
Improvement Congestion Avoidance over TCP Westwood Protocol

Mounir Frikha, Meriem Chekir
Network department

Ecole supérieure des communications de Tunis
Route Raoued Km 3.5, 2080 ARIANA

TUNISIA

Abstract: TCP WestwoodNR is a sender-side modification of the TCP congestion window algorithm
that improves upon the performance of TCP New Reno in wired as well as wireless networks. The
improvement is most significant in wireless networks with lossy links, since TCP WestwoodNR relies
on end-to-end bandwidth estimation to discriminate the cause of packet loss congestion or wireless
channel effect) which is a major problem in TCP New Reno.
The key idea of our improvement consists in increasing the throughput of the transmission by
modifying the algorithm of congestion avoidance. The rationale of this strategy is simple: in contrast
with TCP Reno, which reduce ”blindly” to slow start threshold the congestion window after three
duplicate ACKs, TCP WestwoodNR stabilize during a certain period the congestion window to new
threshold larger then ssthresh, then it increases it linearly.
The proposed mechanism is particularly effective over wireless links where sporadic losses due to
radio channel problems are often misinterpreted as a symptom of congestion by current TCP schemes
and thus lead to an unnecessary window reduction.
Experimental studies reveal improvements in throughput performance, as well as in fairness. In
addition, friendliness with TCP New Reno was observed in a set of experiments showing that TCP
New Reno connections are not starved by TCP WestsoodNR connections.

Key-Words: Congestion Avoidance, TCP, TCP Reno, TCP New Reno, TCP Westwood, Simulation

1 Introduction
There is not doubt any more today: the world
of telecommunications is in blooming. It opens
the way to new objectives and challenges for
the development of news transmission
techniques but also for the setting to systems.
Today, the great majority of the networks are
made up of a central infrastructure, equipped
with broad band transmission capacity, and
most of the time built on the basis of wired
network. As this one does not allow a wide
mobility to equipments to which it is
connected, a news generation of networks was
defined. By this one, peripherals hitherto
dedicated in a fixed place, are equipped with
radio operator equipment which can enter in
dialogue with others while ensuring a more or
less broad mobility.
This inauguration of new behaviors revealed
some weaknesses in the data transmissions
following up the heterogeneity of the
propagation environment. The wired networks
initially conceived for end to end

communications forwarded exclusively by
cabled way are put today
at contribution for transit between and to the
wireless networks. These modifications of
behavior are not without consequences for the
majority of the algorithms designed for control
of information. For example a data loss could
be interpreted in various manners according to
whether it comes from a saturation of a link in
the network or a loss caused by a little reliable
propagation environment, or as a consequence
of a technical deficiency which has occurred in
equipment carrying out transmission.
Algorithms developed until now do not make
the distinction between these different
interpretations.
We can observe that if no modification is
made, they will contribute to make the
performances of transmission rather disastrous
on heterogeneous networks. In fact,
information transport protocols as previously
conceived and which are based on the packets
losses to adjust their parameters are less
powerful than the algorithms in which our

estimation is based on the bandwidth available
for adjusting these parameters, as well.
Random losses of packets suitable for wireless
network an ill-treated. We are interested in the
problem of evolution of the congestion
window during the detection of a loss.
We present in section 2 an outline of the
evolution of the congestion window in TCP
Westwood. Our contribution will be detailed
in section 3. After that, in section 4, we will
simulate our proposal in the wired and wireless
networks. In section 5, we explain the choice
of our new parameter. Then in section 6, we
verify if our contribution does not affect the
other properties of TCP Westwood. And we
conclude by the perspectives which can open
our work.

2 An overview of TCP Westwood
In TCP Westwood the sender continuously
computes the connection BandWidth Estimate
(BWE) which is defined as the share of
bottleneck bandwidth used by the connection.
Thus, BWE is equal to the rate at which data is
delivered to the TCP receiver. The estimate is
based on the rate at which ACKs are received
and on their payload. After a packet loss
indication, (ie, reception of 3 duplicate ACKs,
or timeout expiration). The sender resets the
congestion window and the slow start
threshold based on BWE. More precisely,
cwnd = BWE x RTT.
To understand the rationale of TCPW, note
that BWE varies from flow to flow sharing the
same bottleneck; it corresponds to the rate
actually achieved by each INDIVIDUAL flow.
Thus, it is a FEASIBLE (ie, achievable) rate by
definition. Consequently, the collection of all
the BWE rates, as estimated by the connections
sharing the same bottleneck, is a FEASIBLE
set.
When the bottleneck becomes saturated and
packets are dropped, TCPW selects a set of
congestion windows that correspond exactly to
the measured BWE rates and thus
reproduce the current individual throughputs.
The solution is feasible, but it is not guaranteed
per se to be fair share. An important element of
this procedure is the RTT estimation. RTT is
required to compute the window that supports
the estimated rate BWE. Ideally, the
RTT should be measured when the bottleneck
is empty. In practice, it is set equal to the
overall minimum round trip delay (RTTmin)

measured so far on that connection (based on
continuous monitoring of ACK RTTs).
We note that in TCPW, congestion window
increments during slow start and congestion
avoidance remain the same as in Reno, that is
they are exponential and linear,
respectively. A packet loss is indicated by (a)
the reception of 3 DUPACKs, or (b) a coarse
timeout expiration. In case the loss indication
is 3 DUPACKs, TCPW sets
cwnd and ssthresh as follows:
if (3 DUPACKs are received)
ssthresh = (BWE * RTTmin) / seg_size;
if (cwnd > ssthresh) /* congestion avoid. */
cwnd = ssthresh;
endif
endif
In the pseudo-code, seg_size identifies the
length of a TCP segment in bits. Note that the
reception of n DUPACKs is followed by the
retransmission of the missing segment, as in
the standard Fast Retransmit implemented by
TCP Reno. Also, the window growth after the
cwnd is reset to ssthresh follows the rules
established in the Fast Retransmit algorithm
(i.e., cwnd grows by one for each further ACK,
and is reset to ssthresh after the first ACK
acknowledging new data). During the
congestion avoidance phase we are probing for
extra available bandwidth. Therefore, when n
DUPACKs are received, it means that we have
hit the network capacity (or that, in the case of
wireless links, one or more segments were
dropped due to sporadic losses). Thus, the slow
start threshold is set equal to the window
capable of producing the measured rate BWE
when the bottleneck buffer is empty (namely,
BWE*RTTmin). The congestion window is set
equal to the ssthresh and the congestion
avoidance phase is entered again to gently
probe for new available bandwidth.. Note that
after ssthresh has been set, the congestion
window is set equal to the slow start threshold
only if cwnd > ssthresh. It is possible that the
current cwnd may be below threshold. This
occurs after time-out for example, when the
window is dropped to 1 as discussed in the
following section. During slow start, cwnd still
features an exponential increase as in the
current implementation of TCP Reno. In case a
packet loss is indicated by a timeout
expiration, cwnd and ssthresh are set as
follows:
if (coarse timeout expires)
cwnd = 1;

ssthresh=(BWE.RTTmin) /seg_size;
if (ssthresh < 2)
sthresh = 2;
endif;
endif
The rationale of the algorithm above is that
after a timeout, cwnd and the ssthresh are set
equal to 1 and BWE, respectively. Thus, the
basic Reno behavior is still captured, while a
speedy recovery is ensured by setting ssthresh
to the value of BWE.

3 Modifying congestion avoidance
algorithm
We propose in this part how to improve the
throughput without increasing the number of
packets lost.
On the basis of the observation, we do not note
a fluctuation of the curve of bandwidth used
only when there is a loss of packet. In fact, the
packet loss is sign of congestion, it is also the
cause of the release of the congestion
avoidance phase which decreases considerably
the size congestion window.
We estimate that the reduction of the
congestion window cwnd is still very
significant; we propose to reduce this
variation. During a congestion detection, we
propose to not reduce cwnd to ssthresh but to
divide this reduction interval by two. Instead of
beginning the window incrementing from this
new threshold, we stabilize it with this
threshold to form a stage. When the stage
coincides with the initial curve we swing
towards a linear increase.
Thus, we preserve the same shape of the curve
and where there is a fall of the window size,
we replace the fall by the stage.
Now, we propose to calculate the period during
which the window cwnd will remain constant.
This period is not fixed but varies according to
the maximum size of cwnd during the
congestion detection. In fact, the larger cwnd,
the longer the stage. Thus, to estimate the
length of the stage, it is necessary to calculate
the time that
the congestion window takes to be incremented
during the part of the curve starting from
threshold ssthresh to reach the new
Newssthesh threshold, which is the stage
value. The incrementing is carried out from the
incrementing function described in the

algorithm of congestion avoidance of TCP
Westwood.
Our proposal is described in this pseudo code:
Newssthresh = ssthresh + (cwnd - ssthresh)/2

 (1)
New increment = ssthresh (2)
if (cwnd > ssthresh) then
when ack receved :
New increment = New increment +1/New
increment (3)
If (New increment < Newssthresh) then
cwnd = Newssthresh (4)
else
cwnd = New increment (5)

The New increment variable is used as meter
in the stage phase to calculate its duration. This
variable is even useful to us as an increment in
the linear increase phase in the curve.

4 Simulation
To make sure that our theoretical idea is
verified by simulations, we chose to treat
different cases of networks. In this part, we
will see what happens in the case of a wired
network resenting bottleneck and in the case
of a wireless network presenting random
packets loss.
We will indicate by TCP WestwoodNR+ the
protocol TCP Westwood applied to New Reno
integral our contribution.

Figure 1 — Simple topology with bottleneck

4.1 Wired Network case
The figure 1 shows a network topology that we
simulate with 2 portions including a 100-Mbps
link intercalated by a bottleneck with a
bandwidth of 5 Mbps and delay a 35 ms.
To visualize the modification that we carried
out, we chose to represent on the same graph
the evolution of the congestion window and its
threshold ssthresh which enables us to clearly
distinguish the modification.
The figure 2 represents, in red, the new pace of
evolution in time of the congestion window.
We clearly observe the existence stages.

Figure 2 — Evolution of cwnd of TCP WestwoodNR+ in wired

network

Graphically, we can conclude that the fixed
objectives are carried out since the amplitude
of the cwnd size decreased and we also
observe that there is no increase in the packets
loss. Following this curve, we can deduce the
bandwidth utilisation ratio.
The figure 3 shows us a graph with two phases.
Even if the use of the bandwidth fluctuates a
little more at the beginning of simulation, the
second phase is much more stable. The
throughput calculation proves this tendency
since we have under the same conditions an
average throughput of 4.538 Mbits/s whereas it
was 4.436 Mbits/s before our contribution,
which gives us an improvement of the
throughput of 2.30%.
We conclude that our contribution presents a
throughput improvement and verifies our
starting conditions. But, the improvement is
not very significant. Let us observe now what
happens in the wireless network.

Figure 3 — Use of the bandwidth in TCP WestwoodNR+

4.2 Wireless Network case
We integrated our contribution in TCP
WestwoodNR and we applied it in the case of
a network presenting packets loss.

Figure 4 — Evolution of cwnd in the wireless network

That is what we obtain: a curve 4 presenting
stages intercalated by linear incrementing
phases. We notice that the stages don’t have
the same length, this is explained by the
random aspect of the packets loss which leads
to a variable size of the congestion window at
the decrementation time. Although the curve
of cwnd presents clearly this random aspect , it
does not affect the threshold ssthresh
calculation. We notice that it very little varies
since the 7th second of simulation. In fact, our
contribution preserves the characteristics of
TCP Westwood.
Thus, we obtain a graph 5 of the bandwidth use
which does not vary with each packet loss. It is
also another characteristic of TCP Westwood
that we find. The curve evolves exponentially
to reach and stabilize very close to physical
limit of the bottleneck fixed to 5 Mbit/s.
Our contribution presents an improvement in
the window evolution cwnd and in the use of
the bandwidth. The average throughput of
simulation is of 4.913 Mbit/s where as it was
4.510 Mbit/s given an improvement of 8.94%
(see figure 6).
This improvement is considerable since our
theoretical work stroke is of a maximum
improvement of 10.86%. In fact, we will not
be able to have an improvement

Figure 5 — Use of the bandwidth in wireless network

Figure 6 — Throughput befor and after the modification

only when the throughput found is included
between the throughput of reference before our
contribution which is 4.510 and the physical
bandwidth of the bottleneck which is 5 Mbit/s.

5 Choice of the new threshold
The choice of the Newsstresh threshold of
equation 1 is the result of several simulations.
Our principal objective is to place this stage at
a value between ssthresh and cwnd.
- a value of Newsstresh too close to cwnd and
we fall into the case where we are still in
congestion.
- a value very close to ssthresh and our
contribution will not be significant.
To know on which level the stage should be
placed, we have made several simulations by
dividing the interval between ssthresh and
cwnd on several values. The general form of
the equation is:
Newssthresh = ssthresh+(cwnd - ssthresh)/cte

 (6)
According to the values of cte we find different
throughputs. We preserve the constant which
gives us the best throughput. but we have
noted according to simulations that the best
throughput in without loss network intervenes
for different cte value in case of a network
presenting the random packets losses.
- the best cte value for the wired network is 3.6
to have a throughput of 4.718 Mbit/s.
- the best cte value for the wireless network is
2 to have a throughput of 4.913 Mbit/s.
Following this divergence, we choose to
privilege wireless case since the contribution is
better there. We find therefore equation 1.

6 Evaluation of performances : TCP
Friendliness of WestwoodNR+
We showed previously that our contribution
has well increased the throughput. It should be
seen now if this improvement does not
deteriorate the notion of the friendship. We
will simulate in this part our improved protocol
to see whether it is compatible with the other
existing protocols. We will simulate the
scenario described in figure 7.

Figure 7 — TCP freindliness

6.1 with TCP New Reno
We test compatibility between two sources S1
and S2 emitting simultaneously towards the
same nodes. The source S1 emits according to
our protocol TCP WestwoodNR+, its relative
curves are schematized in red in the following
graphs.
The S2 source emits according to protocol
TCP New Reno, his relative curves are
schematized in green. Thus, we choose to start
by comparing with the protocol New Reno
since it is the base of our protocol.
The figure 8 represents the number of received
acknowledgements by the sources. These
curves give us an idea on rate of each source.
We notice that the S1 source rate emitting with
TCP WestwoodNR+ is more significant than
that of S2 which is emitted with TCP New
Reno without crushing it.
The figure 9 confirms this tendency since we
distinguish that cwnd from TCP
WestwoodNR+ is above that of TCP New
Reno. We can also say that protocol TCP New
Reno does not die of starvation since its
window of congestion periodically becomes
extensive.

Figure 8 — throughput of TCP WestwoodNR+ and TCP New

Reno

Figure 9 — Evolution of cwnd of TCP WestwoodNR+ and TCP

New Reno

The calculation of the throughput of our
modified protocol, under the same conditions
of simulation, indicates that it is improved by
44.29% compared to TCP New Reno.

6.2 With TCP WetwoodNR
The curves in red relate to TCP
WestwoodNR+ and the curves in green relate
to the reference TCP WestwoodNR protocol.
We can observe now the compatibility of our
improvement with the same protocol without
our contribution.
The figure 10 shows that the two
WestwooodNR protocols with and without
modification are similar. The slight superiority
of the red curve indicates the presence of our
contribution.

Figure 10 — throughput of TCP WestwoodNR+ and TCP

WestwoodNR

In the figure 11, and from the 10th second, we
can see that the congestion windows of both
curves are practically superimposed. Thus, we
can conclude that the improvement of
throughput is due to the presence of the stage
in our modification.

Figure 11 — Cwnd of TCPWestwoodNR with and without

modification

7 Conclusion
The study of protocol TCP Westwood enabled
us to rase the problem of congestion window
evolution. To improve the transfer of data, it is
necessary to resolve this problem. We
proposed in this paper an hypothesis to reduce
the margin in which can evolve the congestion
window and modify hallure of the curve of the
window evolution according to time. Our
contributions made it possible to increase the
throughput without increasing the packetloss
rate.

After that, we cheked whether this
modification affected the other aspects of
protocol and more precisely the aspect of the
friendliness which is one of the strong points
of protocol TCP Westwood. In conclusion, we
can confirm that our contribution proves to be
an amelioration.
For a later work, we project to make an
analytical model of our work and to adapt it to
the ad hoc networks.

References:
[1] C. Casetti, M. Gerla, S. Mascolo, M. Y.
Sanadidi, and R. Wang, “TCP Westwood:
Bandwidth Estimation for Enhanced Transport
over Wireless Links”, In Proceedings of
Mobicom 2001, Rome, Italy, Jul. 2001.
[2] M. Gerla, M. Y. Sanadidi, R. Wang, A.
Zanella, C. Casetti, S. Mascolo, ”Westwood:
Congestion Window Control Using Bandwidth
Estimation”, In Proceedings of IEEE
Globecom 2001, Volume: 3, pp 1698-1702,
San Antonio, Texas, USA, November 25-29,
2001.
[3] G. Yang, R. Wang, M. Y. Sanadidi, M.
Gerla, ”TCPW with Bulk Repeat in Next
Generation Wireless and Satellite Networks”,
ICC 2003, Alaska, May 2003.
[4] I Lengliz, H. Touati, F. Kammoun, M. Y.
Sanadidi ”Experimentation towards TCP
Westwood application in ad-hoc mobile
networks” in Adhoc Mobile Networks Med-
Hoc Net 2003, Tunis, Tunisia, June 2003.
[5] C. Casetti, M. Gerla, S. S. Lee, S. Mascolo
and M. Sanadidi, “TCP with Faster Recovery”,
In Proceedings of MILCOM 2000, Los
Angeles, CA, October 2000.
[6] S. Floyd, “The NewReno Modification to
TCP’s Fast Recovery Algorithm”, RFC 3782,
INTERNET DRAFT, February 1999.
[7] W. Stevens, “TCP Slow Start, Congestion
Avoidance, Fast Retransmit, and Fast
Recovery Algorithms”, RFC2001, janvier
1997.
[8] M. Chekir, M. Frikha, “Etude et
Amélioration du Contrôle de Congestion dans
IP”, Maser in telecommunications, Sup’Com
Tunisia, May 2005.

