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Abstract: - Intrusion detection systems are used to alert system administrators to malicious attacks. 
Unfortunately, running without any information of the network resources that they protect, intrusion detection 
systems are notorious for generating a large number of alerts that are either not related to malicious activity or 
not representative of a successful attack. To address this shortcoming, this paper presents a vulnerability-driven 
active alert verification approach that performs real-time verification of attacks detected by an intrusion 
detection system. By means of checking for the vulnerability that the attack attempts to exploit,  we can verify 
whether the attack has succeeded or not. The Experimental evaluation illustrates that it is a useful tool for 
reducing the false positive rate.  
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1   Introduction 
The frequency of computer intrusions has been 
increasing rapidly for several years [1]. Internet 
intrusion and large-scale attacks can have 
catastrophic affects, including stolen or corrupted 
data, wide spread denial-of-service attacks, huge 
financial losses and even disruption of essential 
services. Internet security becomes more and more 
important. As a result, even the most diligent system 
administrators must cope with the reality of computer 
break-ins. One way system administrators combat 
attacks is by using intrusion detection systems (IDS). 
IDS has been considered the second line of defense 
for computer and network systems along with the 
prevention-based techniques such as authentication 
and access control. These systems analyze 
information about the activities performed in 
computer systems and networks, looking for 
evidence of malicious behavior. When an attack is 
detected, an alert that describes the type of the attack 
and the entities involved (e.g., hosts, processes, users) 
is produced. 

Unfortunately, intrusion detection today faces 
two major challenges. Firstly, the overall number of 
alerts generated is overwhelming for administrators. 
Secondly, too many of these alerts are either not 
related to malicious activity (false positives) or not 
representative of a successful attack (non-relevant 
positives) [2]. The classic example is the scenario of 
a CodeRed attack that targets a Linux web server. It 
is a valid attack that is seen on the network, however, 
the alert that an IDS raises is of no use because the 

service is not vulnerable (as CodeRed can only 
exploit vulnerabilities in Microsoft’s IIS web server). 
The overwhelming amount of false alerts for a 
system administrator to process can eventually lead 
to a false sense of security. Therefore, the problem of 
the vast imbalance between actual and false or 
non-relevant alerts limits the accuracy and 
effectiveness of IDSs. 

Against this background, this paper intrduces a 
Vulnerability-driven Active Alert Verification 
approach (VAAV) that attempts to address the 
aforementioned shortcomings in current IDSs. Like 
IDSs, VAAV monitors both incoming and outgoing 
network packets promiscuously. Specifically, when a 
suspect packet is indicative of an attack on an 
existing network service, instead of generating the 
corresponding alert, VAAV further checks for the 
vulnerability that this attack attempts to exploit. 
Along the way, we can verify if the packet did in fact 
lead a successful break-in, and thereby help an 
administrator more easily focus her detective work 
on those real intrusions, leading to a quicker and 
easier identification of the threat level. Our work 
provides the first steps to relieve an administrator 
from dealing with large volumes of false alerts. 
 
 
2   Related Work 
As we mentioned, one thing that severely restricts the 
development of IDSs is to analyze a very large 
number of false alerts for practical attack scenarios. 



There have been several proposals to address the 
difficult problem in recent years. 

Porras et al. design a “mission-impact-based” 
correlation system, named M-Correlator [3]. The 
main idea is to evaluate alerts based on security 
interests and attack relevance to the protected 
networks and hosts. Related alerts are aggregated and 
clustered into a consolidated incident stream. The 
final result of the M-Correlator is a list of rank 
ordered security incidents based on the relevance and 
priority scores, which can be further analyzed by the 
system administrator. This approach focuses on the 
incident ranking and the system administrator needs 
to perform further correlation analysis. 

The probabilistic alert correlation [4] and the alert 
clustering methods in [5,6] correlate alerts based on 
the similarities between alert attributes. Measures are 
defined to evaluate the degree of similarity between 
two alerts. Alert aggregation and scenario analysis 
are conducted by toughening or relaxing the 
similarity requirement in some attribute fields. 
Though they are effective for clustering similar alerts 
(e.g., alerts with the same source and destination IP 
addresses), they cannot correlate alerts that do not 
have obvious (or predefined) similarities in their 
attributes. 

Dain et al. use the data mining approach to 
combine the alerts into scenarios in realtime [7]. The 
purpose of the scenarios is simply to group alerts that 
share a common cause. The resulting scenarios give 
system administrator a more complete picture of the 
traffic on their network rather than individual alerts. 
The main limitation of this method is that it relies on 
the attack scenarios predefined by human users, or 
learned from training datasets. 

Some other researchers have proposed the 
framework of alert correlation and scenario analysis 
[8,9,10]. These approaches target recognition of 
multi-stage attacks. The assumption is that when an 
attacker launches a scenario, prior attack steps are 
preparing for later ones, and therefore, alerts are 
correlated if the prerequisites of some later alerts are 
satisfied by the consequences of some earlier alerts. 
Such methods can potentially uncover the causal 
relationship between alerts. However, these methods 
are time-consuming and error-prone. 

Our approach differs from above studies. We 
check whether an attack has succeeded or not, by 
correlating the host vulnerability information with 
the attack. When the attack has not succeeded, the 
alert will be suppressed. This provides an effective 
method to lower the number of false alerts that an 
administrator has to deal with.  

To our best knowledge, Christopher et al. 
originally proposed the term alert verification [11] to 

address the problem of false positives. However, 
their implementation is very complicated. Based on 
their idea, our active alert verification is more easy 
and flexible. Specially, we extend the alert 
verification mechanism by using some optimization 
method. 

The rest of the paper is organized as follows. In 
Section 3, we introduce the VAAV state-machine 
model. Section 4 presents the implementation details 
of the proposed VAAV system. The experiments and 
the results are described in Section 5. Finally, Section 
6 draws conclusions and outlines future work. 

 
 

3   VAAV System State-Machine 
To understand VAAV system more easily, we list the 
relation of IDS, attack signature and vulnerability in 
Table 1.  

Table 1.  Relations of each element 
Attack 

Signature
Vulnerability Alert Relult 

1 √ √ √ True positive 
 

2 √ Ⅹ √ Non-relevant 
positives 

3 √ √ Ⅹ False Negative
 

4 Ⅹ √ √ False Positive
 

5 Ⅹ Ⅹ √ False Positive
 

6 √ Ⅹ Ⅹ True positive 
 

7 Ⅹ √ Ⅹ Ⅹ 

 
8 Ⅹ Ⅹ Ⅹ Ⅹ 

 

As can be seen from Table 1, when an IDS sensor 
outputs an alert, there are eight possibilities. But only 
type-1 and type-6 alerts are desired scenario. Note 
that, in type-2, the IDS sensor has correctly identified 
an attack signature, but the attack failed to meet its 
targets. This kind of alert is called a non-relevant 
positive. In fact, the correct output of an ideal IDS 
should be type-6 alert in this condition. Thus, the key 
idea of VAAV is to distinguish between successful 
and failed intrusion attempts (non-relevant 
positives).  

To explain pain and make it understood, the 
process of VAAV approach can be considered as a 
finite state machine, as shown in Figure 1. The nodes 
correspond to possible states and the edges denote 
state transitions. We associate transitions to the 
occurrence of events. These events are collections of 



attack signature and vulnerability, denoted A, based 
on two operators =, ¬, with A = { attack-signature, 
vulnerability, ¬ attack-signature, ¬ vulnerability }.  

In Figure 1, the solid arc leading from the initial 
state I to the alert state A indicates that VAAV has 
detected a malicious action according to the signature 
defined in attack-signature. Note that the state will 
shift from A to S if and only if the corresponding 
vulnerability is matched, which indicates the attack is 
successful. That is, VAAV determines a successful 
intrusion depending on two steps of actions 
(attack-signature and vulnerability) performed by an 
attacker that leads from the initial state to the 
successful intrusion state (the final state), as the 
dashed arc shows. 
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Fig.1 VAAV state transition diagram 

 
 

4   The Proposed VAAV System Design 
The role of VAAV is to verify the success of attacks. 
Which is designed on base of Snort [12]. Snort has 
been chosen because it is a cross-platform, 
lightweight network intrusion detection tool and for 
each new attack, the rules writing for it is very easy. 

When a Snort rule is fired and an attack is 
detected, it is the task of VAAV to use a vulnerability 
scanner to check for the vulnerability that this attack 
attempts to exploit. 

Snort Detection
Engine

Packet

Stream
VAAV

Alert

Stream

Rule-Base

Generate

Alert

Drop Alert

Fig.2 The relation between VAAV and Snort 

Figure 2 describes the relations between Snort 
and VAAV. When a Snort rule is triggered, the 
associated alert is passed to VAAV for verification. 
Then, VAAV utilizes the information provided by 

Nessus [13], a popular vulnerability scanner to flag 
the alert as non-relevant or not. 

 
 

4.1   Implementation 
In this section, we introduce the implementation of 
VAAV in detail.  

From the above discussion, we can seen that 
VAAV is implemented an extension for Snort. Figure 
3 describes all the modules of Snort. Each packet 
captured by Snort will be processed by decoder, 
preprocessors, detection-engine and output plug-ins 
respectively. Note that the detection plug-ins 
modules. Those modules are referenced from its 
definition in the rules files, and they are intended to 
identify patterns whenever a rule is evaluated (i.e. the 
detection engine makes use of the detection plug-ins 
to match each packet). Therefore, the detection 
plug-in mechanism provides additional detection 
functions on the packets. In practice, we modified 
Snort by adding some active alert verification 
plug-ins and extending the Snort rule-base at the 
same time.  
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Fig.3 Snort component diagram 

 
 
4.2   Active Alert Verification Plug-ins 
In most Snort rule, there is a field, named CVE-ID, a 
unique identifier for vulnerabilities which is assigned 
by the Common Vulnerabilities and Exposures 
project [14]. Considering the following example of a 
Snort rule: 

Table 2.  Snort rule for Linux mountd overflow 

alert udp $EXTERNAL_NET any -> $HOME_NET 635 
(msg:"EXPLOIT x86 Linux mountd overflow"; 
content:"|5eb0 0289 06fe c889 4604 b006 8946|"; 
reference:cve,CVE-1999-0002; reference:bugtraq,121; 
classtype:attempted-admin; sid:315; rev:3;) 



This rule augments the standard Snort rule for the 
Linux mountd overflow. Some implementations of 
the Network File System (NFS) on Linux systems 
use a vulnerable version of mountd that is subject to a 
buffer overflow condition in the logging subsystem. 
It is possible that intruders escalate privileges 
remotely using the vulnerability in mountd. Note that 
the CVE-ID of this vulnerability is CVE-1999-0002.     

On the other hand, as a great tool designed to 
automate the testing and discovery of known security 
problems, Nessus security scanner has a strong script 
language, named NASL (Nessus Attack Scripting 
Language). NASL plug-ins typically test by sending 
very specific code the target and comparing the 
results against stored vulnerable values. Table 3 lists 
the NASL script corresponding to the Linux mountd 
overflow vulnerability.  Similarly for every NASL 
script there is also a CVE-ID associated with it by 
Nessus. 

Table 3.  NASL script for Linux mountd overflow 
if(description) 
{     
script_id(11337); 
script_version ("$Revision: 1.3 $"); 
script_cve_id("CVE-1999-0002"); 
  
name["english"] = "mountd overflow"; 
script_name(english:name["english"]); 
  
desc["english"] = "The remote mount daemon seems 
to be vulnerable to a buffer overflow when it receives 
a request for an oversized share. An attacker may use 
this flaw to gain root access on this host. Risk factor : 
High"; 
… … … 
 

In practice, according to the “sid-msg.map” file in 
the Snort distribution and the NASL scripts, we 
create Snort-to-Nessus mappings using CVE-IDs. At 
the same time, Snort rule-base is extended and most 
rules are modified to accommodate the active alert 
verification plug-ins. Table 4 shows the new rule for 
Linux mountd overflow attack. 

Table 4.  New rule for Linux mountd overflow 
alert udp $EXTERNAL_NET any -> $HOME_NET 635 
(msg:"EXPLOIT x86 Linux mountd overflow"; 
content:"|5eb0 0289 06fe c889 4604 b006 8946|"; 
vulcorrelation: "$FULLNAME"; 
reference:cve,CVE-1999-0002; reference:bugtraq,121; 
classtype:attempted-admin; sid:315; rev:3;) 
- 

The vulcorrelation is keyword to the processing 
function of active alert verification. The variable 
$FULLNAME is the parameter and indicates the 

directory that contains the appropriate NASL script 
associating with this rule, which can be obtained 
according to the Snort-to-Nessus mappings.  

The advantage of using  $FULLNAME, instead of 
extracting CVE-ID automatically like the method in 
[11], as the index to NASL scripts is that our 
approach can process the non-CVE signatures. For 
the signatures that don’t match a NASL script with 
the CVE-ID, we can write corresponding NASL 
script and  inform active alert verification plug-in by 
the variable $FULLNAME. 

Thus, once a detection rule is triggered, the active 
alert verification plug-ins will dynamically call the 
execute_nasl_script() routine (defined in the exec.c 
of the Nessus project) to execute the appropriate 
NASL script against the victim host to check whether 
there is the corresponding vulnerability. If the target 
has the vulnerability, the output plug-ins will be 
called to generate an alert, which shows the attack is 
successful. However, if there is no corresponding 
security hole, the attack will be tagged as 
non-relevant, which shows the attack cannot cause 
security threat to the target host or network. 
 
 
4.3   Optimization Method 
As one can see, VAAV must process each suspicious 
packet. However, if intruder launches hostile attack 
such as alert flooding [15] to VAAV itself, the 
performance of VAAV will be reduced significantly. 
This is because when attacker launches attacks such 
as repeated Ping of Death or Teardrop, alerts usually 
arrive in batches of 50 alerts or more.  

For performance consideration, we define two 
additional rule options THRESHOLD and 
QUANTUM, which provide a mechanism to handle 
alert flooding. We aggregate these alerts by the 
“THRESHOLD” keyword. That is, such alerts will 
only be processed when the count on the alert reaches 
the given value of $THRESHOLD in the time 
window of $QUANTUM. 
 
 
4.4   False Positives 
By design, VAAV is able to verify most known 
vulnerability, and hence should have very low false 
positives.  

However, some viruses, such as Cheese worm, 
will patch the corresponding security hole after it 
exploits the vulnerability. In this case, even though 
VAAV matches the attack signature, it cannot find 
the vulnerability on the target host. We will consider 
it as a future work for further analyzing. 
 



5   Evaluation 
This section presents the evaluation of the presented 
techniques using the data generated by the test 
network constructed for this purpose. The topology 
of the test network is shown in Figure 4. Three 
machines were present on this test:  
1.  an attacker machine; 
2.  a victim host with Linux Redhat 7.3 installed; 
3.  a machine with VAAV deployed.  

Attacker
Victim Host

VAAV

 
Fig.4 Topology of test network 

In our experiments the attacks were performed 
using various tools and techniques. All the attacks we 
used are shown in the Table 5. For convenience, we 
updated the victim host with the patches for all of 
these attacks listed in Table 5. 

Table 5.  The attacks used for experiment 

Name CVE-ID 
WEB-IIS Unicode directory traversal 
attempt 
- 

CVE-2000-0884 

SMTP sendmail 8.6.9 exploit 
- 

CVE-1999-0204 

EXPLOIT x86 Linux samba overflow 
- 

CVE-1999-0811 

EXPLOIT x86 Linux mountd overflow 
- 

CVE-1999-0002 

WEB-IIS ISAPI .ida access 
- 

CVE -2000-0071 

WEB-IIS ISAPI .idq attempt 
- 

CVE -2000-0071 

FTP EXPLOIT wu-ftpd 2.6.0 site exec 
format string overflow Linux 
- 

CVE -2000-0573 

FTP EXPLOIT format string 
- 

CVE -2000-0573 

The results are shown in Table 6. As one can see, 
traditional Snort will report 8 alerts. However, 
because no vulnerability was actually present on the 
victim host, these attacks could not have been 
successful and can thus be considered non-relevant. 
Clearly, VAAV can correctly identify this condition 
and none of alert was reported. Thus, the true positive 
of VAAV reach to 100%. 

Table 6.  Evaluation results 
 Alerts True Positives 

Snort 8 0 
VAAV 0 8 

6   Conclusions and Future Work 
In the above study, a vulnerability-driven approach 
to active alert verification was presented, which help 
an intrusion detection system to check whether the 
target host has the corresponding vulnerability or not. 
With the aid of detection plug-ins of Snort, we have 
implemented a prototype based on Snort and Nessus. 
Experimental evaluation illustrates that it is a useful 
tool for reducing the false positive rate of Snort. 

In the future, we plan to do further analyzing 
about the false positive introduced in subsection4.4. 
Furthermore, more optimization methods should be 
found to increase the overall performance of VAAV. 
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