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Abstract: - An analog CNN algorithm is proposed for detection of moving objects in high-resolution gray-scale images, with 
multiple moving objects and with moderate a priori information on the scene. The algorithm is based on simple 3×3 templates 
followed by a clustering operation on the moving pixels. The effectiveness of the proposed algorithm is shown using some 
real-life indoor and outdoor images. 
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1   Introduction 
Moving object detection is an important task in many real-
time applications such as autonomous robotics, traffic 
control, driver assistance, surveillance systems. Since each 
pixel in the image may belong to a moving object, 
conventional sequential image processing algorithms, 
entail an impressive computation. An alternative approach 
is represented by Cellular Neural Networks (CNNs), 
owing to their ability to process the image in a parallel, 
local and therefore, distributed fashion [1,2]. CNN analog 
arrays can be realized, which process in real-time large 
scale, high resolution images. Moreover, since the CNN 
arrays are programmable, they can be repeatedly used to 
solve complex image processing tasks, decomposing them 
into several but simpler sub-tasks.  
Moving object detection by CNNs has been investigated in 
the past, mainly from the viewpoint of image coding for 
low bit-rate transmission [3,4,5,6]. 
In this paper, we propose an algorithm for moving object 
detection suited for surveillance systems and traffic 
control; the algorithm can be implemented using 
exclusively CNN analogic processing, with 3×3 templates. 
The proposed algorithm works on real-life, gray-scale, 
noisy images, with multiple moving objects; not much a 
priori information is needed, namely the maximum speed 
of moving objects and the frame rate. A clustering 
procedure is performed on the moving pixels giving the 
number, size and position of moving objects. 
The Paper is organized as follows. Section 2 presents an 
overview of CNN state equation and definitions. Section 3 
describes the algorithm for moving object detection. Section 
4 addresses the center point and size estimation of moving 
objects. The various steps of computation are illustrated by 
two real-life examples. 
 

2   General Framework 
The CNN is described by the following state equation [7]: 
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where N(i,j) represents the 3x3 neighborhood of cell C(i,j). 
A is the feedback template, B is the input template and I 
represents a bias. In eqn.(1) xij is the cell state, yij is the 
cell output and uij is the cell input, corresponding to an 
image pixel. The cell output y is related to the state x by 
the usual piecewise-linear function, y = (1/2)( 11 −−+ xx ).  
For simulation purposes, we used real life image 
sequences taken both indoor and outdoor. The image size 
is 128×128 with 256 gray levels and the pixel intensity 
varies between –1 (black) and +1 (white). We extract a 
sequence of image pairs taken k frames apart, namely P(n), 
P(n+k), n = 0, m, 2m, …., where m is the interval between 
pairs. The value of k is related to the maximum speed of 
moving objects. Each pair of images is processed, as 
described in the following section. The task is to detect the 
position and size of each moving object in each image 
pair. 
Two images taken from an outdoor sequence and two 
images taken from an indoor sequence are shown in Figure 
1. There are three main moving objects, in both sequences. 
In the outdoor case there are two walking persons and a 
light van entering the scene in reverse gear. In the indoor 
case there are an oscillating pendulum and a little ball 
rolling toward the “head” after having bounced on the 
background fabric; also the fabric is slightly moving due to 
ball bouncing. 
 
3   Algorithm for Object Detection 
A scheme of the processing flow is presented in Figure 2.  



Figure 1: Two image pairs P(n), P(n+k) used to illustrate 
the processing steps. 

 
The input is represented by the two images P(n) and 
P(n+k). The first operation consists in the sum of image 

P(n+k)  and the negative of image P(n). Then we apply the 
following operators: absolute value, noise filtering, 
thresholding, removal of isolated pixels and filling 
concave location. The output P* is a black image with 
white blobs, corresponding the moving objects. At this 
point we perform a clustering operation on the image P* to 
detect the objects that have moved. 
The templates used in the proposed algorithm are 
presented in the following. 
 

Figure 2: Flow chart of the proposed algorithm. 

Step 1: Image inversion  
Image P(n) is transformed in its negative. 
Templates and threshold: 
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Input: u (t) = P 
Initial state: x(0) = 0 
Output: y(∞) = P . 
 
Step 2: Image sum 
Images )(nP and P(n+1) are summed pixel wise. The result 
is image PSUM. 
Templates and threshold: 
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Input: u = P2 
Initial state: x(0) = 0 
Output: y(∞) = sum of pixel intensities of P1 and P2. 
Remark: the bias is cell dependent. 
 
Step 3: Absolute value 
The absolute value of each pixel is computed on PSUM. 
Templates and threshold: 
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f represents the non-linear function shown in Figure 3. 
Input: u = P 
Initial state: x(0) = 0 
Output: y(∞) = f(P). 

Figure 3: Non-linear function f. 

Step 4: Filtering 
A low pass filtering is performed to remove noise.  
Templates and threshold: 
 

A= 
















000
000
000

 















=

111
111
111

9
1B  I = 0   

 
Input: u = P 

Initial state: x(0) = 0 
Output:  y(∞) = each pixel intensity is the average of the 
input intensities in the neighborhood.  
 
Step 5: Thresholding 
Thresholding is performed on the gray-scale filtered image 
to get a binary image. 
Templates and threshold: 
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Input: u = 0 
Initial state: x(0) = P 
Output:  y(∞) = binary image; white pixels correspond to 
the intensities of P greater than the threshold.  
 
Step 6: Point removal 
Isolated white pixels are removed. 
Templates and threshold: 
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Input: u = P 
Initial state: x(0) = P 
Output:  y(∞) = binary image where isolated pixels of P 
have been eliminated. 
 
2.1 Clustering on the image P* 
The final step consists of clustering of white pixels in the 
image P*, i.e. of pixels that corresponds to a moving 
object; it is based on the two spatial coordinates. Each 
cluster will represent a distinct moving object. In our 
work, we used the clustering algorithm DBSCAN (Density 
Based Spatial Clustering for Application with Noise) [8] 
that relies on a density-based notion of clusters and was 
designed to discover clusters of arbitrary shape efficiently. 
Using DBSCAN the typical density of points inside 
clusters is considerably higher than outside the clusters. 
The control parameters of the algorithm are the maximum 
distance (in pixels) between two points belonging to the 
same cluster (D) and the minimum number of points in a 
cluster (M). 
 
4   Simulations and Results 
An example of the results obtained by the proposed 
method is shown in Figure 4. It concerns the images in 
Figure 1. The parameter values used for clustering are D = 
4, d = 1, M = 8. 

Iij = pixel ij of 
image P1 

1-1

1

uij - ukl

 f



Figure 4 shows the image P*, which is the output of the 
point removal. For presentation purposes, we have 
evidenced the rectangles including the clusters created by 
DBSCAN. These rectangles correspond exactly to the 
moving objects. 
 

 

Figure 4: Result of the proposed algorithm on 
images in Figure 1. 

 
5   Conclusion 
A CNN algorithm has been proposed for position and size 
estimation of moving objects in high-resolution gray-scale 
image sequences. The method requires a fixed camera and it 
is suited for surveillance and control applications. Detection 
of moving objects is obtained through the sequential 
application of several space-invariant templates following 
by a clustering procedure on the moving pixels. The 
simulation results show the good behavior of the proposed 
method. 
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