
Novel Hardware-Based Approaches for Intrusion Detection

SLOBODAN BOJANIĆ1, VLADIMIR MILOVANOVIĆ2, ZORANA BANKOVIĆ2,
CARLOS CARERRAS1 AND OCTAVIO NIETO-TALADRIZ1

1Department of Electronic Engineering 2Department of Electronics
ETSI de Telecomunicación Faculty of Electrical Engineering

Technical University of Madrid University of Belgrade
Ciudad Universitaria, 28040 Madrid Bulevar Kralja Aleksandra 73, 11000 Beograd

SPAIN SERBIA AND MONTENEGRO
http://www.die.upm.es

Abstract: In this paper we present novel approaches in hardware deployment for intrusion detection systems
(IDS). As far as we know there are no published FPGA implementations of genetic programming and
bioinformatics algorithms used for IDS. It is shown in the paper that the use of hardware can efficiently exploit
the inherent parallelism of algorithms and reach Gigabit data processing rates that are required for current
communications. Each processing unit can be replicated many times on deployed FPGA device and in
dependence of the capacity of the device, almost proportionally increase the throughput performance.

Key-Words: security, intrusion detection, bioinformatics, genetic programming, FPGA, rule generation, pattern
matching

1 Introduction
The move to hardware based systems allows the
introduction of more parallelism than might be
possible in software based systems and hence
alternative algorithms. Hardware based solutions are
probably the only approach currently practical for
intrusion detection on high-speed backbone networks
running at speeds of around 10 Gbps [1].
 The paper elaborates the implementation and use
of extra hardware in computer security The novel
hardware implementation in FPGA devices gives new
possibilities which can further lead to better results
and more reliable security system. As dicussed in the
paper, the results yields a promising future for these
systems and overcome many speed drawbacks and
disadvantages of already existing algorithms as well
as platform for development the new, original ones.
 In this work we tackle two intrusion detection
problems: the masquerade detection and generation of
more efficient intrusion detection rules that are based
on bioinformatics and genetic programming approach
respectively [2], [3]. As far as we know there is now
published work on the hardware deployment for
above mentioned cases.
 The target technology for implementation is Filed
Programmable Gate Arrays (FPGA) that are now
feasible for a broad range of applications, including
those required for intrusion detection systems. FPGAs
have long been used for a number of integer and
fixed-point applications, such as the signal processing
applications. However, with the rapid advances in
technology, current FPGAs contain much more

configurable logic blocks (CLBs) than their
predecessors. Some researchers have suggested that
FPGAs have become highly competitive with
microprocessors in both peak performance and
sustained performance [4]. Besides high computing
performance, the current FPGA fabrics also provide
large amounts of on-chip and off-chip memory
bandwidth to I/O-bound applications.
 The use of Genetic Programming (GP) to detect
unknown attacks is based on the belief that new rules
will have better performance than initial ones based
on known attacks [2]. Better performance means the
new rules obtained after evolving the initial ones
using GP will not only cover known attacks, but also
possibly detect the novel ones.
 Masquerade is a security attack in which an
intruder assumes the identity of a legitimate user.
The detection of the attack can be carried out using
bioinformatics algorithm [3]. The Smith-Waterman
algorithm [5] was originally applied in bioinformatics
for purposes of gene alignment but efficient hardware
implementation widen its use to other fields [6]. We
demonstrated its applicability on the cryptanalysis of
stream ciphers in [7].

The rest of the paper is organized as the following.
Section 2 is dedicated to Genetic Programming
approach with corresponding subsections about
background on GP, its use for rule generation, FPGA
implementation and obtained results. The Section 3 is
devoted to bioinformatics approach with
corresponding subsections on the Smith-Waterman
algorithm, its application to intrusion detection, the

FPGA implementation and corresponding results. The
conclusions are drawn in Section 4.

2 Genetic Programming Approach
In this Section the Genetic Programming approach for
Intrusion Detection Systems is presented. It is based
on the on the use of Genetic Programming for
efficient generation of intrusion detection rules
presented in [2]. Due to our hardware implementation
the data processing performances are significantly
increased.

2.1 Genetic Programming
Genetic Algorithm (GA) has been used in different
ways in Intrusion Detection Systems (IDS). The
different machine learning techniques, such as finite
state machine, decision tree, and GA were used to
generate artificial intelligence rules for IDS in [8]. An
IDS was implemented using autonomous agents
(security sensors) and applied AI techniques to evolve
genetic algorithms. Agents are modeled as
chromosomes and an internal evaluator is used inside
every agent [9].
 Genetic Programming is extension of Genetic
Algorithm [10]. GP randomly generates an initial
population of solutions. Then, the initial population is
manipulated using various genetic operators to
produce new populations. These operators include
reproduction, crossover, mutation, dropping
condition, etc. The whole process of evolving from
one population to the next population is called a
generation.

Fitness functions ensure that the evolution is
toward optimization by calculating the fitness value
for each individual in the population. The fitness
value evaluates the performance of each individual in
the population.

2.2 Rule generation
Initial rules are selected based on background
knowledge from known attacks and can be
represented as parse trees. GP will evolve these initial
rules to generate new rules. New rules are used to
detect novel or known attacks [2].

GP generates new rules in two phases. In the first
step, temporary new rules are composed of new rules
generated by four operators including mutation,
reproduction, crossover, and dropping condition and
additional rules directly generated from previous
populations. Thus the number of temporary new rules
is doubled.

An initial population of 40 rules was selected that
cover a series of network-based attacks. The fitness
value for each rule is calculated on the basis of the
training dataset from DARPA Intrusion Detection
Evaluation Program [11]. The dataset includes almost
all known network-based attacks, namely land,
synfloodping of death (pod), smurf, teardrop, back,
neptune, ispweep, portsweep, and UDPstorm attacks.
 Eleven parameters defined in DARPA dataset are
used to describe the attacks in the training dataset.
Table 1 describes these parameters and their meaning.
The initial and new rules are composed of attribute
descriptors.

Table 1. Representation of parameters

Parameters Meaning
protocol_type Type of protocol
Land Flag to identify whether

connection is from/to
the same host/port

Wrong_fragment Number of wrong
fragments in the
connection

synflood Connections that have
“SYN” errors

num_compromised Number of
compromised conditions

same_srv_rate Percentage of
connections to the same
services

diff_srv_rate Percentage of
connections to the
different services

count Number of connections
from the same source
host to the same
destination host

srv_count Number of connections
from the same source
service to the same
destination service

dst_host_count Number of connections
from the same
destination host to the
same source host

dst_host_srv_count Number of connections
from the same
destination service to the
same source service

The GP-based approach can detect smurf and

UDPstorm attacks which are absent from the training
dataset. The average false negative rate (FNR) for
each rule is 5.04% and the average false positive rate

(FPR) is 5.23%. The average rate of detecting
unknown attacks for each rule is 57.14% [2].

2.3 FPGA Implementation
In order to speed up the algorithm, the massively
parallel model in hardware can be used [12]. The
fine-grained (diffusion) model is presented like the
one being most VLSI-friendly. It consists of a large
number of independent processing nodes, connected
through the X-net topology, that evolve a large
number of small, overlapping subpopulations. The
nodes are simple, regular and mainly use local
communications. Every node has its own memory
that has a linear machine code representation of the
individuals and its own embedded CPU that executes
that code (in this case does the pattern comparing)
and the part that does GA.
 One node consists of four major parts, a CPU, a
memory, a control block and a simple router (Fig. 1).

Fig. 1 Block scheme of the node

 CPU consists of fast CAM (Content Addressable
Memory) that contains the input-representation made
according to the parameters given at the end. CAM
performs comparing of one word from the memory
that represents the terminal (meaning that it starts
with “00”) with its contest and has the latency of one
clock period to decide if there is matching or not.
During the testing whether a connection is an
intrusion or not, the input equal to “10000100” is
following the connection.
 The part that decides if the whole match is
achieved consists of two shift registers. If the
connection that represents intrusion is marked as
intrusion by the node’s rule, the number of all
detected intrusions is incremented by one, and

similarly, if the connection that does not represent
intrusion is marked as non-intrusion, the number of
non-intrusions is incremented by one.

After the end of training data is signaled, the
calculation of the fitness value is being performed
according to the next formula:
 The mutation randomly replaces one instruction
with a randomly generated one, as described above.
Control block also performs sending the whole code
to another nodes if the request is issued. Genetic
algorithm is not performed during the code sending.

2.3 Results and Discussion
 The results are given in Table 2. It can be seen that
a gigabit throughput is achieved. XST option for the
forward retiming is set. Area needed for one
neighborhood of 9 cells is 3208 slices while area
needed for one cell 364 slices

Table 2. Performances on Xilinx Virtex-II FPGA

Speed grade 5 6
Clock frequency [MHz] 121 138
Throughput [Gbps] 0.97 1.1

Router
Memory

Control_block CPU

 N

 NE

 E

 SE

S

SW

W

NW

WRITE_RAM

 Possible hardware improvements depend on the
particular network speed. In the case of the high
speed networks, it is possible to reconfigure design to
take more than one byte at the same time, considering
that the percentage of taken I/O blocks is low which
would multiple the maximum throughput.
 It is possible to improve genetic algorithm by
adding new genetic operators that would accomplish
in higher diversity of solutions and probably boost
the possibility of detecting novel attacks.
 Considering the existing problem of ‘local
maximum’ in genetic algorithm, design of router can
be changed to take the highest fitness value as the
result of the tournament with some predefined
possibility.

3 Bioinformatics approach
In this section the bioinformatics approach in
deployment of intrusion detection system is
described. It is based on the use of Smith-Waterman
algorithm for the detection of masquerading attack
[3]. Since the algorithm can be significantly
accelerated exploiting inherent parallelism we
deployed hardware implementation to reach Gigabit
rates that are required in contemporary data
processing.

3.1 Masquerading attack
One of the most devastating attacks in computer
security is the masquerading, in which an attacker
assumes the identity of a legitimate user. Masquerade
attacks often occur when an intruder obtains a
legitimate user’s password or when a user leaves their
workstation unattended without any sort of locking
mechanism in place. It is very difficult to discover
this break of security because attacker appears to be a
normal user with valid authority and privileges. The
level of damage that can be performed via
masquerader attacks (stolen/destroyed documents,
data, e-mail) makes them one of the most serious
threats to computer and network infrastructure.
 To fulfill the task of detecting a masquerader,
somehow we need to make a contrast between a real
legitimate user and intruder. Every single user has its
own specific behavior. If we make a so called user
signature and compare the current behavior of logged
user with it, in the case of legal user they should
match well and in the case of an intruder they should
differ. User signature usually contains a sequence of
commands, but it could also contain a user style of
typing on a keyboard or specific mouse movements,
biometric features. There are many ways to create a
user signature depending on how complex it is going
to be or what type of operating system do we use.
When the user signature is created it needs to be
compared with current user behavior in a session. The
algorithm checks for similarities between two
command sequences and/or between styles of
keyboard and mouse use. The problem is that the user
behavior changes over time. In a small time period
user can react in different manner and in long time
periods user can change his behavior fundamentally.
We can overcome this problem by updating a
signature frequently.
 As said before there have been numerous attempts
to successfully detect masquerade attacks and to
minimize false positives and negatives without
degrading the quality of a user’s session. In [13]
various masquerade detection techniques were
analyzed and performance were presented. At the
moment, the best results are achieved with a
bioinformatics approach that uses the slight
modification of Smith-Waterman algorithm,
originally published for the purpose of gene
alignment.

3.2 Smith-Waterman algorithm
Sequence alignment is already well-studied tool used
to quantify and visualize similarity between two or
more sequences. It is originally developed for
application of comparison of genetic material, such as

DNA. Specifically DNA composes of only four
elements, nucleotides: adenine (A), thymine (T),
guanine (G) and cytosine (C).
 The Smith-Waterman (SW) algorithm is a
database search algorithm developed for use in
bioinformatics, and based on an earlier model
appropriately named Needelman-Wunsch after its
original creators [14]. The SW algorithm implements
a technique called dynamic programming, which
takes alignments of any length, at any location, in any
of two input sequences, and determines whether an
optimal alignment can be found. Based on these
calculations, scores or weights are assigned to each
character-to-character comparison (positive for exact
matches and substitutions, negative for insertions and
deletions) and the highest scoring alignment is
reported.
 Simply, dynamic programming finds solutions to
smaller pieces of the problem and then puts them all
together to form a complete and optimal final
solution to the entire problem. Because of its
complexity, many heuristic methods were developed.
Original SW algorithm is superior to the BLAST and
FASTA algorithms because it searches a larger field
of possibilities, making it a more sensitive technique,
however, individual pair-wise comparisons between
letters slows the process down significantly. Instead
of looking at an entire sequence at once, the SW
algorithm compares multi-length segments, looking
for whichever segment maximizes the scoring
measure. The algorithm itself is recursive in nature. It
can be described by the following equation.

() () (){ }0,,,max ,11,1,1 hjivjiijjiij gMgMsMM +++= −−−−

where: is a weight matrix element in i-th row and
j-th column., s some positive reward for match
interpreting similarity, and are usually negative
horizontal and vertical gap penalties, respectively

ijM

hg vg

 For example, if we try to align the following two
gene sequences using Smith-Waterman algorithm:

{ }
{ }G G, C, A, G, T, T, A, C, C, G, T, A, A,:2 Seq

G A, T, T, C, G, C, T, C, C, G, A, C,:1 Seq

it will produce local alignment:

GTTACCG

GCTCCG
bbbbb ×

-

It is very easy to expand and generalize this algorithm
for use with any number of different elements and
with any scoring function. By adjusting the scoring

function the algorithm can be applied in many
different fields, like masquerade detection.
 Smith-Waterman algorithm is used as a detection
algorithm in the following sense: user signature
corresponds to one sequence and the test block
corresponds to another. Matches should positively
influence the score of an alignment, and should be
chosen that matches are preferred to gaps.
Mismatches are kept as a constant zero score. Using
the above criteria, we chose scores of +1 for a match
between two aligned commands, -2 for a gap placed
in the tested block, -3 for a gap placed in the user’s
signature, and 0 for a mismatch between aligned
commands.
 The scores are taken from already mentioned work
[3], but any other scoring can be applied without any
degradation in performance. As the goal is to align
characteristic groups of commands in a tested block
with similar groups in the user’s signature we want to
heavily penalize any gaps within the signature itself,
because we do not want commands in the tested
block to be aligned with gaps in the user’s signature.

3.3 FPGA Implementation and Results
The main drawback of the Smith-Waterman
algorithm is its slowness. As the complexity of the
algorithm was too high, many heuristic methods were
developed; the best among them are FASTA and
BLAST. Although the results were not bad, the sector
of security requests great accuracy and they were not
able to compete with original algorithm. The only
way to reduce the complexity is bringing a
parallelism in the calculations.

Fig. 2 Bioinformatics processing element

 The parallelism can not be applied on general
purpose machines where processor poses only one
arithmetic-logic unit. But hardware devices like
FPGA have capabilities to bring the necessary

parallel calculations and reduce the complexity and
set free other hardware parts that were used in
processing user signature and test block.
 The parallelization method for a matrix size m×n
is realized using a systolic array of at least
processing elements. Although user signature is by
the rule almost always longer than the test block, it is
better to assign number of elements that correspond
to a signature’s length for the reasons that will be
later explained. This is a feasible solution having in
mind area that this hardware occupies. The same
processing element calculates distances in the column
in which it is placed. This is shown on Figure 2.

},min{ nm

 Continuing this, it is not hard to conclude that
whole matrix will be calculated in m+n clock cycles
giving this method a linear complexity of O(m+n)
(Fig. 3). These two properties: linear increase of time
complexity and linear increase of area occupation
when the length of sequences rise prevail in
determination which method to choose.

0 1 2 3
1 D1,1

PE1(T1)

D2,1
PE2(T2)

D3,1
PE3(T3)

2 D1,2
PE1(T2)

D2,2
PE2(T3)

3 D1,3
PE1(T3)

Fig. 3 Parallelized matrix calculation

 There is no need to load both, the user signature
and the test block, in the device concurrently. While
user is logging on, after the correct password is
imported, the user signature is load to FPGA as a part
of loading process that occurs until system is ready
for work. This eliminates demands for storing user
signatures in FPGA whose memory is often very
small and can have other purposes but in some other
memory like flash or hard disk drive. After session
starts all the operations of interest are monitored and
rewritten creating the test block suited for comparison
with user signature. The test block is compared with
user signature as the commands are inserted by the
user and/or the specific movements of mouse and
keyboard occurs giving that some sort of pipelining
in the system, yielding the very fast detection, just
after the last needed command for decision whether
or not the legitimate user is logged to the system.

Cell 1, −jiM

1,1 −− jiM jiM ,1−

jiM ,

User Signature (i) Test Block (j)

 We implemented a general Smith-Waterman
algorithm where the score can be any integer of fixed
point decimal value. We used nowadays the most
popular family of FPGA devices, Virtex 4 from

Xilinx. In structures like FPGAs the best way to gain
a speed is to create highly optimized regular cells and
then simply replicate them. We assumed that there is
256 used commands, which is in operating systems
like, UNIX and Linux more than enough. We also
assumed that the characteristic mouse movements
and keyboard typing styles can be represented with
eight bits each, although its expansion would not
dramatically decrease performance. The design using
given parameters was implemented in Xilinx Virtex 4
device with clock frequencies up to 250MHz. One
cell takes 100 logic cells, what is 50 slices or 25
configuration logic blocks. This means that more than
2000 processing elements can be implemented in the
greatest FPGA chip from Xilinx. Considering the bus
width of eight bits the equivalent throughput is
250MB/s or 2Gb/s. These days de facto standard in
computer network communications is 1Gb/s so our
unit can be used without any slowness or delay.
Existence of self equipped devices based on
microprocessor and FPGA combining a network
support gives the possibility of implementing a
design independent from personal computer, a design
that could monitor network independently and so free
the server totally form this activity and what is also
important to be placed somewhere else.

4 Conclusion
We presented two novel hardware architectures that
are designed for intrusion detection systems. The
genetic programming approach was applied for the
generation of more efficient intrusion detection rules
and bioinformatics Smith-Waterman algorithm was
deployed to detect masquerading attack. The
architectures were deployed in Virtex II and 4 FPGA
devices respectively. Each hardware unit reaches
Gigabit processing rates thus satisfying contemporary
data flow requirements. Due to optimized area design
the units can be massively replicated on FPGA
devices and achieve significant throughput increase.

Acknowledgment:
The work was supported by Ministry of Science and
Technology of Spain through the project TIC2003 -
09061-C03-02 and “Ramon y Cajal” program as well
as EU Tempus project CD_JEP-17028-2002.

References:
[1] Tripp, G. An intrusion detection system for

gigabit networks – architecture and an example
system. Technical Report 7-04, Computing
Laboratory, University of Kent, April 2004.

[2] Lu, W. and I. Traore. Detecting New Forms of
Network Intrusion Using Genetic Programming,
Computational Intelligence, Volume 20, Number
3, pp. 470-490, 2004.

[3] S. Coull, J. Branch, B. Szymanski, E. Breimer,
Intrusion Detection: A Bioinformatics Approach,
Proc. 19th Annual Computer Security
Applications Conference, p. 24, 2003.

[4] Underwood, K. D. and K. S. Hemmert. Closing
the gap: CPU and FPGA trends in sustainable
floating-point BLAS performance. Proc. 2004
IEEE Symposium on field-programmable custom
computing machines (FCCM’04), USA 2004.

[5] T. F. Smith, M. S. Waterman, Identification of
common molecular subsequences, Journal of
molecular biology, 147:195-197, 1981.

[6] G. Caffarena, S. Bojanić, J.A. López, C. Pedreira
and O. Nieto-Taladriz, Parallel Computatuin of
Gene Sequence Matching, IADIS International
Conference Applied Computing, 2004.

[7] S. Bojanić, G. Caffarena, S. Petrović, O. Nieto-
Taladriz, FPGA for pseudorandom generator
cryptanalysis, to appear in Microprocessors and
Microsystems, Elsevier.

[8] Sinclair, C., L. Pierce and S. Matzner. An
Application of Machine Learning to Network
Intrusion Detection. Proc. 1999 Anual Computer
Security Applications Conf. (ACSAC), pp. 371-
377. Phoenix, USA, Dec. 1999.

[9] Crosbie, M. and G. Spafford. Applying Genetic
Programming to Intrusion Detection. Proc. 1995
AAAI Fall Symposium on Genetic Programming,
pp. 1-8. Massachussets, USA, Nov. 1995.

[10] Koza, J. R. Genetic Programming, MIT Press,
1992.

[11] Lippmann, R. The 1999 DARPA off-line
intrusion detection evaluation. Computer
Networks, 34(4):579-595, 2000.

[12] Elkund, S. E. A Massively Parallel Architecture
for Linear Machine Code Genetic Programming,
Proc. 4th Inter. Conf. on Evolvable Systems: From
Biology to Hardware, Lecture Notes In Computer
Science, Vol. 2210, pp. 216–224, 2001.

[13] W. DuMouchel, W. H. Ju, A. F. Karr, M.
Schonlau, M. Theusen and Y. Vardi, Computer
Intrusion: Detectiong Masquerades, Statistical
Science, 16, no. 1:58-74, 2001.

[14] S. B. Needleman and C. D. Wunsch, A general
method applicable to the search for similarities in
the amino acid sequence of two proteins, Journal
of molecular biology, 48:443-453, 1970.

	2Department of Electronics
	Technical University of Madrid
	Ciudad Universitaria, 28040 Madrid
	3.2 Smith-Waterman algorithm

