Combinatorially Efficient Exploration of Program Transformations for
Automatic Programming

Henrik Berg and Roland Olsson
Ostfold College
1750 HALDEN
Norway

{Henrik.Berg,Roland.Olsson}@hiof.no http://www-ia.hiof.no/~rolando

Abstract: Program induction, where one or more parts of a potentially huge software system are
automatically synthesized, is an emerging technology that will become more and more industri-
ally useful as more computing power becomes available, for example in the form of computing
grids. The scalability of program induction primarily depends on the combinatorial properties of
the program transformations that are employed. In this paper, we improve the scalability of the
ADATE automatic programming system by using a standard tool from combinatorial design the-
ory, namely covering arrays, to more efficiently explore combinations of program transformations.
The paper presents a series of 18 experiments which show that the covering array transformation
algorithm is a highly useful supplement to the old ADATE transformations.

Keywords: Program synthesis, automatic programming, scalability, combinatorial design theory,

functional programming, program transformation

1 Introduction

Automatic Design of Algorithms through Evolu-
tion (ADATE) [7] is the leading system for induc-
tion of functional programs and is likely to be able
to generate one or more correct programs for prac-
tically any algorithmic problem given enough CPU
time.

Under certain assumptions, we have shown [§]
that the time required for program induction with
ADATE grows as the fourth power of the size of the
code to be synthesized, which means that ADATE
is very computationally demanding. Therefore, the
most immediate practical application is to improve
one or more small parts of a potentially huge soft-
ware system instead of automatically generating
the whole system from scratch. ADATE requires
only that there exists one or more software perfor-
mance measures that are to be be optimized, which
holds for almost all software.

For example, consider the software controlling
the Electrolux Trilobite robot vacuum cleaner,

which was the world’s first fully automatic domes-
tic vacuum cleaner when commercially introduced
in 2001 [3]. Given a simulation of the Trilobite and
its environment, ADATE may automatically opti-
mize part after part of its software with respect to
cleaning ability for various room geometries and
furniture configurations.

In this paper, we show how to reduce the time re-
quired for program synthesis by more efficiently ex-
ploring combinations of program transformations
and achieve better scalability with respect to the
size of synthesized code than the one mentioned
above.

2 A Dbrief overview of the

ADATE system

ADATE maintains a population of programs that
is organized so that each program must be better
than all smaller ones found so far. Program trans-
formations in varying combinations are employed
to produce new programs that become candidates

for insertion into the population.

The most fundamental program transformation
in ADATE is replacement, abbreviated R, which
replaces all or parts of a subexpression in the pro-
gram with a newly synthesized expression. The al-
gorithm for expression synthesis has sophisticated
heuristics to guarantee that a large fraction of re-
cursive calls are terminating, to avoid introducing
dead code and quota systems guiding the use of
local and global variables and functions.

There are three kind of R transformations that
differ in how they reuse old code. The first kind of
R transformation simply replaces an entire subex-
pression with a synthesized one. For example,
consider the following factorial function, which is
much too primitive to be used for testing ADATE
but is useful in this overview since it is so simple.

f(n) = if n=0 then 1 else n*xf(n-1)

Replacing the subexpression n=0 with the syn-
thesized expression n<=1 is an example of the first
kind of R transformation. The second and third
kinds of R transformations reuse either the en-
tire subexpression or some part of it respectively.
For example, assume that the entire subexpression
nxf (n-1), below represented by E, is to be reused
and that the synthesized expression is n+E+n.

The program resulting from this kind of R trans-
formation, also called insertion, is

f(n) = if n=0 then 1 else n+n*xf(n-1)+n

Note that this last R transformation does not
preserve semantics whereas the previous one did
and therefore also is a so called REQ transforma-
tion, where REQ stands for “replacement preserv-
ing equality”. More exactly, REQ transformations
are found by trying R transformations and select-
ing the ones that do not make the program worse.
Note that REQs are expensive to find since lots of
programs resulting from various R transformations
are compiled, executed and checked for REQ-hood.

Recall that the first transformation given above
was neutral. Another neutral transformation is an
insertion reusing f (n-1) and that yields the new
subexpression

if n-1=0 then 1 else f(n-1)

Combining these two neutral transformations
gives the following program that has the same se-
mantics as the original one.

f(n) = if n<=1 then 1 else
n*(if n-1=0 then 1 else f(n-1))

The old version of ADATE systematically com-
bines 2, 3 or 4 REQ transformations whereas the
current version that uses the techniques from this
paper may combine dozens or hundreds.

A given combination of REQ transformations
may be viewed as a neutral walk in the search land-
scape. Such walks are quite important in ADATE
as well as in many other optimization methods [9]
and natural as well as artificial evolution [6, 4].
Neutral walks explore a plateau in the search land-
scape in order to find a point where it is easy to
jump to the next higher plateau.

In addition to the R and REQ transforma-
tions, ADATE contains abstraction (ABSTR)
that introduces new functions and case/lambda-
distribution/lifting (CASE-DIST) that changes
the scope of variables and functions. Both of the
latter two transformations are neutral and also less
combinatorially challenging than the R and REQ
transformations.

To produce children programs from a given par-
ent program, ADATE uses so-called compound
transformations that are suitable combinations of
R, REQ, ABSTR and CASE-DIST transforma-
tions. An example of a compound transformation
form is ABSTR REQ REQ R, where one or both
of the two REQ transformations typically use the
function introduced by the ABSTR or its parame-
ters.

The total number of children produced from a
given parent is determined by a cost limit that
is deepened iteratively, meaning that more and
more children are generated from the parent as an
ADATE run progresses.

3 A combinatorial argument

In any program-searching system like ADATE, the
number of programs tested during the search tends
to grow fast. For example, if ADATE needs to
transform a program of size N using a combination
of i REQ transformations, assuming that & differ-
ent REQs can be generated at each position, the
number of different ways to combine the 1 REQs is
approximately (]:])k € O(N'EY).

To simplify the discussion, we will introduce
some notation for denoting these transformations,

combinations and programs. At each position 7,
we denote the number of different REQs by k;
or sometimes just k, assuming they are all equal.
Each of the different REQs will be denoted by a
number in the interval 0..(k; — 1).

Denoting REQs this way, we can represent a gen-
erated program by a line, where each position in
the line corresponds to a position in the program,
and each position is either empty, which is denoted
by a “-” and means that no transformation was ap-
plied at that position, or contains a number in the
range 0..(k; — 1) that tell us which REQ was ap-
plied. The length of the line will of course be N,
which is the size of the program.

As an illustration, Figure 1 contains such repre-
sentations of the programs ADATE would generate
if N =3 and k = 2. The number of programs gen-
erated would be (g) 22 =12.

However, when the program-sizes in-

crease, this seems like a big waste of (0 -
time. If the system applies a couple of (1 -
neutral transformations at a few differ- 1 (-
ent locations in the program, one might 1 1 -
expect it to be possible to apply other (- 0
neutral transformations at other loca- (-1
tions at the same time, thus increas- 1 -0
ing the number of combinations tested, 1 -1
and decreasing the number of programs - (0 0
generated. -01

For example, consider the array in - 10
Figure 2. For any pair of columns in -11
the array, all the four possible com-
binations {00,01, 10,11} occur at least Figure 1:
once. And yet it only consists of four
lines, one third of the array above.

This last array was an example of a
covering array [11]. Covering and or- (00 1
thogonal arrays [5] are standard tools (10
from combinatorial design theory to 100
guarantee coverage of all pair-wise pa- 111
rameter combinations, for example,
and were one of the major inspirations Figure 2:

when we started this work. Generally,

a covering array with N columns, k levels and
strength t is an N-column array with the property
that whichever set of £ columns you choose, all the
k! different combinations of “levels”, usually num-
bers in the range 0..(k — 1), occur at least once in
the selected columns. A main objective is to make
such an array as short as possible. This is a diffi-

cult task for the cases t > 4 but the literature con-
tains numerous results concerning the cases ¢t < 3
[2]. It is straightforward to construct a covering
array with N columns, k levels and strength two
with O(k%logN) lines [10], which would be a big
improvement over the current search in ADATE
that tries (g) k% € O(k2N?) lines.

4 Construction of covering ar-
rays for program transfoma-
tions

When combining REQ transformations, ADATE
does not know in advance how many REQs that
will be needed. Therefore, it is not possible to
know with certainty which strength that a covering
array should have. We have chosen to guarantee
total coverage only for strength one and then use
a probabilistic array construction to cover pairs,
triples, quadruples and other higher strength com-
binations of REQs.

When combining transformations that are indi-
vidually neutral, it may happen that the combi-
nation is not neutral because two or more trans-
formations interfere with each other. We handle
such interference for a line in a covering array by
partitioning the line into two or more lines that
contain empty positions sufficient to eliminate in-
terference. First, we greedily take as many REQs
as possible from the original line without destroy-
ing neutrality into one partition. Then, we take
as many of the remaining alleles as possible into
a second partition, and so on until all the alleles
have been partitioned into a hopefully quite small
number of partitions, each of which is neutral with
respect to fitness. Note that this partitioning strat-
egy only guarantees coverage for strength one.

Our probabilistic algorithm for covering arrays
of strength greater than one repeatedly runs the
above strength one algorithm with a new random
ordering of the REQs at each position for each new
run.

With k different REQs at each position, the
probability that a random line covers a given com-
bination of two REQs is Elf In a random array
with s lines, the probability of a given combina-
tion of two REQs to be covered is 1 — (1 — 5)%.
Setting the number of lines s = Ak? for some
small constant A, this can be approximated by

1—(1—5)) 1 — e A,

So, in an array with Ak? lines, the probability
that a given pair is covered, is approximately 1 —
e~A. For example, if the number of lines in our
array is 3k2, the probability that a given pair is
covered is about 95%, and thus 95% of all the pairs
in the array should on average be covered.

In general, a randomly generated array with Ak?
lines will cover on average 1 — e~ of all the ¢-
tuples for any 1 <¢ < N. So even though we only
guarantee total coverage for the case t = 1, we
are still able to cover a decent number of ¢-tuples
for higher values of ¢ by repeatedly running our
algorithm, randomly reordering the alleles at each
position each time.

In order to maximize the number of covered tu-
ples for strength two and greater, we should strive
for dense arrays. However, the above partitioning
may give sparse arrays.

To remedy this, we loop through each of the lines
in the array again, and try to insert a randomly
chosen REQ at each empty position. Currently we
only try once per position. If inserting the random
REQ fails, meaning that it leads to a non-neutral
line, we just skip it and leave it empty. We could
of course try several times on failure. This would
probably result in slightly denser arrays, but would
also require slightly longer execution time.

5 Experiments

Since our work concerns the combination of neutral
transformations in order to more efficiently search
the local neutral fitness space, we decided to let
the experiments concentrate on the local search for
transformations from one specific program rather
than a full scale population based search. We ran
the main part of the ADATE system, namely the
local search algorithms, from a number of different
test programs.

Each experiment started from one given test pro-
gram, and iteratively increased the cost limit used
to transform that program. Each time a new and
different program better than the test program was
found, it was noted in the logfile, together with the
transformation form used to generate the program
(like REQ CASE-DIST R, or CA if the new cover-
ing array algorithm was used).

In order to be able to compare the new CA trans-
formations with the old REQ-transformations, the

time the system spent doing REQs was split into
two: 50% of the CPU time was given to the old
REQ algorithm, while the remaining 50% of the
CPU time was given to our new CA algorithm.

The experiment was repeated 18 times, using
several different specifications, and one, two or
three different test programs for each specification.
We used the following specifications in our experi-
ments:

e ASMB - a specification for a function to parse
and compute simple arithmetical expressions
coded as a list of three bit binary words rep-
resenting arbitrary precision binary numbers,
parentheses, subtraction and multiplication,
following the standard rules of precedence.

e BOXPACK - a specification for a function to
pack as many boxes of different sizes as possi-
ble into another box, given the geometries of
the boxes as parameters.

e CHESS1 - a specification for a function to
discover as many legal moves as possible given
a representation of a chess board as its param-
eter. The specification contained only train-
ing input with one king and/or one rook in the
same color, but none where they were able to
reach each other.

e CHESS1b - the same specification as
CHESS1 but with a higher number of train-
ing inputs. The test program we used for this
specification was the result of running ADATE
for approximately 10 times as long as for the
CHESS1 experiment, and should therefore
be much harder to improve.

e CHESS2 - the same specification as
CHESS1, but this time including training
inputs where the king and the rook can reach
each other, in other words the function has to
check for collisions and jumping.

e GS - learning the syntax and semantics of a
simple language as described in [8]. GS stands
for Grounded Semantics, as used in linguis-
tics, since the actions carried out by a synthe-
sized program in response to input sentences
are “grounded” in a simulated world.

e PERMS - a specification for generating all
the possible permutations of a given input-list.

ASMB |

ASMB
BOXPACK
BOXPACK

BOXPACK”
CHESS1 |-

CHESS1b x

CHESS2
GS

GS' |eeee X
GS”
PERMS
SAT
SAT" |
ST

ST
ST”
UNSAT

0 100000 200000

300000

400000 500000 600000

Time (seconds)

Figure 3: Timelines of the experiments we have done, representing which transformations that were
used to produce the currently best programs at any time.

e SAT - a specification for the Satisfiability
problem, which is the most fundamental NP-
complete problem.

e ST - a specification for a function to act as
a Stock Trader that tries to maximize profit
when buying and selling stock every day. The
simulated trading used to compute the eval-
uation function is based on 10 years of stock
prices from the Swedish Stock Exchange for
four different stocks.

e UNSAT - a specification for a function that
uses extended resolution to try to solve the
Unsatisfiability problem which is another fun-
damental problem in algorithm design and
likely to be even more difficult than the SAT
problem.

For each of the specifications, the best program
found by a run of ADATE, that typically was given
one week on a single CPU, was used as a test pro-
gram. Being the best programs found by ADATE,
these programs should be difficult to improve fur-

ther. Additionally, some random test programs,
marked with ’ or ” in the table, were chosen from
old logfiles for some of the more interesting speci-
fications. So we had a mix of “difficult” and “av-
erage” programs for our experiments.

Each of the experiments was run for about a
week on a single-CPU (2.8GHz) computer. After-
wards, we extracted from the logfiles the trans-
formation used each time a new program was con-
structed that was better than any of the previously
constructed programs.

Each timeline in Figure 3 shows the points in
time our new CA transformation was used to create
the currently best program, and at which points in
time the currently best program was created by us-
ing the REQ transformation. A solid line in a time-
line represent segments of time in which CA was
used in the construction of the currently best pro-
gram, while a dashed line represents segments of
time in which the currently best program was con-
structed using one or more REQs. At the empty
areas of the timelines, no program better than the
test program has been found, or the currently best

program was created using neither CA nor REQ
transformations.

6 Conclusions

In section 3, we theoretically showed that covering
arrays may dramatically reduce the time complex-
ity of ADATE. For example, if it is necessary to
simultaneously perform two REQ transformations
anywhere in a program of size N, the time com-
plexity may be reduced by a factor N2/log N. If
only one REQ is needed, the reduction can be a
factor N.

In practice, the benefit of covering arrays de-
pends on how often REQ transformations are
needed, how many that need to be combined and
how much various transformations interfere with
each other as discussed in section 4.

In our experiments, the best final program was
produced by covering arrays in 7 out of 18 runs
in competition with all the old ADATE transfor-
mations. As synthesized program increase in size
beyond the relatively small programs used in our
experiments, the covering array transformation is
likely to become more and more superior to the old
REQ transformation algorithm.

The conclusion is that covering arrays or re-
lated methods, for example variants of genetic al-
gorithms, are indispensable for the scalability of
automatic programming as in ADATE.

References

[1] Brassard, G. and P. Bratley (1996). Fun-
damentals of Algorithms. Prentice-Hall, New
Jersey, pp. 133 — 134.

[2] Chateauneuf, M. and D.L. Kreher (2000). On

the state of strength-three covering arrays.

Journal of Combinatorial Designs, Vol. 10,

Nr. 4, pp. 217-238.

[3] Christensen, H.I. (2001). Intelligent Home

Appliances. Centre for Autonomous Systems,

Department of Numerical Analysis and Com-

puter Science, Royal Institute of Technology,

Stockholm, Sweden.

[4] Geard, N., J. Wiles, J. Hallinan, B. Tonkes

and B. Skellett (2002). A comparison of neu-

[10]

[11]

tral landscapes - NK, NKp and NKq. Pro-
ceedings of the 2002 Congress on Evolutionary
Computation, pp- 205 — 210.

Hedayat, A.S., N.J.A. Sloane and J. Stufken
(1999). Orthogonal Arrays. Springer, New
York.

Kimura, M (1983). The Neutral Theory of
Molecular FEvolution. Cambridge University
Press, Cambridge.

Olsson, R (1995). Inductive functional pro-
gramming using incremental program trans-
formation. Artificial intelligence, Vol. 74, Nr.
1, pp. 55 — 83.

Olsson, R. and D.M.W. Powers (2003). Ma-
chine learning of human language through au-
tomatic programming. International Confer-
ence on Cognitive Science, University of New

South Wales, pp. 507 — 512.

Selman, B., H. Kautz and B. Cohen (1996).
Local search strategies for satisfiability test-
ing. DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, Vol. 26.
AMS.

Sherwood, G (2004). On the Construction
of Orthogonal Arrays and Covering Ar-
rays Using Permutation Groups. Webpage,
http://home.att.net/~gsherwood/cover.htm

Sloane, N.J.A (1994). Covering Arrays and
Intersecting Codes. Journal of Combinatorial
Designs, Vol. 1, Nr. 1, pp. 51-63.

