
Moving Objects Detection based on CNNs and Clustering

G. COSTANTINI, D. CASALI, M. CAROTA
Department of Electronic Engineering

University of Rome “Tor Vergata”
Viale Politecnico, 1. I-00133 Rome

ITALY

Abstract: - An analog CNN algorithm is proposed for detection of moving objects in high-resolution gray-scale images, with
multiple moving objects and with moderate a priori information on the scene. The algorithm is based on simple 3×3 templates
followed by a clustering operation on the moving pixels. The effectiveness of the proposed algorithm is shown using some
real-life indoor and outdoor images.

Key-Words: - Cellular Neural Networks, Clustering, Moving Objects Detection.

1 Introduction
Moving object detection is an important task in many real-
time applications such as autonomous robotics, traffic
control, driver assistance, surveillance systems. Since each
pixel in the image may belong to a moving object,
conventional sequential image processing algorithms,
entail an impressive computation. An alternative approach
is represented by Cellular Neural Networks (CNNs),
owing to their ability to process the image in a parallel,
local and therefore, distributed fashion [1,2]. CNN analog
arrays can be realized, which process in real-time large
scale, high resolution images. Moreover, since the CNN
arrays are programmable, they can be repeatedly used to
solve complex image processing tasks, decomposing them
into several but simpler sub-tasks.
Moving object detection by CNNs has been investigated in
the past, mainly from the viewpoint of image coding for
low bit-rate transmission [3,4,5,6].
In this paper, we propose an algorithm for moving object
detection suited for surveillance systems and traffic
control; the algorithm can be implemented using
exclusively CNN analogic processing, with 3×3 templates.
The proposed algorithm works on real-life, gray-scale,
noisy images, with multiple moving objects; not much a
priori information is needed, namely the maximum speed
of moving objects and the frame rate. A clustering
procedure is performed on the moving pixels giving the
number, size and position of moving objects.
The Paper is organized as follows. Section 2 presents an
overview of CNN state equation and definitions. Section 3
describes the algorithm for moving object detection. Section
4 addresses the center point and size estimation of moving
objects. The various steps of computation are illustrated by
two real-life examples.

2 General Framework
The CNN is described by the following state equation [7]:

∑∑
∈∈

+++−=
),(),(
,

),(),(
,

jiNkC
kkij

jiNkC
kkijijij IuByAxx

l
ll

l
ll

& (1)

where N(i,j) represents the 3x3 neighborhood of cell C(i,j).
A is the feedback template, B is the input template and I
represents a bias. In eqn.(1) xij is the cell state, yij is the
cell output and uij is the cell input, corresponding to an
image pixel. The cell output y is related to the state x by
the usual piecewise-linear function, y = (1/2)(11 −−+ xx).
For simulation purposes, we used real life image
sequences taken both indoor and outdoor. The image size
is 128×128 with 256 gray levels and the pixel intensity
varies between –1 (black) and +1 (white). We extract a
sequence of image pairs taken k frames apart, namely P(n),
P(n+k), n = 0, m, 2m, …., where m is the interval between
pairs. The value of k is related to the maximum speed of
moving objects. Each pair of images is processed, as
described in the following section. The task is to detect the
position and size of each moving object in each image
pair.
Two images taken from an outdoor sequence and two
images taken from an indoor sequence are shown in Figure
1. There are three main moving objects, in both sequences.
In the outdoor case there are two walking persons and a
light van entering the scene in reverse gear. In the indoor
case there are an oscillating pendulum and a little ball
rolling toward the “head” after having bounced on the
background fabric; also the fabric is slightly moving due to
ball bouncing.

3 Algorithm for Object Detection
A scheme of the processing flow is presented in Figure 2.

Figure 1: Two image pairs P(n), P(n+k) used to illustrate
the processing steps.

The input is represented by the two images P(n) and
P(n+k). The first operation consists in the sum of image

P(n+k) and the negative of image P(n). Then we apply the
following operators: absolute value, noise filtering,
thresholding, removal of isolated pixels and filling
concave location. The output P* is a black image with
white blobs, corresponding the moving objects. At this
point we perform a clustering operation on the image P* to
detect the objects that have moved.
The templates used in the proposed algorithm are
presented in the following.

Figure 2: Flow chart of the proposed algorithm.

Step 1: Image inversion
Image P(n) is transformed in its negative.
Templates and threshold:

A=
















000
095.00
000
















−=

000
020
000

B I = 0

P(n+k)INV SUM

ABS

FILTERING

THRESHOLDING

POINT REMOVAL

 P*

CLUSTERING

Moving object

P(n) P (n)

P(n)

P(n+k)

Input: u (t) = P
Initial state: x(0) = 0
Output: y(∞) = P .

Step 2: Image sum
Images)(nP and P(n+1) are summed pixel wise. The result
is image PSUM.
Templates and threshold:

A=

















000
095.00
000
















=

000
010
000

B

Input: u = P2
Initial state: x(0) = 0
Output: y(∞) = sum of pixel intensities of P1 and P2.
Remark: the bias is cell dependent.

Step 3: Absolute value
The absolute value of each pixel is computed on PSUM.
Templates and threshold:

A=
















000
000
000
















=

000
00
000

fB I = 0

f represents the non-linear function shown in Figure 3.
Input: u = P
Initial state: x(0) = 0
Output: y(∞) = f(P).

Figure 3: Non-linear function f.

Step 4: Filtering
A low pass filtering is performed to remove noise.
Templates and threshold:

A=
















000
000
000
















=

111
111
111

9
1B I = 0

Input: u = P

Initial state: x(0) = 0
Output: y(∞) = each pixel intensity is the average of the
input intensities in the neighborhood.

Step 5: Thresholding
Thresholding is performed on the gray-scale filtered image
to get a binary image.
Templates and threshold:

A=
















000
020
000
















=

000
000
000

B I = - threshold

Input: u = 0
Initial state: x(0) = P
Output: y(∞) = binary image; white pixels correspond to
the intensities of P greater than the threshold.

Step 6: Point removal
Isolated white pixels are removed.
Templates and threshold:

A=
















000
010
000
















=

111
181
111

B I = - 1

Input: u = P
Initial state: x(0) = P
Output: y(∞) = binary image where isolated pixels of P
have been eliminated.

2.1 Clustering on the image P*
The final step consists of clustering of white pixels in the
image P*, i.e. of pixels that corresponds to a moving
object; it is based on the two spatial coordinates. Each
cluster will represent a distinct moving object. In our
work, we used the clustering algorithm DBSCAN (Density
Based Spatial Clustering for Application with Noise) [8]
that relies on a density-based notion of clusters and was
designed to discover clusters of arbitrary shape efficiently.
Using DBSCAN the typical density of points inside
clusters is considerably higher than outside the clusters.
The control parameters of the algorithm are the maximum
distance (in pixels) between two points belonging to the
same cluster (D) and the minimum number of points in a
cluster (M).

4 Simulations and Results
An example of the results obtained by the proposed
method is shown in Figure 4. It concerns the images in
Figure 1. The parameter values used for clustering are D =
4, d = 1, M = 8.

Iij = pixel ij of
image P1

1-1

1

uij - ukl

 f

Figure 4 shows the image P*, which is the output of the
point removal. For presentation purposes, we have
evidenced the rectangles including the clusters created by
DBSCAN. These rectangles correspond exactly to the
moving objects.

Figure 4: Result of the proposed algorithm on
images in Figure 1.

5 Conclusion
A CNN algorithm has been proposed for position and size
estimation of moving objects in high-resolution gray-scale
image sequences. The method requires a fixed camera and it
is suited for surveillance and control applications. Detection
of moving objects is obtained through the sequential
application of several space-invariant templates following
by a clustering procedure on the moving pixels. The
simulation results show the good behavior of the proposed
method.

Acknowledgments
This work is supported by Italian Ministry for Education,
University and Scientific Research by PRIN Project. The
images used for simulations have been provided by the
Italian National Agency for New Technologies, Energy and
the Environment (ENEA) and by the Department of
Information Engineering, University of Siena.

References:
[1] T. Yang, L. B. Yang, X. P. Yang, Application of a

cellular neural network to facial expression animation
and high-level image processing, Int. J. Circuit Theory
Applications, vol. 24, pp. 425-450, 1996.

[2] A. Gacsadi, P. Szolgay, An analogic CNN algorithm
for following continuously moving objects, Proc. of
IEEE Int. Workshop on Cellular Neural Networks and
Applications, CNNA-2000, Catania, pp. 99-104, 2000.

[3] T. Roska, T. Boros, A. Radvanyi, Detecting moving
and standing objects using cellular neural networks,
Proc. of Int. J. Circuit Theory and Applications., vol.
20, pp. 613-628, 1992.

[4] T. Roska, Analogic CNN computing: architectural,
implementation, and algorithmic advances: a review,
Proc. of IEEE 5th Int. Workshop on Cellular Neural
Networks and Applications, CNNA-98, London, pp. 3-
10, 1998.

[5] G. Grassi, L. A. Grieco, Object-oriented image analysis
via analogic CNN algorithms- Part I: motion
estimation, Proc. of IEEE 7th Int. Workshop on Cellular
Neural Networks and Applications, CNNA-02,
Frankfurt, pp. 172-179, 2002.

[6] Analogic CNN program library 6.1, Analogical and
Neural Computing Lab., Hungarian Academy of
Sciences, Budapest, 1994.

[7] Chua, L. O. and Yang, L., Cellular neural networks:
Theory, IEEE Trans. Circuits and Systems, Vol. 35, pp.
1257 -1272, 1988.

[8] M. Ester, H. P. Kriegel, J. Sander, X. Xu, A Density-
Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise, Proc. of 2nd Int. Con. on
Knowledge Discovery and Data Mining (KDD-96), pp.
226-231, Portland, OR, 1996.

