
A Vulnerability-Driven Approach to Active Alert Verification

ZHIHONG TIAN P

1
P, BINXING FANG, BIN LI, HONGLI ZHANG

Research Center of Computer Network and Information Security Technology
Harbin Institute of Technology, Harbin 150001

CHINA
 1 http://pact518.hit.edu.cn/~tianzhihong

Abstract: - Intrusion detection systems are used to alert system administrators to malicious attacks.
Unfortunately, running without any information of the network resources that they protect, intrusion detection
systems are notorious for generating a large number of alerts that are either not related to malicious activity or
not representative of a successful attack. To address this shortcoming, this paper presents a vulnerability-driven
active alert verification approach that performs real-time verification of attacks detected by an intrusion
detection system. By means of checking for the vulnerability that the attack attempts to exploit, we can verify
whether the attack has succeeded or not. The Experimental evaluation illustrates that it is a useful tool for
reducing the false positive rate.

Key-Words: - Network Security, Intrusion Detection, Alert Verification, Vulnerability

1 Introduction
The frequency of computer intrusions has been
increasing rapidly for several years [1]. Internet
intrusion and large-scale attacks can have
catastrophic affects, including stolen or corrupted
data, wide spread denial-of-service attacks, huge
financial losses and even disruption of essential
services. Internet security becomes more and more
important. As a result, even the most diligent system
administrators must cope with the reality of computer
break-ins. One way system administrators combat
attacks is by using intrusion detection systems (IDS).
IDS has been considered the second line of defense
for computer and network systems along with the
prevention-based techniques such as authentication
and access control. These systems analyze
information about the activities performed in
computer systems and networks, looking for
evidence of malicious behavior. When an attack is
detected, an alert that describes the type of the attack
and the entities involved (e.g., hosts, processes, users)
is produced.

Unfortunately, intrusion detection today faces
two major challenges. Firstly, the overall number of
alerts generated is overwhelming for administrators.
Secondly, too many of these alerts are either not
related to malicious activity (false positives) or not
representative of a successful attack (non-relevant
positives) [2]. The classic example is the scenario of
a CodeRed attack that targets a Linux web server. It
is a valid attack that is seen on the network, however,
the alert that an IDS raises is of no use because the

service is not vulnerable (as CodeRed can only
exploit vulnerabilities in Microsoft’s IIS web server).
The overwhelming amount of false alerts for a
system administrator to process can eventually lead
to a false sense of security. Therefore, the problem of
the vast imbalance between actual and false or
non-relevant alerts limits the accuracy and
effectiveness of IDSs.

Against this background, this paper intrduces a
Vulnerability-driven Active Alert Verification
approach (VAAV) that attempts to address the
aforementioned shortcomings in current IDSs. Like
IDSs, VAAV monitors both incoming and outgoing
network packets promiscuously. Specifically, when a
suspect packet is indicative of an attack on an
existing network service, instead of generating the
corresponding alert, VAAV further checks for the
vulnerability that this attack attempts to exploit.
Along the way, we can verify if the packet did in fact
lead a successful break-in, and thereby help an
administrator more easily focus her detective work
on those real intrusions, leading to a quicker and
easier identification of the threat level. Our work
provides the first steps to relieve an administrator
from dealing with large volumes of false alerts.

2 Related Work
As we mentioned, one thing that severely restricts the
development of IDSs is to analyze a very large
number of false alerts for practical attack scenarios.

There have been several proposals to address the
difficult problem in recent years.

Porras et al. design a “mission-impact-based”
correlation system, named M-Correlator [3]. The
main idea is to evaluate alerts based on security
interests and attack relevance to the protected
networks and hosts. Related alerts are aggregated and
clustered into a consolidated incident stream. The
final result of the M-Correlator is a list of rank
ordered security incidents based on the relevance and
priority scores, which can be further analyzed by the
system administrator. This approach focuses on the
incident ranking and the system administrator needs
to perform further correlation analysis.

The probabilistic alert correlation [4] and the alert
clustering methods in [5,6] correlate alerts based on
the similarities between alert attributes. Measures are
defined to evaluate the degree of similarity between
two alerts. Alert aggregation and scenario analysis
are conducted by toughening or relaxing the
similarity requirement in some attribute fields.
Though they are effective for clustering similar alerts
(e.g., alerts with the same source and destination IP
addresses), they cannot correlate alerts that do not
have obvious (or predefined) similarities in their
attributes.

Dain et al. use the data mining approach to
combine the alerts into scenarios in realtime [7]. The
purpose of the scenarios is simply to group alerts that
share a common cause. The resulting scenarios give
system administrator a more complete picture of the
traffic on their network rather than individual alerts.
The main limitation of this method is that it relies on
the attack scenarios predefined by human users, or
learned from training datasets.

Some other researchers have proposed the
framework of alert correlation and scenario analysis
[8,9,10]. These approaches target recognition of
multi-stage attacks. The assumption is that when an
attacker launches a scenario, prior attack steps are
preparing for later ones, and therefore, alerts are
correlated if the prerequisites of some later alerts are
satisfied by the consequences of some earlier alerts.
Such methods can potentially uncover the causal
relationship between alerts. However, these methods
are time-consuming and error-prone.

Our approach differs from above studies. We
check whether an attack has succeeded or not, by
correlating the host vulnerability information with
the attack. When the attack has not succeeded, the
alert will be suppressed. This provides an effective
method to lower the number of false alerts that an
administrator has to deal with.

To our best knowledge, Christopher et al.
originally proposed the term alert verification [11] to

address the problem of false positives. However,
their implementation is very complicated. Based on
their idea, our active alert verification is more easy
and flexible. Specially, we extend the alert
verification mechanism by using some optimization
method.

The rest of the paper is organized as follows. In
Section 3, we introduce the VAAV state-machine
model. Section 4 presents the implementation details
of the proposed VAAV system. The experiments and
the results are described in Section 5. Finally, Section
6 draws conclusions and outlines future work.

3 VAAV System State-Machine
To understand VAAV system more easily, we list the
relation of IDS, attack signature and vulnerability in
Table 1.

Table 1. Relations of each element
Attack

Signature
Vulnerability Alert Relult

1 √ √ √ True positive

2 √ Ⅹ √ Non-relevant
positives

3 √ √ Ⅹ False Negative

4 Ⅹ √ √ False Positive

5 Ⅹ Ⅹ √ False Positive

6 √ Ⅹ Ⅹ True positive

7 Ⅹ √ Ⅹ Ⅹ

8 Ⅹ Ⅹ Ⅹ Ⅹ

As can be seen from Table 1, when an IDS sensor
outputs an alert, there are eight possibilities. But only
type-1 and type-6 alerts are desired scenario. Note
that, in type-2, the IDS sensor has correctly identified
an attack signature, but the attack failed to meet its
targets. This kind of alert is called a non-relevant
positive. In fact, the correct output of an ideal IDS
should be type-6 alert in this condition. Thus, the key
idea of VAAV is to distinguish between successful
and failed intrusion attempts (non-relevant
positives).

To explain pain and make it understood, the
process of VAAV approach can be considered as a
finite state machine, as shown in Figure 1. The nodes
correspond to possible states and the edges denote
state transitions. We associate transitions to the
occurrence of events. These events are collections of

attack signature and vulnerability, denoted A, based
on two operators =, ¬, with A = { attack-signature,
vulnerability, ¬ attack-signature, ¬ vulnerability }.

In Figure 1, the solid arc leading from the initial
state I to the alert state A indicates that VAAV has
detected a malicious action according to the signature
defined in attack-signature. Note that the state will
shift from A to S if and only if the corresponding
vulnerability is matched, which indicates the attack is
successful. That is, VAAV determines a successful
intrusion depending on two steps of actions
(attack-signature and vulnerability) performed by an
attacker that leads from the initial state to the
successful intrusion state (the final state), as the
dashed arc shows.

I

N

Aattack
signature ¬ vulnerability

vulnerability

 I－Initial State S－Successful Intrusion State
A－Alert State N－Non-relevant positive State

S

attack signature¬

Fig.1 VAAV state transition diagram

4 The Proposed VAAV System Design
The role of VAAV is to verify the success of attacks.
Which is designed on base of Snort [12]. Snort has
been chosen because it is a cross-platform,
lightweight network intrusion detection tool and for
each new attack, the rules writing for it is very easy.

When a Snort rule is fired and an attack is
detected, it is the task of VAAV to use a vulnerability
scanner to check for the vulnerability that this attack
attempts to exploit.

Snort Detection
Engine

Packet

Stream
VAAV

Alert

Stream

Rule-Base

Generate

Alert

Drop Alert

Fig.2 The relation between VAAV and Snort

Figure 2 describes the relations between Snort
and VAAV. When a Snort rule is triggered, the
associated alert is passed to VAAV for verification.
Then, VAAV utilizes the information provided by

Nessus [13], a popular vulnerability scanner to flag
the alert as non-relevant or not.

4.1 Implementation
In this section, we introduce the implementation of
VAAV in detail.

From the above discussion, we can seen that
VAAV is implemented an extension for Snort. Figure
3 describes all the modules of Snort. Each packet
captured by Snort will be processed by decoder,
preprocessors, detection-engine and output plug-ins
respectively. Note that the detection plug-ins
modules. Those modules are referenced from its
definition in the rules files, and they are intended to
identify patterns whenever a rule is evaluated (i.e. the
detection engine makes use of the detection plug-ins
to match each packet). Therefore, the detection
plug-in mechanism provides additional detection
functions on the packets. In practice, we modified
Snort by adding some active alert verification
plug-ins and extending the Snort rule-base at the
same time.

Packet Capture

Decoder

Preprocessors

Detection Engine

Network traffic

NIC

Alerts

Output Plug-ins

Detection
Plug-ins

Load

Rules File

References

Data Flow

Control Flow

Fig.3 Snort component diagram

4.2 Active Alert Verification Plug-ins
In most Snort rule, there is a field, named CVE-ID, a
unique identifier for vulnerabilities which is assigned
by the Common Vulnerabilities and Exposures
project [14]. Considering the following example of a
Snort rule:

Table 2. Snort rule for Linux mountd overflow

alert udp $EXTERNAL_NET any -> $HOME_NET 635
(msg:"EXPLOIT x86 Linux mountd overflow";
content:"|5eb0 0289 06fe c889 4604 b006 8946|";
reference:cve,CVE-1999-0002; reference:bugtraq,121;
classtype:attempted-admin; sid:315; rev:3;)

This rule augments the standard Snort rule for the
Linux mountd overflow. Some implementations of
the Network File System (NFS) on Linux systems
use a vulnerable version of mountd that is subject to a
buffer overflow condition in the logging subsystem.
It is possible that intruders escalate privileges
remotely using the vulnerability in mountd. Note that
the CVE-ID of this vulnerability is CVE-1999-0002.

On the other hand, as a great tool designed to
automate the testing and discovery of known security
problems, Nessus security scanner has a strong script
language, named NASL (Nessus Attack Scripting
Language). NASL plug-ins typically test by sending
very specific code the target and comparing the
results against stored vulnerable values. Table 3 lists
the NASL script corresponding to the Linux mountd
overflow vulnerability. Similarly for every NASL
script there is also a CVE-ID associated with it by
Nessus.

Table 3. NASL script for Linux mountd overflow
if(description)
{
script_id(11337);
script_version ("$Revision: 1.3 $");
script_cve_id("CVE-1999-0002");

name["english"] = "mountd overflow";
script_name(english:name["english"]);

desc["english"] = "The remote mount daemon seems
to be vulnerable to a buffer overflow when it receives
a request for an oversized share. An attacker may use
this flaw to gain root access on this host. Risk factor :
High";
… … …

In practice, according to the “sid-msg.map” file in
the Snort distribution and the NASL scripts, we
create Snort-to-Nessus mappings using CVE-IDs. At
the same time, Snort rule-base is extended and most
rules are modified to accommodate the active alert
verification plug-ins. Table 4 shows the new rule for
Linux mountd overflow attack.

Table 4. New rule for Linux mountd overflow
alert udp $EXTERNAL_NET any -> $HOME_NET 635
(msg:"EXPLOIT x86 Linux mountd overflow";
content:"|5eb0 0289 06fe c889 4604 b006 8946|";
vulcorrelation: "$FULLNAME";
reference:cve,CVE-1999-0002; reference:bugtraq,121;
classtype:attempted-admin; sid:315; rev:3;)
-

The vulcorrelation is keyword to the processing
function of active alert verification. The variable
$FULLNAME is the parameter and indicates the

directory that contains the appropriate NASL script
associating with this rule, which can be obtained
according to the Snort-to-Nessus mappings.

The advantage of using $FULLNAME, instead of
extracting CVE-ID automatically like the method in
[11], as the index to NASL scripts is that our
approach can process the non-CVE signatures. For
the signatures that don’t match a NASL script with
the CVE-ID, we can write corresponding NASL
script and inform active alert verification plug-in by
the variable $FULLNAME.

Thus, once a detection rule is triggered, the active
alert verification plug-ins will dynamically call the
execute_nasl_script() routine (defined in the exec.c
of the Nessus project) to execute the appropriate
NASL script against the victim host to check whether
there is the corresponding vulnerability. If the target
has the vulnerability, the output plug-ins will be
called to generate an alert, which shows the attack is
successful. However, if there is no corresponding
security hole, the attack will be tagged as
non-relevant, which shows the attack cannot cause
security threat to the target host or network.

4.3 Optimization Method
As one can see, VAAV must process each suspicious
packet. However, if intruder launches hostile attack
such as alert flooding [15] to VAAV itself, the
performance of VAAV will be reduced significantly.
This is because when attacker launches attacks such
as repeated Ping of Death or Teardrop, alerts usually
arrive in batches of 50 alerts or more.

For performance consideration, we define two
additional rule options THRESHOLD and
QUANTUM, which provide a mechanism to handle
alert flooding. We aggregate these alerts by the
“THRESHOLD” keyword. That is, such alerts will
only be processed when the count on the alert reaches
the given value of $THRESHOLD in the time
window of $QUANTUM.

4.4 False Positives
By design, VAAV is able to verify most known
vulnerability, and hence should have very low false
positives.

However, some viruses, such as Cheese worm,
will patch the corresponding security hole after it
exploits the vulnerability. In this case, even though
VAAV matches the attack signature, it cannot find
the vulnerability on the target host. We will consider
it as a future work for further analyzing.

5 Evaluation
This section presents the evaluation of the presented
techniques using the data generated by the test
network constructed for this purpose. The topology
of the test network is shown in Figure 4. Three
machines were present on this test:
1. an attacker machine;
2. a victim host with Linux Redhat 7.3 installed;
3. a machine with VAAV deployed.

Attacker
Victim Host

VAAV

Fig.4 Topology of test network

In our experiments the attacks were performed
using various tools and techniques. All the attacks we
used are shown in the Table 5. For convenience, we
updated the victim host with the patches for all of
these attacks listed in Table 5.

Table 5. The attacks used for experiment

Name CVE-ID
WEB-IIS Unicode directory traversal
attempt
-

CVE-2000-0884

SMTP sendmail 8.6.9 exploit
-

CVE-1999-0204

EXPLOIT x86 Linux samba overflow
-

CVE-1999-0811

EXPLOIT x86 Linux mountd overflow
-

CVE-1999-0002

WEB-IIS ISAPI .ida access
-

CVE -2000-0071

WEB-IIS ISAPI .idq attempt
-

CVE -2000-0071

FTP EXPLOIT wu-ftpd 2.6.0 site exec
format string overflow Linux
-

CVE -2000-0573

FTP EXPLOIT format string
-

CVE -2000-0573

The results are shown in Table 6. As one can see,
traditional Snort will report 8 alerts. However,
because no vulnerability was actually present on the
victim host, these attacks could not have been
successful and can thus be considered non-relevant.
Clearly, VAAV can correctly identify this condition
and none of alert was reported. Thus, the true positive
of VAAV reach to 100%.

Table 6. Evaluation results
 Alerts True Positives

Snort 8 0
VAAV 0 8

6 Conclusions and Future Work
In the above study, a vulnerability-driven approach
to active alert verification was presented, which help
an intrusion detection system to check whether the
target host has the corresponding vulnerability or not.
With the aid of detection plug-ins of Snort, we have
implemented a prototype based on Snort and Nessus.
Experimental evaluation illustrates that it is a useful
tool for reducing the false positive rate of Snort.

In the future, we plan to do further analyzing
about the false positive introduced in subsection4.4.
Furthermore, more optimization methods should be
found to increase the overall performance of VAAV.

References:
[1] CERT/CC Overview Incident and Vulnerability

Trends. Technical report, CERT Coordination
Center, APRIL 2002.

[2] Benjamin Morin, Ludovic Mé, Hervé Debar and
Mireille Ducassé: “M2D2: A Formal Data Model
for IDS Alert Correlation”; in Proceedings of
Recent Advances in Intrusion Detection 2002,
LNCS 2516, pp. 115-137; Springer-Verlag; 2002.

[3] P. A. Porras, M. W. Fong, and A. Valdes. A
Mission-Impact-Based approach to INFOSEC
alarm correlation. In Proceedings of the 5th
International Symposium on Recent Advances in
Intrusion Dtetection (RAID), October 2002.

[4] A. Valdes and K. Skinner. Probabilistic alert
correlation. In Proceedings of the 4th
International Symposium on Recent Advances in
Intrusion Dtetection (RAID), October 2001.

[5] Cuppens, F. Managing alerts in a multi-intrusion
detection environment. In Proceedings of 17th
Annual Computer Security Applications
Conference (ACSAC). 2001.

[6] Julisch, K. Mining alarm clusters to improve
alarm handling efficiency. In Proceedings of the
17th Annual Computer Security Applications
Conference (ACSAC). 2001.

[7] Dain, O. and Cunningham, R.. Fusing a
heterogeneous alert stream into scenarios. In
Proceedings of the 2001 ACM Workshop on Data
Mining for Security Applications. 1–13. 2001.

[8] S. Cheung, U. Lindqvist, and M. W. Fong.
Modeling multistep cyber attacks for scenario
recognition. In Proceedings of the Third DARPA
Information Survivability Conference and
Exposition (DISCEX III), Washington, D.C.,
April 2003.

[9] F. Cuppens and A. Miege. Alert correlation in a
cooperative intrusion detection framework. In
Proceedings of 2002 IEEE Symposium on

Security and Privacy, pages 202-215, Oakland,
CA, May 2002.

[10] P.Ning, Y. Cui and D. S. Reeves. Constructing
attack scenarios through correlation of intrusion
alerts. In 9th ACM Conference on Computer and
Communications Security, November 2002.

[11] Christopher Kruegel and William Robertson,
Alert Verification - Determining the success of
intrusion attempts. http://www.infosecwriters.
com/hhworld /hh8/ava.txt.

[12] Snort - The Open Source Network Intrusion
Detection System. http://www.snort.org.

[13] Nessus Vulnerability Scanner. http://www.ness-
us.org/.

[14] Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/.

[15] T. H. Ptacek and N. N. Newsham. Insertion,
evasion and denial of service: eluding network
intrusion detection. January 1998.

