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Abstract: In this paper we present novel approaches in hardware deployment for intrusion detection systems 
(IDS). As far as we know there are no published FPGA implementations of genetic programming and 
bioinformatics algorithms used for IDS. It is shown in the paper that the use of hardware can efficiently exploit 
the inherent parallelism of algorithms and reach Gigabit data processing rates that are required for current 
communications. Each processing unit can be replicated many times on deployed FPGA device and in 
dependence of the capacity of the device, almost proportionally increase the throughput performance. 
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1   Introduction 
The move to hardware based systems allows the 
introduction of more parallelism than might be 
possible in software based systems and hence 
alternative algorithms. Hardware based solutions are 
probably the only approach currently practical for 
intrusion detection on high-speed backbone networks 
running at speeds of around 10 Gbps [1]. 
     The paper elaborates the implementation and use 
of extra hardware in computer security The novel 
hardware implementation in FPGA devices gives new 
possibilities which can further lead to better results 
and more reliable security system. As dicussed in the 
paper, the results yields a promising future for these 
systems and overcome many speed drawbacks and 
disadvantages of already existing algorithms as well 
as platform for development the new, original ones. 
     In this work we tackle two intrusion detection 
problems: the masquerade detection and generation of 
more efficient intrusion detection rules that are based 
on bioinformatics and genetic programming approach 
respectively [2], [3]. As far as we know there is now 
published work on the hardware deployment for 
above mentioned cases. 
     The target technology for implementation is Filed 
Programmable Gate Arrays (FPGA) that are now 
feasible for a broad range of applications, including 
those required for intrusion detection systems. FPGAs 
have long been used for a number of integer and 
fixed-point applications, such as the signal processing 
applications. However, with the rapid advances in 
technology, current FPGAs contain much more 

configurable logic blocks (CLBs) than their 
predecessors. Some researchers have suggested that 
FPGAs have become highly competitive with 
microprocessors in both peak performance and 
sustained performance [4]. Besides high computing 
performance, the current FPGA fabrics also provide 
large amounts of on-chip and off-chip memory 
bandwidth to I/O-bound applications. 
     The use of Genetic Programming (GP) to detect 
unknown attacks is based on the belief that new rules 
will have better performance than initial ones based 
on known attacks [2]. Better performance means the 
new rules obtained after evolving the initial ones 
using GP will not only cover known attacks, but also 
possibly detect the novel ones. 
     Masquerade is a security attack in which an 
intruder assumes the identity of a legitimate user.    
The detection of the attack can be carried out using 
bioinformatics algorithm [3]. The Smith-Waterman 
algorithm [5] was originally applied in bioinformatics 
for purposes of gene alignment but efficient hardware 
implementation widen its use to other fields [6]. We 
demonstrated its applicability on the cryptanalysis of 
stream ciphers in [7]. 

The rest of the paper is organized as the following. 
Section 2 is dedicated to Genetic Programming 
approach with corresponding subsections about 
background on GP, its use for rule generation, FPGA 
implementation and obtained results. The Section 3 is 
devoted to bioinformatics approach with 
corresponding subsections on the Smith-Waterman 
algorithm, its application to intrusion detection, the 



FPGA implementation and corresponding results. The 
conclusions are drawn in Section 4. 
 
 
2   Genetic Programming Approach 
In this Section the Genetic Programming approach for 
Intrusion Detection Systems is presented. It is based 
on the on the use of Genetic Programming for 
efficient generation of intrusion detection rules 
presented in [2]. Due to our hardware implementation 
the data processing performances are significantly 
increased. 
 
 
2.1   Genetic Programming 
Genetic Algorithm (GA) has been used in different 
ways in Intrusion Detection Systems (IDS). The 
different machine learning techniques, such as finite 
state machine, decision tree, and GA were used to 
generate artificial intelligence rules for IDS in [8]. An 
IDS was implemented using autonomous agents 
(security sensors) and applied AI techniques to evolve 
genetic algorithms. Agents are modeled as 
chromosomes and an internal evaluator is used inside 
every agent [9]. 
     Genetic Programming is extension of Genetic 
Algorithm [10]. GP randomly generates an initial 
population of solutions. Then, the initial population is 
manipulated using various genetic operators to 
produce new populations. These operators include 
reproduction, crossover, mutation, dropping 
condition, etc. The whole process of evolving from 
one population to the next population is called a 
generation. 

Fitness functions ensure that the evolution is 
toward optimization by calculating the fitness value 
for each individual in the population. The fitness 
value evaluates the performance of each individual in 
the population. 

 
 

2.2 Rule generation 
Initial rules are selected based on background 
knowledge from known attacks and can be 
represented as parse trees. GP will evolve these initial 
rules to generate new rules. New rules are used to 
detect novel or known attacks [2].  

GP generates new rules in two phases. In the first 
step, temporary new rules are composed of new rules 
generated by four operators including mutation, 
reproduction, crossover, and dropping condition and 
additional rules directly generated from previous 
populations. Thus the number of temporary new rules 
is doubled. 

An initial population of 40 rules was selected that 
cover a series of network-based attacks. The fitness 
value for each rule is calculated on the basis of the 
training dataset from DARPA Intrusion Detection 
Evaluation Program [11]. The dataset includes almost 
all known network-based attacks, namely land, 
synfloodping of death (pod), smurf, teardrop, back, 
neptune, ispweep, portsweep, and UDPstorm attacks. 
 Eleven parameters defined in DARPA dataset are 
used to describe the attacks in the training dataset. 
Table 1 describes these parameters and their meaning. 
The initial and new rules are composed of attribute 
descriptors. 

 

Table 1. Representation of parameters 

Parameters Meaning 
protocol_type Type of protocol 
Land Flag to identify whether 

connection is from/to 
the same host/port 

Wrong_fragment Number of wrong 
fragments in the 
connection 

synflood Connections that have 
“SYN” errors 

num_compromised Number of 
compromised conditions 

same_srv_rate Percentage of 
connections to the same 
services 

diff_srv_rate Percentage of 
connections to the 
different services 

count Number of connections 
from the same source 
host to the same 
destination host 

srv_count Number of connections 
from the same source 
service to the same 
destination service 

dst_host_count Number of connections 
from the same 
destination host to the 
same source host 

dst_host_srv_count Number of connections 
from the same 
destination service to the 
same source service 

 
The GP-based approach can detect smurf and 

UDPstorm attacks which are absent from the training 
dataset. The average false negative rate (FNR) for 
each rule is 5.04% and the average false positive rate 



(FPR) is 5.23%. The average rate of detecting 
unknown attacks for each rule is 57.14% [2]. 
 
 
2.3   FPGA Implementation 
In order to speed up the algorithm, the massively 
parallel model in hardware can be used [12]. The 
fine-grained (diffusion) model is presented like the 
one being most VLSI-friendly. It consists of a large 
number of independent processing nodes, connected 
through the X-net topology, that evolve a large 
number of small, overlapping subpopulations. The 
nodes are simple, regular and mainly use local 
communications. Every node has its own memory 
that has a linear machine code representation of the 
individuals and its own embedded CPU that executes 
that code (in this case does the pattern comparing) 
and the part that does GA.   
 One node consists of four major parts, a CPU, a 
memory, a control block and a simple router (Fig. 1). 

 

 
Fig. 1 Block scheme of the node 

 
 CPU consists of fast CAM (Content Addressable 
Memory) that contains the input-representation made 
according to the parameters given at the end. CAM 
performs comparing of one word from the memory 
that represents the terminal (meaning that it starts 
with “00”) with its contest and has the latency of one 
clock period to decide if there is matching or not. 
During the testing whether a connection is an 
intrusion or not, the input equal to “10000100” is 
following the connection. 
 The part that decides if the whole match is 
achieved consists of two shift registers. If the 
connection that represents intrusion is marked as 
intrusion by the node’s rule, the number of all 
detected intrusions is incremented by one, and 

similarly, if the connection that does not represent 
intrusion is marked as non-intrusion, the number of 
non-intrusions is incremented by one.  

After the end of training data is signaled, the 
calculation of the fitness value is being performed 
according to the next formula: 
     The mutation randomly replaces one instruction 
with a randomly generated one, as described above. 
Control block also performs sending the whole code 
to another nodes if the request is issued. Genetic 
algorithm is not performed during the code sending. 

 
 
2.3 Results and Discussion 
     The results are given in Table 2. It can be seen that 
a gigabit throughput is achieved. XST option for the 
forward retiming is set. Area needed for one 
neighborhood of 9 cells is 3208 slices while area 
needed for one cell 364 slices 
 

Table 2. Performances on Xilinx Virtex-II FPGA 

Speed grade 5 6 
Clock frequency [MHz] 121 138 
Throughput [Gbps] 0.97 1.1 
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     Possible hardware improvements depend on the 
particular network speed. In the case of the high 
speed networks, it is possible to reconfigure design to 
take more than one byte at the same time, considering 
that the percentage of taken I/O blocks is low which 
would multiple the maximum throughput.   
      It is possible to improve genetic algorithm by 
adding new genetic operators that would accomplish 
in higher diversity of solutions and probably boost 
the possibility of detecting novel attacks. 
 Considering the existing problem of ‘local 
maximum’ in genetic algorithm, design of router can 
be changed to take the highest fitness value as the 
result of the tournament with some predefined 
possibility. 
  
 
3 Bioinformatics approach 
In this section the bioinformatics approach in 
deployment of intrusion detection system is 
described. It is based on the use of Smith-Waterman 
algorithm for the detection of masquerading attack 
[3]. Since the algorithm can be significantly 
accelerated exploiting inherent parallelism we 
deployed hardware implementation to reach Gigabit 
rates that are required in contemporary data 
processing. 
 
 



3.1   Masquerading attack 
One of the most devastating attacks in computer 
security is the masquerading, in which an attacker 
assumes the identity of a legitimate user. Masquerade 
attacks often occur when an intruder obtains a 
legitimate user’s password or when a user leaves their 
workstation unattended without any sort of locking 
mechanism in place. It is very difficult to discover 
this break of security because attacker appears to be a 
normal user with valid authority and privileges. The 
level of damage that can be performed via 
masquerader attacks (stolen/destroyed documents, 
data, e-mail) makes them one of the most serious 
threats to computer and network infrastructure. 
     To fulfill the task of detecting a masquerader, 
somehow we need to make a contrast between a real 
legitimate user and intruder. Every single user has its 
own specific behavior. If we make a so called user 
signature and compare the current behavior of logged 
user with it, in the case of legal user they should 
match well and in the case of an intruder they should 
differ. User signature usually contains a sequence of 
commands, but it could also contain a user style of 
typing on a keyboard or specific mouse movements, 
biometric features. There are many ways to create a 
user signature depending on how complex it is going 
to be or what type of operating system do we use. 
When the user signature is created it needs to be 
compared with current user behavior in a session. The 
algorithm checks for similarities between two 
command sequences and/or between styles of 
keyboard and mouse use. The problem is that the user 
behavior changes over time. In a small time period 
user can react in different manner and in long time 
periods user can change his behavior fundamentally. 
We can overcome this problem by updating a 
signature frequently. 
     As said before there have been numerous attempts 
to successfully detect masquerade attacks and to 
minimize false positives and negatives without 
degrading the quality of a user’s session. In [13] 
various masquerade detection techniques were 
analyzed and performance were presented. At the 
moment, the best results are achieved with a 
bioinformatics approach that uses the slight 
modification of Smith-Waterman algorithm, 
originally published for the purpose of gene 
alignment. 
 
 
3.2 Smith-Waterman algorithm 
Sequence alignment is already well-studied tool used 
to quantify and visualize similarity between two or 
more sequences. It is originally developed for 
application of comparison of genetic material, such as 

DNA. Specifically DNA composes of only four 
elements, nucleotides: adenine (A), thymine (T), 
guanine (G) and cytosine (C).  
     The Smith-Waterman (SW) algorithm is a 
database search algorithm developed for use in 
bioinformatics, and based on an earlier model 
appropriately named Needelman-Wunsch after its 
original creators [14]. The SW algorithm implements 
a technique called dynamic programming, which 
takes alignments of any length, at any location, in any 
of two input sequences, and determines whether an 
optimal alignment can be found. Based on these 
calculations, scores or weights are assigned to each 
character-to-character comparison (positive for exact 
matches and substitutions, negative for insertions and 
deletions) and the highest scoring alignment is 
reported. 
     Simply, dynamic programming finds solutions to 
smaller pieces of the problem and then puts them all 
together to form a complete and optimal final 
solution to the entire problem. Because of its 
complexity, many heuristic methods were developed. 
Original SW algorithm is superior to the BLAST and 
FASTA algorithms because it searches a larger field 
of possibilities, making it a more sensitive technique, 
however, individual pair-wise comparisons between 
letters slows the process down significantly. Instead 
of looking at an entire sequence at once, the SW 
algorithm compares multi-length segments, looking 
for whichever segment maximizes the scoring 
measure. The algorithm itself is recursive in nature. It 
can be described by the following equation. 
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where:  is a weight matrix element in i-th row and 
j-th column., s some positive reward for match 
interpreting similarity,  and  are usually negative 
horizontal and vertical gap penalties, respectively 

ijM

hg vg

     For example, if we try to align the following two 
gene sequences using Smith-Waterman algorithm: 
 

{ }
{ }G G, C, A, G, T, T, A, C, C, G, T, A, A,:2 Seq

G A, T, T, C, G, C, T, C, C, G, A, C,:1 Seq  

 
it will produce local alignment: 

GTTACCG

GCTCCG
bbbbb ×

-
 

 
It is very easy to expand and generalize this algorithm 
for use with any number of different elements and 
with any scoring function. By adjusting the scoring 



function the algorithm can be applied in many 
different fields, like masquerade detection. 
     Smith-Waterman algorithm is used as a detection 
algorithm in the following sense: user signature 
corresponds to one sequence and the test block 
corresponds to another. Matches should positively 
influence the score of an alignment, and should be 
chosen that matches are preferred to gaps. 
Mismatches are kept as a constant zero score. Using 
the above criteria, we chose scores of +1 for a match 
between two aligned commands, -2 for a gap placed 
in the tested block, -3 for a gap placed in the user’s 
signature, and 0 for a mismatch between aligned 
commands. 
     The scores are taken from already mentioned work 
[3], but any other scoring can be applied without any 
degradation in performance. As the goal is to align 
characteristic groups of commands in a tested block 
with similar groups in the user’s signature we want to 
heavily penalize any gaps within the signature itself, 
because we do not want commands in the tested 
block to be aligned with gaps in the user’s signature. 
 
 
3.3   FPGA Implementation and Results 
The main drawback of the Smith-Waterman 
algorithm is its slowness. As the complexity of the 
algorithm was too high, many heuristic methods were 
developed; the best among them are FASTA and 
BLAST. Although the results were not bad, the sector 
of security requests great accuracy and they were not 
able to compete with original algorithm. The only 
way to reduce the complexity is bringing a 
parallelism in the calculations.  

 
Fig. 2 Bioinformatics processing element 

 
     The parallelism can not be applied on general 
purpose machines where processor poses only one 
arithmetic-logic unit. But hardware devices like 
FPGA have capabilities to bring the necessary 

parallel calculations and reduce the complexity and 
set free other hardware parts that were used in 
processing user signature and test block. 
     The parallelization method for a matrix size m×n 
is realized using a systolic array of at least  
processing elements. Although user signature is by 
the rule almost always longer than the test block, it is 
better to assign number of elements that correspond 
to a signature’s length for the reasons that will be 
later explained. This is a feasible solution having in 
mind area that this hardware occupies. The same 
processing element calculates distances in the column 
in which it is placed. This is shown on Figure 2. 

},min{ nm

     Continuing this, it is not hard to conclude that 
whole matrix will be calculated in m+n clock cycles 
giving this method a linear complexity of O(m+n) 
(Fig. 3). These two properties: linear increase of time 
complexity and linear increase of area occupation 
when the length of sequences rise prevail in 
determination which method to choose. 
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Fig. 3 Parallelized matrix calculation
 
     There is no need to load both, the user signature 
and the test block, in the device concurrently. While 
user is logging on, after the correct password is 
imported, the user signature is load to FPGA as a part 
of loading process that occurs until system is ready 
for work. This eliminates demands for storing user 
signatures in FPGA whose memory is often very 
small and can have other purposes but in some other 
memory like flash or hard disk drive. After session 
starts all the operations of interest are monitored and 
rewritten creating the test block suited for comparison 
with user signature. The test block is compared with 
user signature as the commands are inserted by the 
user and/or the specific movements of mouse and 
keyboard occurs giving that some sort of pipelining 
in the system, yielding the very fast detection, just 
after the last needed command for decision whether 
or not the legitimate user is logged to the system. 

Cell 1, −jiM

1,1 −− jiM jiM ,1−

jiM ,

User Signature (i) Test Block (j)

     We implemented a general Smith-Waterman 
algorithm where the score can be any integer of fixed 
point decimal value. We used nowadays the most 
popular family of FPGA devices, Virtex 4 from 



Xilinx. In structures like FPGAs the best way to gain 
a speed is to create highly optimized regular cells and 
then simply replicate them. We assumed that there is 
256 used commands, which is in operating systems 
like, UNIX and Linux more than enough. We also 
assumed that the characteristic mouse movements 
and keyboard typing styles can be represented with 
eight bits each, although its expansion would not 
dramatically decrease performance. The design using 
given parameters was implemented in Xilinx Virtex 4 
device with clock frequencies up to 250MHz. One 
cell takes 100 logic cells, what is 50 slices or 25 
configuration logic blocks. This means that more than 
2000 processing elements can be implemented in the 
greatest FPGA chip from Xilinx. Considering the bus 
width of eight bits the equivalent throughput is 
250MB/s or 2Gb/s. These days de facto standard in 
computer network communications is 1Gb/s so our 
unit can be used without any slowness or delay. 
Existence of self equipped devices based on 
microprocessor and FPGA combining a network 
support gives the possibility of implementing a 
design independent from personal computer, a design 
that could monitor network independently and so free 
the server totally form this activity and what is also 
important to be placed somewhere else. 
 
 
4   Conclusion 
We presented two novel hardware architectures that 
are designed for intrusion detection systems. The 
genetic programming approach was applied for the 
generation of more efficient intrusion detection rules 
and bioinformatics Smith-Waterman algorithm was 
deployed to detect masquerading attack. The 
architectures were deployed in Virtex II and 4 FPGA 
devices respectively. Each hardware unit reaches 
Gigabit processing rates thus satisfying contemporary 
data flow requirements. Due to optimized area design 
the units can be massively replicated on FPGA 
devices and achieve significant throughput increase.  
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