find therefore equation 1. 
 
 
6 Evaluation of performances : TCP 
Friendliness of WestwoodNR+ 
We showed previously that our contribution 
has well increased the throughput. It should be 
seen now if this improvement does not 
deteriorate the notion of the friendship. We 
will simulate in this part our improved protocol 
to see whether it is compatible with the other 
existing protocols. We will simulate the 
scenario described in figure 7. 

 
Figure 7 — TCP freindliness 

 

 
6.1 with TCP New Reno 
We test compatibility between two sources S1 
and S2 emitting simultaneously towards the 
same nodes. The source S1 emits according to 
our protocol TCP WestwoodNR+, its relative 
curves are schematized in red in the following 
graphs. 
The S2 source emits according to protocol 
TCP New Reno, his relative curves are 
schematized in green. Thus, we choose to start 
by comparing with the protocol New Reno 
since it is the base of our protocol.  
The figure 8 represents the number of received 
acknowledgements by the sources. These 
curves give us an idea on rate of each source. 
We notice that the S1 source rate emitting with 
TCP WestwoodNR+ is more significant than 
that of S2 which is emitted with TCP New 
Reno without crushing it.  
The figure 9 confirms this tendency since we 
distinguish that cwnd from TCP 
WestwoodNR+ is above that of TCP New 
Reno. We can also say that protocol TCP New 
Reno does not die of starvation since its 
window of congestion periodically becomes 
extensive. 

 
Figure 8 — throughput of TCP WestwoodNR+ and TCP New 

Reno 

 
Figure 9 — Evolution of cwnd of TCP WestwoodNR+ and TCP 

New Reno 
 
The calculation of the throughput of our 
modified protocol, under the same conditions 
of simulation, indicates that it is improved by 
44.29% compared to TCP New Reno. 
 
 



6.2 With TCP WetwoodNR 
The curves in red relate to TCP 
WestwoodNR+ and the curves in green relate 
to the reference TCP WestwoodNR protocol. 
We can observe now the compatibility of our 
improvement with the same protocol without 
our contribution.  
The figure 10 shows that the two 
WestwooodNR protocols with and without 
modification are similar. The slight superiority 
of the red curve indicates the presence of our 
contribution. 

 
Figure 10 — throughput of TCP WestwoodNR+ and TCP 

WestwoodNR 
 
In the figure 11, and from the 10th second, we 
can see that the congestion windows of both 
curves are practically superimposed. Thus, we 
can conclude that the improvement of 
throughput is due to the presence of the stage 
in our modification. 

 
Figure 11 — Cwnd of TCPWestwoodNR with and without 

modification 
 
 
7 Conclusion  
The study of protocol TCP Westwood enabled 
us to rase the problem of congestion window 
evolution. To improve the transfer of data, it is 
necessary to resolve this problem. We 
proposed in this paper an hypothesis to reduce 
the margin in which can evolve the congestion 
window and modify hallure of the curve of the 
window evolution according to time. Our 
contributions made it possible to increase the 
throughput without increasing the packetloss 
rate.  

After that, we cheked whether this 
modification affected the other aspects of 
protocol and more precisely the aspect of the 
friendliness which is one of the strong points 
of protocol TCP Westwood. In conclusion, we 
can confirm that our contribution proves to be 
an amelioration. 
For a later work, we project to make an 
analytical model of our work and to adapt it to 
the ad hoc networks. 
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