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Abstract

In this paper we apply the concept of parallel processing to enhance the performance of the Ant
Colony System algorithm. New communication strategies based on a weighting scheme are introduced
under three different types of interactions. The performance of the Multiple Ant Colony System em-
ploying these strategies applied to the Traveling Salesman Problem is investigated and evaluated with
respect to solution quality and computational effort. The results demonstrate that the Multiple Ant
Colony System outperforms the sequential Ant Colony System. The study indicates that the weight-
ing scheme yields a positive influence on performance, particularly in strategies that share pheromone
information among all colonies.
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1 Introduction

The basic idea behind ACO algorithms is to simulate the
foraging behavior of a swarm of real ants (i.e., colony)
using artificial ants working as cooperative agents to
construct high quality solutions by using a construction
procedure. This procedure manages a colony of ants
that concurrently and asynchronously constructs prob-
lem solutions by moving through neighbor nodes of the
problem’s construction graph [1]. This mechanism can
make an ACO algorithm well suited for parallelization.
Bullnheimer et al. [2] introduced two parallel implemen-
tations of the Ant System (AS) algorithm, namely, the
Synchronous Parallel Implementation (SPI) and the Par-
tially Asynchronous Parallel Implementation (PAPI). SPI
is based on a master-slave paradigm in which every ant
finds a solution in the slave and sends the result to the
master. The master updates the pheromone information,
when the solutions are available from all slaves, and sends
the updated information back to all slaves. This imple-

mentation parallelizes the construction phase, but it has
the disadvantage that all ants have to wait for each other
at every iteration due to a communication overhead be-
tween the master and the slaves. PAPI is based on the
coarse-grained model in which information is exchanged
among colonies every fixed number of iterations. The ex-
periential results obtained by the authors indicated that
PAPI performs better than SPI in terms of running time
and speedup. Talbi et al. [3] introduced another master-
slave paradigm to parallelize the AS algorithm in which a
local search method based on Tabu Search (TS) is intro-
duced in each slave to improve the solution constructed
by the ant. Their results demonstrated the complemen-
tary gains brought by incorporating TS within the AS al-
gorithm in the parallel implementation. Middendorf et
al. [4] introduced a parallel implementation, based on the
coarse-grained model, of the AS algorithm. Their mul-
tiple colony approach employs best-exchange strategies
in which best solution information is exchanged between
colonies under two different communication topologies.
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They studied the performance of employing these strate-
gies and the results indicated that the multiple AS algo-
rithm employing some strategies outperforms the single
AS algorithm in certain instances. Chu et al.[5] intro-
duced a parallel implementation, based on the coarse-
grained model, of the Ant Colony System algorithm and
used the same idea of the best solution exchange but un-
der several communication topologies. Experiments indi-
cated that the Parallel Ant Colony System algorithm out-
performs both the AS and the ACS algorithms.

In general, ACO is inherently a distributed methodol-
ogy, so it is particularly suited to parallelization [1]. Al-
though a number of parallel versions of ACO have been
implemented and tested in limited settings, it is still an
open question as to how an efficient parallel version of an
ACO algorithm should be implemented, and how much
improvement can be obtained over the sequential ACO
algorithm. As well, since performance can be enhanced
not only by the parallel implementation but also by the ef-
ficiency of the communication strategies that are incorpo-
rated in the parallel implementation, these strategies need
to be studied.

This paper is organized as follows. In Section 2 we
describe the Ant Colony System. In Section 3 the con-
cept of parallel processing is applied to the Ant Colony
System, and communication strategies based on a weight-
ing scheme are introduced. Experimental results from the
Multiple Ant Colony System are presented in Section 4
along with a comparative performance analysis involv-
ing other existing approaches. Finally, Section 5 provides
some concluding remarks.

2 Ant Colony System

The Ant Colony System (ACS) algorithm features major
changes in the transition and pheromone update rules of
the AS algorithm [6]. A new transition rule is introduced
that favors either exploitation or exploration according to
the following transition rule:

P k
ij =





1 if{j = j∗ & q ≤ q0}
0 if{j 6= j∗ & q ≤ q0}

[τij ][ηij ]
β∑

u∈Jk
i
[τiu][ηiu]β

otherwise
(1)

wherej∗ = arg maxu∈Jk
i
([τiu][ηiu]β), τij is the amount

of pheromone on the edge joining nodesi and j, ηij is

the heuristic information for the ant visibility measure
(e.g., defined as the reciprocal of the distance between
nodei and nodej for TSP), andβ is a control parame-
ter that represents the relative importance of the ant visi-
bility value versus the amount of pheromone on the edge
joining nodesi andj. q is a generated random number
in the range [0,1], andq0 is a given threshold parameter.
Thus, whenq is less than or equal toq0 the ant employs
exploitation to select nodej∗ as the next node in its tour,
whereas ifq exceedsq0 the ant uses probabilistic explo-
ration to select the next node in its tour. From nodei, the
next nodej in the route is selected by antk among the
unvisited nodesJk

i .
The pheromone is updated in two different ways:

• Local updating: As the ant moves between
nodes i and j, it updates the amount of
pheromone on the visited edge using the fol-
lowing formula

τij = (1− ρ)τij + ρτ0 (2)

whereτ0, the initial amount of pheromonea, is
calculated asτ0 = (nCi)−1, n is the problem
size (i.e., the number of nodes) andCi is the
cost of the initial tour produced by a construc-
tion heuristic such as the Nearest Neighbor
(NN) heuristic, andρ, the evaporation rate, is
a parameter in the range [0,1] that regulates
the reduction of pheromone on the edges. The
effect of local updating is that each time an ant
uses an edge(i,j) its pheromone trailτij is re-
duced, so that edges becomes less desirable
for the ants at the next iterations. This per-
mits an increase in the exploration of edges
that have not been visited yet. In fact, local
updating has helped to avoid poor stagnation
situationsb.

• Global updating: When all ants have gener-
ated their tours, the edges belonging to the
best tour are updated using the following for-
mula:

τij = (1− ρ)τij + ρ(1/Cb) (3)

aAt the beginning of the search a small amount of pheromone is
assigned to all the edges.

bStagnation occurs when the algorithm reaches its equilibrium
state (i.e., a single path is chosen by all ants).
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whereCb is the cost of the best tour found
since the start of the algorithm. It is impor-
tant to note that global updating adjusts only
the pheromone on the edges belonging to the
best tour causing ants in future iterations to
search in the vicinity of this best tour.

3 Multiple Ant Colony System

Search
module

Pheromone

module

Exchange
module

Colony
h

Figure 1: Colony-level interaction framework.

We believe that the parallel running of a group of
colonies can be enhanced by organizing those colonies in
such a way that the colonies can share their information
efficiently. This information can be utilized by colonies
via an exchange module that defines the interaction be-
tween the group of connected colonies. The interaction
between the colonies relies on the colonies adopting an
efficient communication architecture that facilitates coop-
eration between them, and a communication strategy that
defines the rules for collaboration among them. Accord-
ingly, we define an exchange module as shown in Figure
1 in which every colony handles the mechanism of coop-
eration.

In the proposed approach, a group of identical colonies
search in parallel and communicate with each other via
the exchange module. The ants in each colony are divided
equally into several groups. Each colony is associated
with a complete ACS construction procedure introduced
in [6]. Figure 2 illustrates the complete pseudo-code de-
scription of the Multiple Ant Colony System (M-ACS)
algorithm. In this algorithm, colonyh provides its search
information to other colonies and receives search infor-
mation from other colonies at every fixed number of iter-
ations (i.e., exchange interval) via the exchange module
procedure. In this procedure, the interaction occurs under
different topologies and according to one of the commu-
nication strategies described below.

1: apply the NN heuristic to generate an initial feasible
solution for all colonies

2: while termination condition is not metdo
3: for each colonyh ∈ S in paralleldo
4: set an initial value of pheromone on every edge
5: iteration number=1
6: for k = 1 to m antsdo
7: apply the construction procedure of ACS
8: end for
9: if iteration numbermod exchange interval=0

then
10: improve the solutions by local search proce-

dure{option}
11: call the exchange module procedure
12: end if
13: increment iteration number
14: end for
15: end while
16: display the best solution found so far by all colonies
17: stop

Figure 2: A pseudo-code description of the M-ACS algorithm.

In our parallel implementation of the algorithm, each
colony consists of a swarm of 10 ants managed by one
machine. Machine 0 is responsible for initialization,
spawning, and collection and display of the results, while
all machines (including machine 0) are responsible for
constructing solutions to the problem. A Beowulf clus-
ter is used for this implementation. The Beowulf cluster
consists of a collection of PC machines interconnected by
a Local Area Network (LAN) running the Red Hat Linux
operating system. We employed the Message Passing In-
terface (MPI) software to allow the Beowulf cluster ma-
chines to interact. We implemented, in the C++ language,
the M-ACS algorithm with the option of employing one of
the communication strategies described below. The par-
allel implementation combines a group of8 identical ma-
chines of the cluster equipped with700MHz Pentium III
processors and128MB of RAM each.

3.1 Communication Strategies

The search for high quality solutions can be improved,
in terms of performance, by employing a communication
strategy that can propagate current high quality solution
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information to the colonies and use that information in
the pheromone representation.

In the proposed strategies, we adjust the pheromone
matrix of each colony through different colony-level in-
teractions and according to the solution information so
as to reinforce search in the vicinity of high quality so-
lutions. The behavior of ants in one colony will be in-
fluenced by the solution information received from other
colonies, where pheromone is added to the colony edges
that belong to the best solutions of the group of colonies.

A weighting scheme similar to the one presented in [7]
is applied in the proposed multiple colony approach to as-
sess the quality of the best solutions constructed by sev-
eral colonies. The pheromone trails on the edges of the
best solutions are updated adaptively in response to de-
termined weights, and an extra amount of pheromone is
deposited on the edges of these solutions accordingly.

To identify whether the colonies are converging to-
ward one solution or scattered in the search space we
calculate the difference between the current overall av-
erage cost of the best solutions produced by the selected
colonies and the cost of the best solution found so far.
The cost of the best solution found so far is given by
Cb = minh∈S{Ch

b }. The overall average cost of the best
solutions is given byCAV G = 1

|S|
∑

h∈S Ch
b , whereCh

b is
the cost of the best solution found by colonyh, for h ∈ S
whereS ⊂ {1, ...., M}, andM is the total number of
colonies. We note that the difference between the overall
average costCAV G and the best costCb is likely to be less
when the selected colonies approach the best solution than
it will be when these colonies are scattered in the search
space. We therefore use the difference (CAV G − Cb) as
a yardstick for detecting the convergence of the selected
colonies. The colonyh ∈ S that has the best solution
Ch

b that is less than the overall averageCAV G is assigned
a weightwh ∈ (0, 1], otherwise it is assigned a weight
equal to zero as given by

wh =

{
CAV G−Ch

b
CAV G−Cb

if{h ∈ S, (CAV G − Ch
b ) > 0}

0 otherwise
(4)

which depends not only on the measure of convergence
previously discussed but also on how close the cost of the
best solution for the colony,Ch

b , is to the cost of the best
solution found so far,Cb , in such a way that the closer
Ch

b is toCb the closerwh is to1.

These weights are used to define a colony-level inter-
action pheromone update formula intended to achieve a
trade-off between exploration and exploitation. The fol-
lowing update formula is applied to edges of the best tour
T h

b ∀h ∈ S as given by

τij = (1− ρ)τij + ρ(wh/Ch
b ) if{edge(i, j) ∈ T h

b } (5)

In fact, this formula has the effect of increasing the quan-
tity of pheromone on edges associated with some solu-
tions according to the quality of these solutions and the
current convergence state of the colonies.
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Figure 3: Interaction of colonies in a star topology.
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Figure 4: Interaction of colonies in a hypercube topology.

M1 2 h

Figure 5: Interaction of colonies in a directed ring topology.

The exchange module exchanges the best solutions
between a group of colonies (specified by the selected
topology), weighs those best solutions using the weight-
ing scheme, and then applies the colony-level interaction
pheromone update formula. Accordingly, we define the
communication strategies as follows:

• Strategy-1: the interaction is applied among
M colonies organized as in Figure 3.
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• Strategy-2: the interaction is applied among
|S| colonies (i.e.,S ⊂ {1, ....,M}) organized
as in Figure 4.

• Strategy-3: the interaction is applied between
two consecutive colonies organized as in Fig-
ure 5.

3.2 Influence of the Communication Strategies

The search behavior of ACO algorithms can be visual-
ized and assessed through the distribution of pheromone
trail values in the pheromone matrix. We define theen-
tropy of nodei at iterationt, Hi(t), as given byHi(t) =
−∑

j∈N τij(t) log τij(t) and interpret this as a measure
of the (potential) diversity in the search from this node
at that iteration. The team consensus methodology, intro-
duced in [8], is applied to aggregate the node entropies to
arrive at the cumulative entropy of each colony. In this
section, we study the influence of the exchange strategies
on the search behavior of the M-ACS algorithm for solv-
ing the TSP test problemeil101 [9]. The cumulative en-
tropies of theM colonies are reported and averaged at
every iterationt = 1, ..., 500 for M-ACS without em-
ploying any strategy (No-Strategyc) as well as employing
the three communication strategies (Strategy-1, Strategy-
2, Strategy-3).

In order to determine an appropriate exchange interval
I (the number of iterations between exchanges), different
values are considered for these strategies. The appropriate
value ofI is selected according to the diversity level prior
to the exchange (i.e., when the search is diversified), and
the fluctuation range—the difference in the entropy prior
to the exchange and immediately after the exchange (i.e.,
when the search is intensified). The diversity level and the
fluctuation range forI = 30 are generally greater than for
other exchange intervals. For this reason the exchange
intervalI = 30 was used for the computational tests.

For the appropriate value ofI, Figure 6 illustrates the
average cumulative entropies of No-Strategy and the three
communication strategies. As illustrated, Strategy-1 ex-
hibits the largest swing (largest fluctuation) in cumulative
entropy about every exchange step. This strategy also in-
tensifies the search more than the other strategies (i.e., has
lower entropy at the exchange step) and contrasts with

cM colonies work in parallel without interaction
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Figure 6: Average cumulative entropy of the communication strate-
gies withI = 30, TSP test problem:eil101.

Strategy-3, which diversifies the search the most (i.e., has
the highest entropy prior to the exchange step). This in-
dicates that the strategies produce searches that are differ-
ent in their ability to intensify and diversify the search at
every exchange step.

4 Experimental Results

A performance study was carried out to evaluate the effec-
tiveness of the communication strategies and compare the
performance of the M-ACS with the performance of the
Ant Colony System (ACS) and Parallel Ant Colony Sys-
tem (PACS) of Chu et al. [5] using some TSP problem
instances [9]. For all approaches, the parameter settings,
as proposed in [6], were set toβ = 2, ρ = 0.1, q0 = 0.9,
andm = 10 ants. To ensure a fair comparison, we set
the number of runs and the number of iterations consistent
with the ACS and the PACS approaches. The performance
is evaluated on the basis of the best solutions obtained in
several runs on each instance. The number of iterations
for problemsst70andeil101was set to 1,000 iterations,
and for problemtsp225was set to 2,000. Table 1 sum-
marizes the performance in terms of the Mean (Mn) and
the Standard Deviation (SD) of the best solutions obtained
over 10 runs. The results illustrate the potential of ap-
plying the multiple version over the sequential version of
ACS with some variations in the performance of the mul-
tiple version employing different strategies with Strategy-
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Inst- Stra- Stra- Stra-
ance ACS PACS tegy-1 tegy-2 tegy-3
st70 Mn 700.3 678.8 675.6 676.1 676.7

SD 1.9 3.3 1.1 1.0 1.4
eil101 Mn 678.2 646.3 638.1 639.6 642.1

SD 4.2 4.3 3.6 5.3 3.14
tsp225 Mn 4154.4 3887.0 3936.7 3942.4 3971.8

SD 26.3 12.9 14.6 17.4 39.00

Table 1: Performance comparison between ACS, PACS, and M-ACS
employing Strategy-1, Strategy-2, and Strategy-3.

1 exhibiting better performance than any other strategy.
Furthermore, theSD of Strategy-1 is quite small com-
pared to the others, which shows the consistency of M-
ACS employing Strategy-1. Note that the results of PACS
reported in this table were obtained from the best results
of employing several communication strategies. The au-
thors also report 3887.0 for theMn value of tsp225, but
the best known solution is 3916 [9]. In general, the re-
sults obtained by M-ACS employing Strategy-1 demon-
strate the effectiveness and the consistency of Strategy-1
compared with the other tested strategies for the three in-
stances.

5 Discussion

The important issue in the ACO algorithms is to find use-
ful mechanisms for sharing information to improve search
behavior. In this paper, the single colony approach is ex-
tended to a multiple colony approach. Communication
strategies are introduced under three different types of in-
teractions. A weighting scheme is applied in these strate-
gies for adapting the amount of pheromone based on the
quality of solutions found by several colonies, consider-
ing the state of convergence. A performance study is per-
formed on TSP instances to confirm the effectiveness of
these strategies. The results indicated the domination of
the Multiple Ant Colony System over the sequential Ant
Colony System. In particular, a significant improvement
can be accomplished by employing the strategy executed
under the star topology, in which the search information
is shared among all colonies. Based on this evidence
we postulate that the proposed multiple colony approach
is a promising approach for solving the TSP and possi-
bly other combinational optimization problems, however,
further investigation to determine the optimal interaction

scheme among colonies is still needed. Of particular im-
portance is the development of an interaction scheme in
which the colonies can interact asynchronously.
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