
A SysML profile for mechatronics integrating Bond Graphs

 SKANDER TURKI THIERRY SORIANO ADEL SGHAIER
LISMMA (EA 2336)

Supmeca
Maison des technologies, Toulon 83000

FRANCE

Abstract: – In this paper we present a SysML [1] profile for mechatronic-systems design. It is an extension to the
activity diagram of UML 2.0 so that it maps to the Bond Graph formalism which is a useful tool when dealing with
mechatronic systems. This extension is a package that contains a set of stereotypes and tagged values which are the
extension mechanisms that SysML inherits from UML2.0 [3]. We establish mapping between bond graph elements
and these extensions. We illustrate this SysML profile by an example.

Index Terms: – Mechatronics, Bond Graphs, SysML, UML 2.0, Activity diagram, Systems Engineering, Profile.

1 Introduction
Mechatronic systems are the result of the integration of
mechanical, electronic and information technologies.
The complexity of such systems needs to apply a
systems approach. The systems approach is a global
multidisciplinary methodological approach that aims at
master the practices of systems engineering. To support
such an approach SysML has been introduced. SysML
is an essay to provide systems engineers with a
standard language that covers the specification,
analysis, design, verification and validation phases.
For mechatronic-systems engineers Bond Graphs is a
very useful tool. Bond Graphs is a formalism used to
depict the energetic transfers between subsystems of
different natures (mechanical, electrical, etc). It is
today used in numerous important projects inside
companies such as PSA, Renault, General Motors…[5]
In this work we built a profile extending SysML to
integrate Bond Graphs. We start introducing SysML.
Then we present the Bond Graph formalism. In the
third section is a detailed presentation of our
contribution that is composed of two sub-profiles. The
first one is for Bond Graphs, the second is for block
diagrams as they are usually combined to express both
the physical sub-system and the control sub-system.
Then we give an example. Finally we give some
conclusions and perspectives of this proposal.

2 SysML : A new modeling language
SysML is an extension to UML 2.0. It is the Systems
Modelling Language built as a response to the Object
Management Group’s UML for systems engineering
Request For Proposal [2]. This RFP claims that
systems engineers need a standard language easy to
integrate both in the engineering teams and in the
existing tools. Other UML-based approaches for

systems engineering have already been introduced like
the UML/PNO approach [12], but such approaches are
not rich enough to give to systems engineers all the
expression possibilities they may find in SysML. The
OMG’s RFP asserts that the language must help
heterogeneous teams (software, electronics,
mechanics…) to work together and communicate. This
is why SysML is based on the minimal subset of
UML2.0 that satisfies systems engineers needs. It is
intended to be minimal to be easily accepted by the
systems engineering community. In addition to that
SysML is an extension to UML2.0 and tries to bring
the minimum change to the UML meta-model to
facilitate its implementation to tool vendors. It benefits
from the UML extension mechanisms (stereotypes,
tagged values). In the “UML 2.0 infrastructure
specification” [4] page 174 a stereotype “defines how
an existing meta-class may be extended, and enables
the use of platform or domain specific terminology”.
These mechanisms will be used to specialise SysML to
specific domains such as aeronautics, automobile etc.
SysML is also aligned with other standards such as
ISO AP-233 [8] for data interchange to support tool
interoperability. SysML also inherits the XMI (XML
model interchange) from UML2.0. But this basic
SysML will need to bring to these systems engineers
their usual tools by creating extension packages that
can be added or removed from their design
environments just like the practices of the software
engineers with the profiles of C++, CORBA and
others. This is why we need to build these extensions
for SysML. The activity diagram is already used to
express EFFBDs (Enhanced Functional Flow Block
Diagrams). BGs are also usually used by systems
engineers. In [11] W. Borutzky establishes a
relationship between Bond Graphs and object-oriented
modelling. So, we are presenting their application

using SysML. The BG formalism is quickly introduced
in the following.

3 Bond Graphs notation
Mechatronic-systems design often requires to analyse
the energetic transfers between subsystems. In addition
a homogenisation of such an analysis must be
accomplished to visualize on the same diagram a
phenomenological description of the system. This is
done by the BG formalism that allows in the same time
to discover the system’s equations, which are used for
the simulation and the dimensioning. There are three
levels of BG representation [6]. The word-BG that is
used to have a first approach in describing the energy
map of the system and its composition. The Acausal
BG used to show the energetic transfers and
subsystems natures (i.e: energetic functions) assuming
that the decomposition is advanced enough so that we
can replace each subsystem by an elementary
component. The causal BG which helps finding the
system’s equations. In the BG formalism, a subsystem
is represented by a closed line (system’s frontiers) with
a name. For each energy interchange with its
environment we associate to this subsystem an
energetic port of a defined type (mechanical energy,
electrical energy, etc). A port is represented by a
unidirectional-semi-headed arrow and carries the data
of the power transported; Effort and flow that
correspond to a couple of variables in each energetic
domain (tab 1).

Table 1: Effort and flow in different energetic domains.

Energetic
domain

Effort e Flow f

Translational
mechanics

Force Velocity

Rotational
mechanics

Torque Angular velocity

Electricity Voltage Current
Magnetic Magneto-motive

force
Magnetic flow

3.1 Elementary components or nodes
The elementary components are classified (tab 2) by
their energetic behaviour or function.
In addition to these elements, each element may be
modulated except I and C. In this case an M is added
(MR, MSe, MSf,…).

3.2 The junctions
Junctions (tab 3) are used to associate those elementary
components. They transmit the energy instantaneously.
They must connect a number of arrows higher than 1.

Table 2: Bond Graph Elementary components

Effort generation. Active

elements

 Flow generation.

 Energie dissipation node.

Effort storage node

Passif
elements

Flow storage node.

 Flow sensor. Sensors

 Effort sensor.

Transformation implying :

Conversion
elements

Transformation implying:

Table 3 : The two kinds of junctions
Junction 0 :
all efforts are
equal
Ex: Parallel
connection in
electrics.
Junction 1 :
all flows are
equal
Ex : Series
connection in
electrics.

3.3 The arrows or bonds
In BGs there are two types of edges (Tab 4). The first
shows an informational transfer and the second shows
an energetic transfer. The first one is represented by a
full headed unidirectional arrow. The second, by a
semi-headed unidirectional arrow. In the case of a
causal BG, a vertical line is added on one of the
extremities of the arrow. The energetic arrows are
assigned a number for identification.

Table 4: Bond Graph’s bonds/arrows
Energetic transfer

No causality With causality
Informational

transfer

4 Mapping to SysML/UML constructs

4.1 Candidate diagrams
It is important to choose a diagram that will be easily
recognisable as a BG diagram to limit the learning

effort of systems engineers. In the other hand, it is
essential to respect the semantics of the UML
diagrams. For example, a final state in a UML
statechart is defined as a state that cannot have any
outgoing transition (self.outgoing->size()=0, [3] page
581). This constraint must be respected for any
extension added to the original diagram.
In SysML the diagrams used to describe behaviour are:
Use cases, interaction diagrams, parametric constraints
diagram, statecharts and activity diagrams.
Use cases cannot express control nodes and are used to
express top level system requirements. They cannot
express energy or information transfer. Interactions are
to be avoided because of the life line representation of
objects which is too much far from BGs. Parametric
constraints are used to associate objects properties to
express mathematical relations between physical
variables which may be useful when we’ll need to
extract the system’s equations. It is not useful at this
stage. Statecharts can only represent control flow and
not object flow.
Activity diagrams are the most appropriate view
because they use constructs that express object
transfers and control. They combine system’s
composition with communication and sequencing
between actions. It can also be useful to compare this
proposal with a representation of BGs that uses
diagram assemblies. In fact, they depict a system as a
collection of components with specific roles. They also
show connections between subsystems inside the hole
system ([1] page 49). It seems that the assembly
diagram is closer to BGs than activity diagrams. In fact
assemblies are used to depict the system’s composition
in a static way. This is the opposite of activity
diagrams that are intended to depict a sequence of
actions. Of course we can “just not take into account”
this actions sequencing, but there is still a risk of
misunderstanding of BGs when expressed by activity
diagrams. On the other hand the assembly diagram is
composed of very general constructs, it also doesn’t
have control nodes which is useful to depict junctions.

4.2 Mapping Bond Graphs to activity diagrams

4.2.1 Elementary components or nodes
With the BG formalism, systems are decomposed until
we obtain subsystems that can be assimilated to an
elementary-energetic phenomenon. We can then
assimilate an elementary subsystem to an “action” as it
is defined in the UML2 specification: It is the
fundamental unit of behaviour specification. It takes a
set of inputs and converts them into a set of
outputs.”[3] page 229. An Action is defined as an
abstract class. Then we have to inherit from it. We
must remember that one of the advantages of SysML is

that it will benefit from UML tools. This is why we
cannot introduce contradictions between our extension
and UML2.0 as it is the case in B Fig.1 where we need
to add new constructs in the MOF (meta-Object
Facility), which is also the meta-model of UML2.0.

Fig.1 SysML : Profile of UML2.0 or new elements.

So case A of fig.1 is chosen; an extension of UML2.0
is built.. Applying this configuration, we can use two
different solutions. First, we can add another child
class to Action (Fig 2) and call it BondGraphAction.
Second we can use one of the existent child actions and
map it to a Bond Graph node.

Fig.2 Adding a child class to Action in the meta-model.

The UML meta-model is usually not open to
modifications. The second solution seems then to be
more easily realisable. This is why we use the
OpaqueAction meta-class to represent a Bond Graph
action. OpaqueAction is composed of a set of inputs, a
set of outputs, has a string that contains the body of the
action (in our case the mathematic formula) and has
another string that specifies the language in which that
formula is expressed. Fig 3. [3] page 233. This
representation of an elementary component is
equivalent to the “general multiport component”
described by Hales and Rosenberg in [10].

Fig.3 OpaqueAction’s meta-model.

An OpaqueAction is defined in [3] page 280 as an
action that has been introduced for implementation
specific actions. This is why it is the most general
specific action of the specification. To use the
OpaqueAction, we will specialize it for each of the
Bond Graph functions. We will not use inheritance of

classes because that will imply that we will have access
to the metamodel but we will use the extension
mechanisms of UML like stereotypes. Stereotypes are
used to add semantics to a metaclass its advantage is
that it is accessible in the UML tools. In this Fig 4 we
show the stereotypes created for the Bond Graph
elements. The inheritance arrow used is full-headed to
express extension on the meta-model, see [4] page 167.
This way we can express on the same diagram, the
three levels of Bond Graphs for better understanding.
We use the Body attribute Fig 3, to express the
mathematic formula that goes with the element. This
formula can be used later for system’s equations
generation. We used tagged values to add a property
“factor” to the stereotyped class BGraph_TF.

Fig.4 OpaqueAction stereotypes.

4.2.2 Junctions
Bond Graph junctions correspond to the control nodes
in the activity diagram. In the meta-model, control
nodes inherit from the abstract class ControlNode. To
represent the two junctions of BGs we can inherit two
new nodes of control Fig 5, 6.

Fig.5 ControlNode’s hierarchy

Fig.6 ControlNode notations

We can also use together the decision node and the
merge node represented by a diamond for both junction

0 and junction 1. This can be done by stereotyping
those nodes Fig 7. In fact the merge node and decision
node can be used in the same diagram element [3] page
417. This is the better solution because it prevents us
from accessing the meta-model, we just use the
extension mechanisms.
In Fig 7, we use a BGraph_junction abstract class to
inherit from both MergeNode and DecisionNode. Then
we stereotype this node to BG_0 and BG_1. Both
resulting nodes will be drawn using the diamond.

Fig.7 Bond Graph nodes hierarchy

4.2.3 The edges or bonds
Two different edges are defined. We use the
stereotypes/tagged values mechanism to define these
child classes of the UML 2.0 ObjectFlow class. The
black arrow in Fig 8 means it is an extension to the
meta-class ObjectFlow. The attributes of the new
defined classes are also called tagged values. The
causality attribute/tagged value is of type
CausalityType which is an enumeration (start, end,
nonCausal).

Fig.8 ObjectFlow stereotypes for Bond Graphs

The energetic transfer is done through an energetic port
in BGs. They are represented by pins Fig 9

Fig.9 Energy bond representation.

Object flow of activity diagrams in UML 2.0 cannot
associate two actions directly. This is why we use pins.
Pin is an abstract class, so we use OutputPin or
InputPin. In this case they are shown as black little
squares to express that it is a streaming port. This
means that the isStream attribute is set to True and

consequently, the isException attribute is set to False
Fig 10.

Fig.10 Pins hierarchy

In [3] page 352 we can read “Parameters are extended
in complete activities to add support for streaming,
exceptions, and parameter sets”. A specific
ObjectNode called ActivityParameterNode is defined
to use this parameter (Fig 11) so that an ObjectNode
can support streaming, exceptions and parameter sets.
We can also read in page 355 that OutputPins are used
with an annotation text {steam} to show streaming (or
the little black square Fig 9) and has attributes that can
express exceptions and parameter sets. So there are two
ways to express streaming for object nodes. We use
only input and output pins, because the use of an
ActivityParameterNode will result in too many nodes
in the activity diagram, the use of pins takes less place
in the diagram an shows the existence of energetic
ports.

Fig.11 ActivityParameterNode use of the Parameter

construct

4.2.4 Constraints on the defined elements
For each element a list of constraints need to be
defined so that we can express correct bond graphs
with this extension. As an example we present here the
constraints that come from the causality concept used
in bond graphs:

-Junction 0 : Only one causality sign close to the
junction. (sum(causality=end of entering
flows),(causality=start for leaving flows))=1.

-Junction 1 : Only one EnergeticFlow whitout a
causality signs next to the junction (sum(causality=end
of entering flows),(causality=start for leaving
flows))=number of flows-1.

-De,Df : No causality.
-EnergeticFlow from an Se element:

causality=end.
-EnergeticFlow from an Sf element:

causality=start.
-Tf element: Both EnergeticFlows with

causality=start Or both EnergeticFlows with
causality=End.

-Gy element: One EnergeticFlow with
causality=end, the other causality=start.

4.2.5 Block diagram extension
In order to use this BG representation, we need to
add the elements that correspond to the Block
Diagram elements. In fact, block diagram is used
conjointly with BGs to depict the control part of
the system. These generic elements are used
Fig.12, the transmittance element (transfer
functions), the operator element (comparator,
additioner) and the Setpoint element. We also add
input pins for the BlockDgOperator to determine
the kind of operation the input will undergo. The
Pin class inherits from MultiplicityElement then
InputPin accepts multiple entries. We keep the
same informational flow described previously.

Fig.12 Block diagram extensions.

4.2.6 Extension package
These extensions are delivered into one package that
will be added when using Bond Graphs in a SysML
project Fig.13.

Fig.13 Deliverable package for Bond Graphs support.

5 Formalism application
In this section we are showing an example of usage of
our SysML profile. We describe this servo system (Fig
14) with causal bond graphs then with the SysML
activity bond graphs.

Fig.14 Combined word-bond graph of a servo system.

The resulting causal bond graph representation is
shown in the following Fig 15.

Fig.15 Associated Bond Graph.

This causal bond graph will be represented in SysML
by Fig 16. The flow number 4 is described as an object
flow stereotyped Bgraph_EnergeticFlow. Its causality
is set to the end position and its energetic domain is set
to electricity which is one of the values of
energeticDomainType enumeration.

Fig.16 Activity representation of the system

We depict in the following diagram Fig 17 the
specification of two bonds. Bond number 1 and bond
number 10. The first one is an energeticFlow and the
second is an informationalFlow.

Fig.17 Specification of diagram elements

6 Conclusion
SysML is intended to support the specification,
analysis, design, verification and validation phases.
Adding Bond Graphs to SysML will help with the
spreading of SysML inside the mechtronics
community. This extension will be a powerful
argument to convince systems engineers to use this
language that is presented as the future de facto
standard.
The activity diagrams are a good formalism to express
Bond Graphs. The extensions that are necessary for
activities to comply with Bond Graphs are not heavy.
We only used classical extension mechanisms such as
stereotypes, tagged values and constraints to define this
activities extension. This is why SysML users can
easily integrate Bond Graphs to their design
environment be it Rational Rose, Objecteering,
Poseidon or any other tool that supports usual
extension mechanisms which is considered as a basic
feature of CASE tools (Computer-Aided Software
Engineering Environments).

The Bond Graphs/Block diagrams composition can
combine the command part with the physical part of
the system.

7 Perspectives
One of the advantages of bond graphs is that it can be
used to extract the system equations to be simulated. In
a future work we could generate these equations from
our activity diagram and describe them using the
parametric diagram included in SysML.
We can also use other simulation tools. One possibility
is the generation of Modelica code [7]. Modelica is an
object-oriented modelling language with a textual
definition to describe physical systems.
Finally , we need to continuously keep this proposal up
to date as both UML 2.0 and SysML specifications are
still evolving.

References:
[1] SysML specification V0.9. 10 january 2005.
[2] UML for systems engineering RFP, OMG
Document: ad/03-03-41.
[3] UML 2.0 Superstructure FTF convenience
document: ptc/04-10-02. October 8, 2004.
[4] UML 2.0 infrastructure specification, OMG

Adopted Specification ptc/03-09-15.
[5] G.Gandanegara, « Méthodologie de conception
systémique en Génie Electrique à l'aide de l’outil Bond
Graph Application à une chaîne de traction
ferroviaire », PhD report for the « Institut National
Polytechnique de Toulouse», page 5, 2003.
[6] J. Zaytoon, Systèmes dynamiques Hybrides,

Hermes Science Europe Ltd, page 94, 2001.
[7] J.F. Broenink,, “Object-oriented modelling with
bond graphs and modelica”. International conference
on bond graph modelling ICBGM’99, Simulation
series Vol 31 no 1,SCS, page 163-168.
[8] I. Bailey, F. Dandashi, H. Ang, D. Hardy, “Using
Systems Engineering Standards In an Architecture
Framework”, white paper eurostep company.
[9] Systems Modeling Language (SysML)
Specification Addendum to SysML v. 0.9 “Profiles
and Model Libraries Chapter”, 30 Mai 2005.
[10] M.K. Hales, R C. Rosenberg, Structured
modelling of mechatronic components using multiport
templates, Proceedings ASME IMECE 2000 DSC-
Vol.69-2, page 787-794.
[11] W.Borutzky, Relations between graph based and
object-oriented physical systems modelling,
ICBGM’99 International Conference on Bond Graph
Modelling and Simulation, San Fransisco, CA, Jan. 17-
20, 1999, pp.11-17.
[12] M.Paludetto, J.Delatour, A.Benzina, UML2, Vers
une formalisation des besoins des systèmes embarqués,
RSTI – TSI. Vol 23 – n° 4, 2004, pages 543 to 567.

	2 SysML : A new modeling language
	3 Bond Graphs notation
	Energetic domain
	Effort e
	Flow f
	Force
	Velocity

	Rotational mechanics
	3.1 Elementary components or nodes
	3.2 The junctions
	Table 3 : The two kinds of junctions

	3.3 The arrows or bonds

	Informational
	4.1 Candidate diagrams
	4.2 Mapping Bond Graphs to activity diagrams

