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Abstract

In this paper we apply the concept of parallel processing to enhance the performance of the Ant
Colony System algorithm. New communication strategies based on a weighting scheme are introduced
under three different types of interactions. The performance of the Multiple Ant Colony System em-
ploying these strategies applied to the Traveling Salesman Problem is investigated and evaluated with
respect to solution quality and computational effort. The results demonstrate that the Multiple Ant
Colony System outperforms the sequential Ant Colony System. The study indicates that the weight-
ing scheme yields a positive influence on performance, particularly in strategies that share pheromone
information among all colonies.

Key-Words : Communication strategies, Parallel Ant Colony Optimization, Traveling Salesman Problem

1 Introduction mentation parallelizes the construction phase, but it has
the disadvantage that all ants have to wait for each other

The basic idea behind ACO algorithms is to simulate tﬁ‘é ever);1 Iteration duedtoha C:Jmmun:DcZItDl(l)q ot\J/erh(caiad beh—
foraging behavior of a swarm of real ants (i.e., colon een the master and the slaves. Is based on the

using artificial ants working as cooperative agents ?8arse—grr|;une_zd model ;n V\éh'Ch |rt1)forrr}§t|on 'S exc?z;]lnged
construct high quality solutions by using a constructi ong colonies every fixed numboer o |terat.|on_s. € ex:
procedure. This procedure manages a colony of ap]%lentlal results obtained by the authors indicated that
that concurrently and asynchronously constructs prADbO-‘PI performs bettgr than SF?' in terms of running time
lem solutions by moving through neighbor nodes of t d speedup. Talbi et aI.' [3] introduced "."”Other mgster-
problem’s construction graph [1]. This mechanism c ve paradigm to parallelize the AS algorithm in W.h".:h a
make an ACO algorithm well suited for parallelizatio ocal sgarch method based on Tabu Sear_ch (TS) is intro-
Bullnheimer et al. [2] introduced two parallel impleme duced in each s!ave to improve the solution constructed
tations of the Ant System (AS) algorithm, namely, th the .ant. Their resglts demor\strated j[he'z complemen-
Synchronous Parallel Implementation (SPI) and the Pt:?rry Ealn_s bLought bIBII |In_cor|?orat|ng TS W';[\:_'g(;hedASf al-
tially Asynchronous Parallel Implementation (PAPI). sprt m In the paralle |mp_ementat|on._ ddendort et
is based on a master-slave paradigm in which every ghtw mtrogluced a parallel |mplementat_|on, based_ on the
finds a solution in the slave and sends the result to {if rse-grained model, of the AS algorithm. Their muI.-
master. The master updates the pheromone informatf ? golony approgch_employ_s be_st-exchange strategies
when the solutions are available from all slaves, and semj%’h',Ch best SOIUt'On_ information is e>_<ch§mged betw_een
the updated information back to all slaves. This implg9 onies under two different communication topologies.



They studied the performance of employing these strattee heuristic information for the ant visibility measure
gies and the results indicated that the multiple AS alg@-g., defined as the reciprocal of the distance between
rithm employing some strategies outperforms the singlede: and nodej for TSP), and3 is a control parame-
AS algorithm in certain instances. Chu et al.[5] intrder that represents the relative importance of the ant visi-
duced a parallel implementation, based on the coars#ity value versus the amount of pheromone on the edge

grained model, of the Ant Colony System algorithm arjdining nodesi andj. ¢ is a generated random number
used the same idea of the best solution exchange butiorthe range [0,1], andy is a given threshold parameter.
der several communication topologies. Experiments indidus, wheny is less than or equal t@ the ant employs
cated that the Parallel Ant Colony System algorithm owxploitation to select nodg* as the next node in its tour,

performs both the AS and the ACS algorithms.

whereas ifg exceedsy the ant uses probabilistic explo-

In general, ACO is inherently a distributed methodalation to select the next node in its tour. From nodide
ogy, so it is particularly suited to parallelization [1]. Alhext nodej in the route is selected by ahtamong the
though a number of parallel versions of ACO have beanvisited nodeg’*.
implemented and tested in limited settings, it is still an The pheromone is updated in two different ways:

open question as to how an efficient parallel version of an
ACO algorithm should be implemented, and how much
improvement can be obtained over the sequential ACO
algorithm. As well, since performance can be enhanced
not only by the parallel implementation but also by the ef-
ficiency of the communication strategies that are incorpo-
rated in the parallel implementation, these strategies need
to be studied.

This paper is organized as follows. In Section 2 we
describe the Ant Colony System. In Section 3 the con-
cept of parallel processing is applied to the Ant Colony
System, and communication strategies based on a weight-
ing scheme are introduced. Experimental results from the
Multiple Ant Colony System are presented in Section 4
along with a comparative performance analysis involv-
ing other existing approaches. Finally, Section 5 provides
some concluding remarks.

2 Ant Colony System

The Ant Colony System (ACS) algorithm features major
changes in the transition and pheromone update rules of
the AS algorithm [6]. A new transition rule is introduced
that favors either exploitation or exploration according to
the following transition rule:

L if{j=7" & q¢<qo}
Pi]§': 0 if{i#75° & q¢<q} 1)

B
[7is][mis] otherwise

e Local updating As the ant moves between

nodes:¢ and j, it updates the amount of
pheromone on the visited edge using the fol-
lowing formula

Tij = (1 = p)Ti; + p7o (2)

wherery, the initial amount of pheromofAgds
calculated asy = (nC;)~!, n is the problem
size (i.e., the number of nodes) aagis the
cost of the initial tour produced by a construc-
tion heuristic such as the Nearest Neighbor
(NN) heuristic, angh, the evaporation rate, is

a parameter in the range [0,1] that regulates
the reduction of pheromone on the edges. The
effect of local updating is that each time an ant
uses an edgg() its pheromone trait;; is re-
duced, so that edges becomes less desirable
for the ants at the next iterations. This per-
mits an increase in the exploration of edges
that have not been visited yet. In fact, local
updating has helped to avoid poor stagnation
situations.

Global updating When all ants have gener-
ated their tours, the edges belonging to the
best tour are updated using the following for-
mula:

75 = (1= p)1ij + p(1/Cy) (3)

wherej* = arg max, ¢y ([7iu)[niu]”), 75 is the amount

@At the beginning of the search a small amount of pheromone is
assigned to all the edges.
PStagnation occurs when the algorithm reaches its equilibrium

of pheromone on the edge joining nodeand j, 7;; iS state (i.e., a single path is chosen by all ants).
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where C;, is the cost of the best tour found 1: @Pply the NN heuristic to generate an initial feasible
since the start of the algorithm. It is impor- ~ Solution for all colonies

tant to note that global updating adjusts only? While termination condition is not meto

the pheromone on the edges belonging to thé for each colony: € S in paralleldo

best tour causing ants in future iterations to* set an initial value of pheromone on every edge
search in the vicinity of this best tour. 5. iteration number=1
6: for £ = 1tom antsdo
3 Multiple Ant Colony System 7 apply the construction procedure of ACS
8: end for
9 if iteration numbermod exchange interval=0
I . then
k 10: improve the solutions by local search proce-
“ dure{option}
11: call the exchange module procedure
\ 12: end if
13: increment iteration number
14:  end for
15: end while
Figure 1: Colony-level interaction framework. 16: display the best solution found so far by all colonies
We believe that the parallel running of a group 01f7: stop

colonies can be enhanced_ by organizing tho,se_ COIOnie_S i%igure 2: A pseudo-code description of the M-ACS algorithm.
such a way that the colonies can share their information
efficiently. This information can be utilized by colonies
via an exchange module that defines the interaction bek our parallel implementation of the algorithm, each
tween the group of connected colonies. The interactioplony consists of a swarm of 10 ants managed by one
between the colonies relies on the colonies adoptingraachine. Machine 0 is responsible for initialization,
efficient communication architecture that facilitates cooppawning, and collection and display of the results, while
eration between them, and a communication strategy ththtmachines (including machine 0) are responsible for
defines the rules for collaboration among them. Accorebnstructing solutions to the problem. A Beowulf clus-
ingly, we define an exchange module as shown in Figties is used for this implementation. The Beowulf cluster
1 in which every colony handles the mechanism of coogensists of a collection of PC machines interconnected by
eration. a Local Area Network (LAN) running the Red Hat Linux

In the proposed approach, a group of identical coloniggerating system. We employed the Message Passing In-
search in parallel and communicate with each other Waface (MPI) software to allow the Beowulf cluster ma-
the exchange module. The ants in each colony are divigédhes to interact. We implemented, in the C++ language,
equally into several groups. Each colony is associatbé M-ACS algorithm with the option of employing one of
with a complete ACS construction procedure introduc#te communication strategies described below. The par-
in [6]. Figure 2 illustrates the complete pseudo-code dalel implementation combines a group®identical ma-
scription of the Multiple Ant Colony System (M-ACS)chines of the cluster equipped withOMHz Pentium Il
algorithm. In this algorithm, colony provides its searchprocessors ant8MB of RAM each.
information to other colonies and receives search infor-
mgtion from other colonies at every fixed number of iteg—_l Communication Strategies
ations (i.e., exchange interval) via the exchange module
procedure. In this procedure, the interaction occurs undée search for high quality solutions can be improved,
different topologies and according to one of the commin-terms of performance, by employing a communication
nication strategies described below. strategy that can propagate current high quality solution



information to the colonies and use that information in These weights are used to define a colony-level inter-
the pheromone representation. action pheromone update formula intended to achieve a

In the proposed strategies, we adjust the pheromdrazle-off between exploration and exploitation. The fol-
matrix of each colony through different colony-level inlowing update formula is applied to edges of the best tour
teractions and according to the solution information §?§l Vh € S as given by
as to reinforce search in the vicinity of high quality so-
lutions. The behavior of ants in one colony will be in-7i; = (1 — p)7i; + p(w"/C}') if{edge(i,j) € T)'} (5)
fluenced by the solution information received from other
colonies, where pheromone is added to the colony edfefact, this formula has the effect of increasing the quan-
that belong to the best solutions of the group of coloni&ly Of pheromone on edges associated with some solu-

A weighting scheme similar to the one presented in [fpS according to the quality of these solutions and the
is applied in the proposed multiple colony approach to &8lrrent convergence state of the colonies.
sess the quality of the best solutions constructed by sev-
eral colonies. The pheromone trails on the edges of the
best solutions are updated adaptively in response to de-
termined weights, and an extra amount of pheromone is
deposited on the edges of these solutions accordingly.

To identify whether the colonies are converging to-
ward one solution or scattered in the search space we
calculate the difference between the current overall av-
erage cost of the best solutions produced by the selected
colonies and the cost of the best solution found so far.

The cost of the best solution found so far is given by g e
Cy, = minhes{C'gL}. The overall average cost of the best
solutions is given by ay ¢ = #}} S hes CFF, whereClt is o 0

the cost of the best solution found by colalyfor h € S

whereS C {1,...,M}, and M is the total number of

colonies. We note that the difference between the overall 1D 2D
average cost' 4 ¢ and the best cost;, is likely to be less
when the selected colonies approach the best solution than
it will be when these colonies are scattered in the search

space. We therefore use the differen€e — Cp) as

a yardstick for detecting the convergence of the selected —@—

colonies. The colony:. € S that has the best solution

ch that is less than the overall averaggy ¢ is assigned !

a weightw” € (0,1], otherwise it is assigned a weight
equal to zero as given by

Figure 4: Interaction of colonies in a hypercube topology.

Figure 5: Interaction of colonies in a directed ring topology.

CaveCh . The exchange module exchanges the best solutions
W = { Toveor WH{he S (Cave—Cy) >0} petween a group of colonies (specified by the selected

otherwise topology), weighs those best solutions using the weight-
ing scheme, and then applies the colony-level interaction

whic.h deperjds not only on the measure of convergenggyromone update formula. Accordingly, we define the
previously discussed but also on how close the cost of tfignmunication strategies as follows:

best solution for the colonﬁf, is to the cost of the best
solution found so far(’}, , in such a way that the closer e Strategy-1: the interaction is applied among
(Jg‘ is to Cj, the closen” is to 1. M colonies organized as in Figure 3.



e Strategy-2: the interaction is applied among
|S| colonies (i.e.S C {1,...., M}) organized
as in Figure 4.

0.94

—— No-Strategy Strategy-1 (1=30) ‘

093 Strategy-2 (1=30) -+ Strategy-3 (1=30)

e Strategy-3: the interaction is applied between oo
two consecutive colonies organized as in Fig- o
ure 5. govsg—

3.2 Influence of the Communication Strategies  °¥]

0.86

The search behavior of ACO algorithms can be visual- |

ized and assessed through the distribution of pheromore,,| | | '

trall Values In the pheromone matrIX We deflne ﬁ'l'e » 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500
Iteration

tropy of nodes at iterationt, H;(t), as given byH;(t) =

— > jen Tij(t) log 745(t) and interpret this as a measu(rge

. J o . igure 6. Average cumulative entropy of the communication strate-

of the (potential) diversity in the search from this NOGfes with7 — 30, TSP test problemeil101
at that iteration. The team consensus methodology, intro-
duced in [8], is applied to aggregate the node entropies to
arrive at the cumulative entropy of each colony. In thigfrategy-3, which diversifies the search the most (i.e., has
section, we study the influence of the exchange stratedft highest entropy prior to the exchange step). This in-
on the search behavior of the M-ACS algorithm for solglicates that the strategies produce searches that are differ-
ing the TSP test problem"lOl[g] The Cumulative en- ent in thEir ab|l|ty to intenSify and diveI’Sify the Seal’Ch at
tropies of theM colonies are reported and averaged @Yery exchange step.
every iterationt = 1,...,500 for M-ACS without em-
ploying any strategy (No-Strate@yas well as employing
the three communication strategies (Strategy-1, Stratedy-
2, Strategy-3). _

In order to determine an appropriate exchange imer(?élyl)erformance study was cgrrled out tq evaluate the effec-
I (the number of iterations between exchanges), diﬁergx?ness of the communlcatlon_ strategies and compare the
values are considered for these strategies. The approp Sleormance of the M-ACS with the performance of the
value of[ is selected according to the diversity level pridor’m Colony System (ACS) and Parallel Ant Colony Sys-

to the exchange (i.e., when the search is diversified), éﬁ@ (PACS) of Chu et al. [5] using some TSP problem

the fluctuation range—the difference in the entropy prig}stances [9]. For all approaches, the parameter settings,
proposed in [6], were set fb= 2, p = 0.1, gg = 0.9,

to the exchange and immediately after the exchange (i‘f"eS

when the search is intensified). The diversity level and tﬁ%dm = 10 ants. To ensure a fair comparison, we set

fluctuation range fof = 30 are generally greater than fthe number of runs and the number of iterations consistent

other exchange intervals. For this reason the exchaWdté] thle At‘CdS an?htheE)PACSfiEprgac:lesi 1‘["he perg(:rmagge
interval I = 30 was used for the computational tests. IS evaluated on the basis ot ihe best solutions obtained in

For the appropriate value df Figure 6 illustrates theseveral runs on each instance. The number of iterations

average cumulative entropies of No-Strategy and the thfReProplemsstroandeill0lwas set to 1,000 iterations,

communication strategies. As illustrated, Strategy-1 e%{]d for problentsp225was set to 2,000. Table 1 sum-

hibits the largest swing (largest fluctuation) in cumulativia 26 the performance in terms of the Mehim and

entropy about every exchange step. This strategy alsotme- Standard DeviatiorsQ) of the best solutions obtained

tensifies the search more than the other strategies (i.eﬂi/er 10 runs. The results illustrate the potential of ap-

as
lower entropy at the exchange step) and contrasts V\ﬁ\é

Experimental Results

ing the multiple version over the sequential version of
S with some variations in the performance of the mul-
M colonies work in parallel without interaction tiple version employing different strategies with Strategy-




Inst- Sta-  Stra-  Stra-  gcheme among colonies is still needed. Of particular im-

2?7%6 — 7’2%2 ggc-ss ée%'él g;%)./-lZ ée%"f portance is the development of an interaction scheme in
SD 1.9 3.3 11 1.0 1.4 which the colonies can interact asynchronously.

eill0l Mn 6782 6463 6381 639.6 642.1
SD 42 43 36 53 314  potoencoo

tsp225 Mn 41544 3887.0 39367 39424 3971.8
SD 263 129 146 174 3900 1] Dorigo M. and Siitzle T. Ant Colony Optimization

Table 1: Performance comparison between ACS, PACS, and M-ACS Massachusetts Institute of Technology, 2004.
employing Strategy-1, Strategy-2, and Strategy-3.

[2] Bullnheimer B., Kotsis G., and Strauss C. Paralleliza-
tion Strategies for Ant System. In DeLeone R., Murli
1 exhibiting better performance than any other strategy. A., Pardalos P., and Toraldo G. (edsigh Perfor-
Furthermore, theSD of Strategy-1 is quite small com- mance Algorithms and Software in Nonlinear Opti-
pared to the others, which shows the consistency of M- mization vol. 24 of Applied OptimizationKluwer,
ACS employing Strategy-1. Note that the results of PACS Dordrecht, 1998, pp. 87-100.
reported in this table were obtained from the best res
of employing several communication strategies. The
thors also report 3887.0 for thdn value oftsp225 but
the best known solution is 3916 [9]. In general, the re-
sults obtained by M-ACS employing Strategy-1 demon-
strate the effectiveness and the consistency of Strategy-1
compared with the other tested strategies for the three[d}- Middendorf M., Reischle F., and Schmeck H. Multi
stances. Colony Ant Algorithms. Journal of Heuristics
vol. 8(3), 2002, pp. 305-320. Special issue on Par-
allel Metaheuristics.

ng Talbi E., Roux E., Fonlupt C., and Robillard D. Par-
allel Ant Colonies for Combinatorial Optimization
Problems. In et al. J.R. (edParallel and Distrib-
uted Processing, 11 IPPS/SPDP’99 Workshogs.
1586 ofLNCS Berlin: Springer, 1999.

5 Discussion
[5] Chu S.C., Roddick J.F., and Pan J.S. Ant Colony Sys-

The important issue in the ACO algorithms is to find use- tem with Communication Strategidaformation Sci-

ful mechanisms for sharing information to improve search encesvol. 167, 2004, pp. 63-76.

behavior. In this paper, the single colony approach is ex- ,

tended to a multiple colony approach. Communicatii%] Dorigo M. a_nd Gambgrdella L. Ant Colony Syste_m:

strategies are introduced under three different types of in- A Cooperative Learning Approach to the Traveling

teractions. A weighting scheme is applied in these strate- Salesman Problem.|EEE Trans. on Evol. Comp.

gies for adapting the amount of pheromone based on the vol. 1, 1997, pp. 53-66.

quality of solutions found by several colonies, considgf] Ellabib I., Basir O., and Calamai P. A New Ant

ing the state of convergence. A performance study is per- Colony System updating strategy for the Vehicle
formed on TSP instances to confirm the effectiveness of Routing Problems with Time Windows. e Pro-

these strategies. The results indicated the domination of ceedings of the Fifth Metaheuristics International
the Multiple Ant Colony System over the sequential Ant  Conference (MIC2003Kyoto, Japan, 2003.

Colony System. In particular, a significant improvement

can be accomplished by employing the strategy execul@k Basir O. and Shen H. New Approach for Aggregat-
under the star topology, in which the search information ing Multi-Sensory DataJournal of Robotic Systems
is shared among all colonies. Based on this evidence vol. 10(8), 1993, pp. 1075-1093.

we postulate that the proposed multiple colony approa@ﬁ‘ Reinelt G. TSPLIB library. Hittp:// www.iwr.uni-
is a promising approach for solving the TSP and possiI- heidelberg.de/ groups/ comopt/ software/

bly other combinational optimization problems, however,
: o . : : : TSPLIB95/.
further investigation to determine the optimal interaction
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