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Abstract: - The paper deals with structural properties of a class of strictly causal systems. It is shown that a special 
physically correct internal structure of a given system representation caled dissipation normal form can be derived as 
a natural consequence of strict causality, dissipativity, minimality and asymptotic stability requirements. A proper 
generalization of classic Tellegen’s theorem together with a concept of bi-orthonormal basis of the state velocity 
space have been used as basic ingrediences expressing the signal energy conservation law for abstract system state 
space representations. It is demonstrated by examples that  in continuous-time version the resulting structure represent 
a unifying tool for analysis and synthesis of a relatively general class of linear as well as nonlinear causal systems. 
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1  Introduction 
Almost in any field of science and technology some sort 
of stability problem can appear. Instability and chaos 
are certainly the most important phenomena which 
should be treated before any other aspect of reality will 
be attacked. Hence it is not very surprising that a broad 
variety of approaches to the problem of stability, 
instability and analysis of chaotic phenomena exists. 
Many of the most popular techniques in the field of 
stability and chaos are in a certain sense related to the 
work of A.M.Liapunov. For instance the well known 
Lyapunov exponents in chaos theory or Lyapunov 
functions in stability theory [1, 2] can be mentioned as 
typical examples which seem to be energy oriented. 

Tellegen’s theorem is one of the well known and 
appropriate forms of energy conservation statement in 
the field of electrical engineering [3, 4]. The most 
important feature of Tellegen’s approach is the fact that 
the energy conservation principle holds without any 
regard to physical nature of constituent network 
elements.This is the key idea of the proposed approach 
to problems of stability, dissipativity and chaos.  
2  Abstract form of energy conservation  
Certainly, any realizable system has to fulfill some 
causality and energy conservation requirements. Recall 
that existence of an abstract state space representation 

is necessary for a system to be causal. On the other 
hand causality does not imply energy conservation. In 
the field of electrical engineering Kirchhoff’s laws are 
necessary and sufficient for physical correctness of any 
electrical network from energy conservation point of 
view. Tellegen’s theorem, which is known to be one of 
the most powerful tools of system analysis and synthesis 
in electrical network theory, can be seen as a very 
elegant abstract form of energy conservation principle 
for a class physically correct system state space 
representations, in which voltages and currents have 
been chosen as state variables. 

Let us briefly summarize the essential features of the 
original version of Tellegen’s theorem [4]. Assume that 
an arbitrary connected electrical network of  b 
components is given. Let us disregard the specific 
nature of the network components and represent the 
network structure by an oriented graph  with  n  vertices 
and  b branches. Let the set of Kirchhoff  law 
constraints be given in a  form 
  Ai = 0  Bν = 0                      (1)              
where A is a node incidence matrix, B is loop incidence 
matrix, and vectors i and v  are defined  

1 2 1 2[ , , , ]  [ , , ]T T
n ni i i i v v v v= =… …     (2) 

Let J be the set of all vectors i and V  be the set of all 
vectors  v  such that  i  and  v satisfy (1). Both the 



 

vectors of currents and voltages are elements of a  b-
dimensional  vector space with  the inner product. Then 
the Tellegen’s principle follows from: 
Theorem 1.  ( Classical Tellegen’s theorem  - CTT ) 
If  i ∈ J and  v∈V  then it holds 

: ( ), ( ) 0t i t v t∀ =          (3) 
That is to say J and V are orthogonal subspaces of the 
Euclidean space Eb. Furthermore J and V together span 
the vector space Eb.  

It is obvious fact, following directly from the 
definition of inner product, that relation (3) is just a 
form of constant energy statement for a class of 
representations in which elements of a set of voltages 
and currents have been chosen as state variables, as 
well as components of a gradient vector of a  scalar 
field in  the state space.  
Let { }Sℜ is a continuous-time finite dimensional time-
invariant strictly causal nonlinear system state space 
representation given by: 

  
0

0{ } : ( ) [ ( )] ( ), ( ) ,
( ) ( ),

S x t f x t Bu t x t x
y t C x t

ℜ = + =
=

  (4)                                                                                  

The arbitrariness in the choice of state coordinates 
motivates introducing a group of state- and feedback- 
transformations on which the generalization of classical 
Tellegen’s principle has been proposed in [4]. 

1φ, , : ( ), φ( , ) :

   , ( ) 0 , 0

      : [ ( )] [ ( )]

T

T T x T x u u x

f grad E x x

t E x t E x t

−∃ ∃ = =

= ⇔ =

⇔ ∀ =

�               (5) 

For a class of discrete-time finite dimensional 
internal system representations { }Sℜ given by 

         [ ]( 1) ( ) ( ) ,
( ) ( ) , ( ) ( )

x k f x k w k
w k B u k y k C x k

+ = +

= =
             (6) 

Similarly as in the case of continuous-time systems, a 
new discrete-time generalization of Tellegen’s  
principle  has been introduced in [4]. If any input u(k) 
and any state value x(k) will be chosen then the next 
state value x(k+1) is given, and the state difference 
vector ∆x(k) can be defined as 

{ }( ) ( 1) ( ) , 0,1,2,..kx k x k x k x k∆ = + − ≡∆ ∈                 (7) 
together with a row “gradient vector” η(k) defined by: 

{ }1η(k) [ ( 1) ( )] η , 0,1,2,
2

T
kx k x k k= + + ≡ ∈ …         (8) 

Interpretation of the vector ηk as a natural discrete-time 
energy function gradient vector is obvious, and the 
discrete-time generalization of Tellegen’s principle is 
then given by the inner product: 
         { } k, 0,1,2, : , η 0T

kt k k x∀ ≡ ∈ ∆ =…       (9) 

For deeper understanding a geometric interpretation of 
the generalized Tellegen’s principle is visualized at the 

Fig.1. with continuous-time version as a limit of the 
discrete-time case. 

 
Fig.1. Geometric interpretation of the generalized 

Tellegen’s principle a) discrete-time b) continuous-time, 
(for n=2) 

 
3  Dissipativity and Stability  
Let us consider the class of continuous-time nonlinear 
time-varying strictly causal systems given by the state 
space representation  
         ( ) :    ( ) [ ; ( ), ( )]R S x t f t x t u t=�                         (10)               
                       ( ) [ ; ( )]y t h t x t=                                   (11)        
with  t  as continuous time variable, 
         x1 , x2,,… , xn      as the state space coordinates, 
        1x� , 2x� , …, nx�     as coordinates of the state velocity, 
         u1 , u2,,… , ur      as the  input signals, and with 
         y1 , y2,,… , yp      as the  observed output signals 
Recall that according to Liouville’s theorem of vector 
analysis, dissipative systems have the important 
property that any volume of the state space strictly 
decreases under the action of the system flow. For 
nonlinear system representations { }Sℜ with the state 
velocity given by a nonlinear vector field f  the property 
of dissipativity is defined by using the operation of 
divergence as follows [2]. 
Definition 1: (Dissipativity of a  vector field)  
The representation { }Sℜ with the state velocity vector 
field f  is dissipative if it holds 

                       
1

( )div ( )
n

i

i i

f xf x
x=

∂
=

∂∑ < 0                  (12) 

Let us now define a  constituent set of finite number of 
non-interacting  elementary subsystems 
     1x� = f1( t , x1  , u1) ,           y1 = h1( t , x1) 
     2x� = f2( t , x2  , u2,),           y2,= h2( t , x2,) 
       .  .  .  .  .  .  .  .                 .  .  .  .  .  .  .  .               (13)               
      nx� = fn( t , xn   , un),           yn = hn( t , xn ) 
It follows that the constituent set (29) is dissipative if at 
least one of the elementary subsystems is dissipative.  
Remark 1: It is easy to deduce that the constituent set 
of non-interacting subsystems with zero input and with 
unique equilibrium state is locally asymptotic stable iff 
each of the elementary subsystems is dissipative. It 
means that in general dissipativity is necessary but not 
sufficient for asymptotic stability. 



 

Remark 2 :Nonlinear systems having at an equilibrium 
state a dissipative approximate linearization are locally 
dissipative in a neighborhood of this equilibrium state, 
but need not to be globally dissipative, i.e. their region 
of dissipation need not be the whole state space. 
Remark 3: Recall that systems with                                                                  
                                  div ( ) 0f x =                     (14)        
preserve volume along state trajectories; such systems 
are usually referred to as conservative.  
Notice that this concept of conservativity is not always 
compatible with the classical meaning of the term 
conservative as energy preserving ( or Hamiltonian ).  
Remark 4: Notice that a linear time invariant  system  

0
0{ }:   ( ) ( ) ( ),  ( ) ,

( ) ( ),
S x t Ax t Bu t x t x

y t Cx t
ℜ = + =

=

�                   (15) 

is dissipative if and only if its matrix A has negative 
trace, i.e. if it holds  
                                      Tr A  < 0                               (16) 
Thus an asymptotically stable linear system is always 
dissipative, while the converse is not true in general. 
 
4  Minimality of state velocity space 
It is challenging to find such a structure  of  interactions 
between the elements of the constituent set that the  
intrinsic relations between fundamental system 
properties such as dissipativity, conservativity, 
asymptotic stability, instability, state and parameter 
minimality and chaoticity will be clearly displayed. In 
order to achieve the aim, it is reasonable to specify the 
minimal dimension of the state velocity space. We start 
with a concept of the Hessenberg matrix.  
Definition 2: (Hessenberg structure of a matrix)  

Let A is a n-th order rectangular matrix. We say that the  
matrix A has the Hessenberg structure if it holds    
           ,1                0,       1o

i ja j i= > +                    (17) 

          , 1 , 12     0,   and    ( ) 1o
i i i ia sign a+ +≠ =             (18) 

Definition 3: (Hessenberg structure  of a vector field) 
A vector field f  has the Hessenberg structure if it holds  

                  1     0,       1o i

j

f j i
x
∂

= > +
∂

                      (19) 

                  
1 1

2     0,       1o i i

i i

f fsign
x x+ +

 ∂ ∂
≠ = ∂ ∂ 

      (20) 

Let a n-th order  system representation is given  

  
0

0{ } : ( ) [ ( )] ( ), ( ) ,
( ) ( ),

S x t f x t Bu t x t x
y t C x t

ℜ = + =
=

  (21)   

and the matrices B and C have the form 

  C  = [ 1c , 0, … , 0  ] ,  TB = [ 0, 0, … , bn ]          (22)             
Definition 4: (Hessenberg structure  of a system) 

We say that a system representation (15),(16) has the 
Generalized Hessenberg structure if vector field f  has 
the Hessenberg structure  

                  1     0,       1o i

j

f j i
x
∂

= > +
∂

                      (23) 

                  
1 1

2     0,       1o i i

i i

f fsign
x x+ +

 ∂ ∂
≠ = ∂ ∂ 

      (24) 

and in addition  if it holds 

               1 1
1

1 1

3     0,       1o h hc sign
x x

 ∂ ∂
≠ = ∂ ∂ 

�        (25)              

                4     0,       1o n n
n

n n

f fb sign
u u

 ∂ ∂
≠ = ∂ ∂ 

�    (26) 

Remark 5:  It is worthwhile to notice that each of the 
Jacobian matrices ( )xJ f , ( )uJ f , ( )xJ h  has a  properly 
defined structure motivated by the system structure 
corresponding to the cascade connection of the 
elementary subsystems according to the Fig .2.                              

 
Fig.2. Generalized Hessenberg structure 

For the internal structure of subsystems kS see Fig.3. 

 
Fig.3. Internal structure of the elementary subsystem kS  
The resulting system representation in Generalized 
Hessenberg structure is obviously always controllable 
and observable, i.e. minimal and is explicitly described 
by                          1x� = f1( t , x1  , x2  ) ,            
                               2x� = f2( t , x2  , x3  ),      
                               3x� = f3( t , x3  , x4 ),                        (27) 
                                 .   .   .   .   .   .   .   . 
                               1nx −� = fn-1( t , xn-1  , xn ),         
                               nx� = fn( t , xn  )  +  u     
                           ( ) [ ; ( )]y t h t x t=  = x1 (t)                            (28) 

where the set of external interactions is given by 
                         u(t) = un(t),      y(t) = x1(t)                 (29) 
and the set of internal interactions is expressed by 
                         ui =  xi+1 , i=1,2,...,n-1           (30) 
                         yi =  xi ,    i=1,2,...,n                          (31) 

∫



 

5  Bi-orthonormal basis of velocity space  
In order to specify the physically correct internal system 
structure  in the sense of energy conservation principle 
validity [4], we introduce a structural representation  
           *{ }:     . ( )* *S Q.x(t)= A .x(t)+ B u tℜ            (32) 
                           *( ) . ( )y t C x t=                                
Let us assume that each elementary subsystem kS of the 
constituent set is dissipative, i.e. it holds 

         :      0,      1, 2,.....i

i

fi i n
x
∂

∀ < =
∂

                     (33) 

Then the simpliest form of the structural matrix *A in the 
Generalized Hessenberg representation reads 

        *

1 1 0 ... 0 0
0 1 1 ... 0 0 0
0 0 1 ... 0 0 0
: : : ::: : : :
0 0 0 ... 0 1 1
0 0 0 ... 0 0 1

A

− 
 − 
 −

=  
 
 −
 

−  

           (34) 

Now, let the structural matrices * *, ,Q B C be given by 

* *

1 0 0 0 0 1
1 1 0 0 0 0

1 1 . . . .
, , ( )1 1 ... . . . .

. 1 . 0 0 . .

. . . 1 0 0 0

. . . 1 1 1 0

TQ B C

     
     −     
     −
     = = =−     
     −
     
     
     −     

    (35)                                                                                                                       

where the columns q1, q2 , … , qn of the matrix Q form a 
biorthonormal basis in the state velocity space given by 
            qk + qk+1 =  ek  , k = 1,2, … , n-1 , qn = en      (36) 
Because Q is always invertible, we have  

                   
1

1 0 0 ... 0 0
1 1 0 ... 0 0
0 1 1 ... 0 0
0 0 1 ... 0 0
. . . . . .
0 0 . ... 1 0
0 0 . ... 1 1

Q −

 
 
 
 
 =  
 
 
 
  

              (37) 

and a resulting generic structure of the matrix A follows 

      1 *

1 1 0 0 ... 0 0
1 0 1 0 ... 0 0

0 1 0 1 ... 0 0
0 0 1 0 ... 0 0
: : : : ::: : :
0 0 0 0 ... 0 1
0 0 0 0 ... 1 0

A Q A−

− 
 − 
 −
 = = − 
 
 
 
 − 

     (38)  

6  Structure of continuous-time systems 
    in dissipation normal form 
Our goal is to specify a class of strictly causal system 
representations for which a form of energy conservation 
such as the The Generalized Tellegen’s principle holds. 
We start with the hypothesis that it is not the physical 
energy by itself, but only a measure of distance from the 
system equilibrium to the actual state x(t), what is 
needed for this aim. Thus, instead of the physical energy 
a metric ρ[x(t), x* ] will be defined in a proper way, and 
for an abstract energy E(x) we then put formally: 

            2 * * 21 1E(x) x(t), x || ( ) ||
2 2

x t xρ   = − �    (39)  

It has been shown in [1], [3], that the resulting state 
equivalent system representation in dissipation normal 
form, corresponding to the derived generic structure 
(35), (38) is described by a triple of matrices { CBA ~,~,~

}  
as follows                                                                                                                          

       

1 2

2 3

3 4

1

0 0 0 0
0, 0 0 0

0, 0 0 0

0 0 0 0 0
0 0 0 0 0 0

n n

n

A

α α
α α

α α

α α
α

−

− 
 − 
 −

=  
 
 −
  − 

"
"
"�

# # # # % # #
"

"

     (40) 

   
1

2

3

1

0
0

,

0
0

T

n

n

C B

βγ
β
β

β
β

−

  
  
  
  

= =   
  
  
  

      

� �
##

                   (41) 

It is easy to show that the set of real basic design 
parameters αi, γ, βi must satisfy the following 
fundamental consistency conditions: 
        1. { }, 1, 2,..., : 0 ii i n α∀ ∈ < < ∞⇔  
           for structural  asymptotic stability   
         2. { }, 2,3,..., : 0 , 0, : 0i ii i n iα γ β∀ ∈ ≠ ≠ ∃ ≠ ⇔  
           for structural minimality                        
The generic internal structure of an n-th order 
continuous-time strictly causal system in dissipation 
normal form is shown at the Fig. 4. 

 
Fig. 4. Internal structure of continuous-time strictly 

causal system in the dissipation normal form 
 



 

7  Dissipativity and stability analysis  
Example 1.  (Stability analysis of a linear system) 
Let the n-th order system representation is given by the 
linear differential equation with constant coefficients 

(6) (5)
1 4 5 6... ( ) ( ) ( ) 0y a y a y t a y t a y t+ + + + + =�� �      (41) 

with characteristic polynomial 
6 5 4 2

1 2 4 5 6( ) ...P s s a s a s a s a s a= + + + + + +  
and with matrix A in the dissipation normal form  

1 2

2 3

3 4

4 5

5 6

6

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

A

α α
α α

α α
α α

α α
α

− 
 − 
 −

=  − 
 −
 

−  

      (42)    

Hence the parameters  { }, 1, 2,...,6ia i∈ are given by 

1 1
2 2 2 2 2

2 2 3 4 5 6
2 2 2 2

3 1 3 4 5 6

2 2 2 2 2 2 2 2 2
4 2 4 5 6 3 5 6 4 6

2 2 2 2 2
5 1 3 5 6 1 4 6

2 2 2
6 2 4 6

( )

( ) ( )

( )

a

a

a

a

a

a

α

α α α α α

α α α α α

α α α α α α α α α

α α α α α α α

α α α

=

= + + + +

= + + +

= + + + + +

= + +

=

 

Recall that the necessary and sufficient condition for 
existence  of  the  unique equilibrium state  x*= 0  is  
          2 2 2

6 2 4 6det 0A a α α α= = ≠                            (43)                                                                                                
From the existence of a unique  equilibrium state point 
of view, the dissipation parameter  α1,  as well as 
interaction  parameters  α3, α5   can be chosen  arbitrary.  
Now, let all the parameters a1, a2,…, an  of ( )nP s be 
considered as unknown, and let us specify the region of 
asymptotic stability in the parameter space.  
The representation in dissipation normal form reads 

            

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3 5 5

5 5 4 6 6

6 6 5

1

( ) : ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

S x t x t x t
x t x t x t
x t x t x t
x t x t x t
x t x t x t
x t x t
y t x t

α α
α α
α α
α α
α α
α
γ

ℜ =− +
=− +
=− +
=− +
= − +
=−
=

         (44) 

and for the Eucleidian metric 2ρ ρ=   

     [ ] 21 1 12 2
2 2 2

1
( ) ( ),0 ( ) ( )

n

i
i

E x t x t x t x tρ  
 

=

= = = ∑ ,      (45)  

it holds  

* *

2 *

1 ( ) 0 ( ) , ( 0)
2 ( ) ( ) 0 ( ) 0 ( )

o

o
i i

E x x t x x
x t R x t E x x t x

= ⇔ = =

∈ ⇔ ≥ ⇒ > ⇔ ≠
   

For the derivative of the signal energy function E(x) 
along the system representation (44) we get 

      
{ }

2 21
1 1 2

d ( ) ( ) . ( )
d s

E t x t y t
t

α
α

γℜ

=− =−       (46) 

where γ  is a real output scaling parameter 
                 0  <  γ  <  ∞                                    (47)  
Thus, for non-zero output dissipation power 2 ( )y t the 
signal energy conservation principle holds if and only 
if:          2( ) ( )P t y t=    ⇔    α1 =  γ2 > 0             (48) 
Remark 2:  Notice that the dissipation parameter α1 is 
the only element of the matrix A, which sign separates 
the system dissipativity from its anti-dissipativity. The 
critical value of α1 = 0, corresponds to the system 
conservativity and separates stability of the equilibrium 
state from its anti-stability.   

Remark 3:Notice, that if we put α5  = 0, then the state 
variables ,ix  i = 5,6 become unobservable by the 
output y ; thus only the first isolated subsystem with the 
state variables ,ix  i = 1,2,3,4,  which is observable, 
will be asymptotic stable, while the second one will 
oscilate on  the constant  energy level, (see Fig.3.c for 
energy evolution). Similarly, if we put  α3  = 0, then the 
state variables ,ix  i = 3,4,5,6  become unobservable by 
the output y, and only the observable subsystem                    

                            
1 1 1 2 2

2 2 2

1

( ) ( ) ( )
( ) ( )

( ) ( )

x t x t x t
x t x t
y t x t

α α
α

γ

=− +
= −
=

�
�               (49) 

will be asymptotic stable (see Fig.3b)  

 
Fig.  5. Time evolution of the signal energy E[x(t)] 

a)  conservative case α1 = 0, αk  -arbitrary for k = 2,3,…,n       
b)  stability α1 > 0, α3 = 0,    c)    stability α1 > 0, α5 = 0, 
d)     asymptotic stability α1 > 0, αk ≠ 0, for k = 2,3,…,n  
 



 

8  Dissipativity and nonlinear phenomena 
Example 2.  (Non-linear stability analysis)  
Let us consider a simple non-linear system given by       

2
2( ) ( ) ( ) ( ) 0y t y t y t a y tε α β + − + = �� �             (50)                                                                      

If C is defined by C = [γ, 0], and  A(x)  is defined by the 
non-linear dissipation normal form 

1 2
1 23

1 2

2

,
( , )

, 0

x a
A x x

a

ε α β  − −  =
 − 

       (51) 

then the system representation is locally observable if 
20, 0aγ ≠ >                            (52) 

and the signal energy conservation principle gives 

      1 2 2
1 13

( )

d ( ) 0,
dt s

E t P P x xε α β
ℜ

 =− ≤ = −         (53) 

It follows that the unique equilibrium state * 0x =  is 
asymptotically stable in the region 2D X R⊂ ⊂  

2 2
1 2 1 1 2

3 3, : andD x x x x xα α
β β

  = < + < 
  

          (54) 

if  ε > 0,  α > 0,  β > 0, 2 0a > .     
    Example 3. (Generation of Lyapunov functions)  
Let the same non-linear system be given      
       2

2( ) ( ) ( ) ( ) 0y t y t y t a y tε α β + − + = �� �       (55)                                                                      

but instead of the dissipation normal form the state 
vector x(t)  is defined by  
                           1 2, /x y x dy dt= =                           (56) 
Then the corresponding system representation is  
structurally observable with the observability matrix                                            
Ho=I, and from the signal energy conservation principle  

          1 2 2
1 13

( )

d ( ) 0,
dt s

V t P P x xε α β
ℜ

 =− ≤ = −     (57) 

a unique Lyapunov function V(x) can be determined by 
isometric transformations.For  α = β = 2a = 1 we get  

      

1 1 22 6 2 4 2 2
1 1 12 9 3

2 3 2
1 2 1 2 23

( ) (1 )

2

V x x x x

x x x x x

ε ε ε

ε ε







= − + + −

− + +
   (58)                                                                          

and for linear conservative case (ε = 0) it reduces to 
                             1 2 2

1 22( )V x x x 
 
 

= +                       (59) 

Example 4.  (Generation of chaos in a causal system) 
Let a 4th order system represented by dissipation normal 
form with chaotic state be given by 

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

x x x
x x x
x x x
x x

α α
α α
α α
α

=− +
=− +

=− +

=−

�
�
�
�

2
21

2

3

4

1 10

1

1

2.00

xα
α

α
α
α

− +   
   
   = =
   
   
    

,

0

0
(0)

0.5

0

x =

 
 
 
 
 
 

   (60)    

                  
Fig. 6. The 3D-Projection of chaotic state trajectories 

 
Fig 7.  State evolution of the chaotic system 

 
Fig. 8. State energy evolution of the chaotic system 

        
9  Conclusion 
In the present paper basic concepts concerning 
dissipativity, conservativity, state minimality, internal 
stability, instability and chaos have been examined from 
a unified structural point of view. Both the linear as well 
as non-linear state-output system representations are 
discussed. 
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