 The Software Testing Challenges and Methods
Ljubomir Lazić, SIEMENS d.o.o, Radoja Dakića 7, 11070 Beograd, Serbia&Montenegro, http://www.siemens.co.yu

Abstract:- The Software Testing Process (STP) raised many challenging issues in past decades of software development practice, several of which remain open. The System/Software under test (SUT) continually increases complexity of applied technology, software application domain model and corresponding process knowledge and experience. Today’s SUT have billions of possible inputs and outputs. How does one obtain adequate test coverage with reasonable or even optimal number of test events i.e. test cases? How does one measure test effectiveness, efficacy, benefits, risks (confidence) of project success, availability of resources, budget, time allocated to STP? How does one plan, estimate, predict, control, evaluate and choose “the best” test scenario among hundreds of possible (considered, available, feasible) number of test events (test cases)? How does one judge, decide if satisfied/not satisfied program behavior, Pass/Fail result , Go/Ngo decision after test run i.e. does have Test Oracle? This paper describes the major issues that are encountered while developing framework of Integrated and Optimized Software Testing Process (IOSTP). IOSTP framework combines few engineering and scientific areas such as: Design of Experiments, Modeling & Simulation, integrated practical software measurement, Six Sigma strategy, Earned (Economic) Value Management (EVM) and Risk Management (RM) methodology through simulation-based software testing scenarios at various abstraction levels of the SUT to manage stable (predictable and controllable) software testing process at lowest risk, at an affordable price and time. In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects in our framework of IOSTP, during 3 years of our IOSTP framework deployment to STP we calculated overall value returned on each dollar invested i.e. ROI of 100:1.
Key-Words:- software testing, optimization, simulation, continuous risk management, earned value management, test evaluation, measurement.

1 Introduction

The increasing cost and complexity of software development is leading software organizations in the industry to search for new ways through process methodology and tools for improving the quality of the software they develop and deliver. However, the overall process is only as strong as its weakest link. This critical link is software quality engineering as an activity and as a process. Testing is the key instrument for making this process happen.

Software testing has traditionally been viewed by many as a necessary evil, dreaded by both software developers and management alike, and not as an integrated and parallel activity staged across the entire software development life cycle. One thing is clear - by definition, testing is still considered by many as only a negative step usually occurring at the end of the software development process while others now view testing as a “competitive edge” practice and strategy.

Solutions in software engineering are more complex-interconnect in more and more intricate technologies across multiple operation environments. With the increasing business demand for more software coupled with the advent of newer, more productive languages and tools, more code is being produced in very short periods of time.

In software development organizations, increased complexity of product, shortened development cycles, and higher customer expectations of quality proves that software testing has become extremely important software engineering activity. Software development activities, in every phase, are error prone so defects play a crucial role in software development. We usually think of testing in software development as something we do when we run out of time or after we have developed code. However, the fundamental approach as presented here focuses on testing as a fully integrated but independent activity with development that has a lifecycle all its own, and that the people, the process and the appropriate automated technology are crucial for the successful delivery of the software based system. Planning, managing, executing, and documenting testing as a key process activity during all stages of development is an incredibly difficult process.
Software vendors typically spend 30 to 70 percent of their total development budget i.e. of an organization’s software development resources on testing. Software engineers generally agree that the cost to correct a defect increase, as the time elapsed between error injection and detection increases several times depending on defect severity and software testing process maturity level [1,2].

Until coding phase of software development, testing activities are mainly test planning and test case design. Computer based Modeling and Simulation (M&S) is valuable technique in Test Process planning in testing complex Software/System under test (SUT) to evaluate the interactions of large, complex systems with many hardware, user, and other interfacing software components such are Spacecraft Software, Air Traffic Control Systems, in DoD Test and Evaluation (T&E) activities [4-6].

There is strong demand for software testing effectiveness and efficiency increases. Software/System testing effectiveness is mainly measured by percentage of defect detection and defect leakage (containment), i.e. late defect discovery. Software testing efficiency is mainly measured by dollars spent per defect found and hours spent per defect found. To reach ever more demanding goals for effectiveness and efficiency, software developers and testers should apply new techniques such as computer-based modeling and simulation - M&S [6-9].

The results of computer-based simulation experiments with a particular embedded software system, an automated target tracking radar system (ATTRS), are presented in our paper [6]. The aim is to raise awareness about the usefulness and importance of computer-based simulation in support of software testing.
At the beginning of the software testing task the following question arises: how should the results of test execution be inspected in order to reveal failures? Testing by nature is measurement, i.e. test results must be analyzed and compared with desired behavior.
This paper is contribution to software testing engineering by presenting challenges and corresponding methods implemented in Integrated and Optimized Software Testing Process framework (IOSTP). IOSTP framework combines few engineering and scientific areas such as: Design of Experiments, Modeling & Simulation, integrated practical software measurement, Six Sigma strategy, Earned (Economic) Value Management (EVM) and Risk Management (RM) methodology through simulation-based software testing scenarios at various abstraction levels of the SUT to manage stable (predictable and controllable) software testing process at lowest risk, at an affordable price and time [6-22]. In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects in our framework of IOSTP, during 3 years of our IOSTP framework deployment to STP of embedded-software critical system such as Automated Target Tracking Radar System [6,16,19], we calculated overall value returned on each dollar invested i.e. ROI of 100:1 .

The paper begins with an outline of fundamental challenges in software testing in section 2, then the problems with software testing and Integrated and Optimized Software Testing Process framework state-of-the-art methods implementation is described in section 3. In section 4, some details and experience of methods implemented are presented. Finally in section 5, some concluding remarks are given.

2 Fundamental challenges in software testing
2.1 Software quality engineering - as a discipline and as a practice (process and product)
Software Quality Engineering is composed of two primary activities - process level quality which is normally called quality assurance, and product oriented quality that is normally called testing. Process level quality establishes the techniques, procedures, and tools that help promote, encourage, facilitate, and create a software development environment in which efficient, optimized, acceptable, and as fault-free as possible software code is produced. Product level quality focuses on ensuring that the software delivered is as error-free as possible, functionally sound, and meets or exceeds the real user’s needs. Testing is normally done as a vehicle for finding errors in order to get rid of them. This raises an important point - then just what is testing?

Common definitions for testing - A Set of Testing Myths:

“Testing is the process of demonstrating that defects are not present in the application that was developed.”

“Testing is the activity or process which shows or demonstrates that a program or system performs all intended functions correctly.”

“Testing is the activity of establishing the necessary “confidence” that a program or system does what it is supposed to do, based on the set of requirements that the user has specified.”

All of the above myths are very common and still prevalent definitions of testing. However, there is something fundamentally wrong with each of these myths. The problem is this - each of these myths takes a positive approach towards testing. In other words, each of these testing myths represents an activity that proves that something works.

However, it is very easy to prove that something works but not so easy to prove that it does not work! In fact, if one were to use formal logic, it is nearly impossible to prove that defects are not present. Just because a particular test does not find a defect does not prove that a defect is not present. What it does mean is that the test did not find it.

These myths are still entrenched in much of how we collectively view testing and this mind-set sets us up for failure even before we start really testing! So what is the real definition of testing?

“Testing is the process of executing a program/system with the intent of finding errors.”

The emphasis is on the deliberate intent of finding errors. This is much different than simply proving that a program or system works. This definition of testing comes from The Art of Software Testing by Glenford Myers. It was his opinion that computer software is one of the most complex products to come out of the human mind.

So why test in the first place? You know you can’t find all of the bugs. You know you can’t prove the code is correct. And you know that you will not win any popularity contests finding bugs in the first place. So why even bother testing when there are all these constraints? The fundamental purpose of software testing is to find problems in the software. Finding problems and having them fixed is the core of what a test engineer does. A test engineer should WANT to find as many problems as possible and the more serious the problems the better. So it becomes critical that the testing process is made as efficient and as cost-effective as possible in finding those software problems. The primary axiom for the testing equation within software development is this:

“A test when executed that reveals a problem in the software is a success.”

The purpose of finding problems is to get them fixed. The benefit is code that is more reliable, more robust, more stable, and more closely matches what the real end-user wanted or thought they asked for in the first place! A tester must take a destructive attitude toward the code, knowing that this activity is, in the end, constructive. Testing is a negative activity conducted with the explicit intent and purpose of creating a stronger software product and is operatively focused on the “weak links” in the software. So if a larger software quality engineering process is established to prevent and find errors, we can then change our collective mind-set about how to ensure the quality of the software developed.

The other problem is that you will really never have enough time to test. We need to change our understanding and use the testing time we do have, by applying it to the earlier phases of the software development life cycle. You need to think about testing the first day you think about the system. Rather then viewing testing as something that takes place after development, focus instead on the testing of everything as you go along to include the concept of operations, the requirements and specifications, the design, the code, and of course, the tests!

What’s So Special About Testing?

· Wide array of issues: technical, psychological, project management, marketing, application domain.

· Toward the end of the project, there is little slack left. Decisions have impact now. The difficult decisions must be faced and made.

· Testing plays a make-or-break role on the project.

· An effective test manager and senior testers can facilitate the release of a high-quality product.

· Less skilled testing staff creates more discord than their technical contributions (such as they are) are worth.

Five Fundamental Challenges to Competent Testing

· Complete testing is impossible (budget, schedule, resources, quality constraints)
· Testers misallocate resources because they fall for the company’s process myths

· Test groups operate under multiple missions, often conflicting, rarely articulated

· Test groups often lack skilled programmers, and a vision of appropriate projects that would keep programming testers challenged

· Software testing as a part of software development process is human intensive work with high uncertainty i.e. risks.

2.3 Complete testing is impossible
There are enormous numbers of possible tests. To test everything, you would have to, but list is not complete:

· Test every possible input to every variable (physical, operator input).

· Test every possible combination of inputs to every combination of variables because of inputs interactions.

· Test every possible sequence through the program.

· Test every hardware / software configuration, including configurations of servers not under your control.

· Test every way in which the user might try to use the program (use case scenarios).
One approach to the problem has been to (attempt to) simplify it away, by saying that you achieve “complete testing” if you achieve “complete coverage”.

What is coverage?

· Extent of testing of certain attributes or pieces of the program, such as statement coverage or branch coverage or condition coverage (If, Case, While and other structure).

· Extent of testing is completed, compared to a population of possible tests, software requirements, specifications, environment characteristics etc.

Typical definitions are oversimplified. They miss, for example:

· Interrupts and other parallel operations

· Interesting data values and data combinations

· Missing code

· In practice, the number of variables we might measure is stunning, but many we cannot control such are environment characteristics.
Coverage measurement is an interesting way to tell that you are far away from complete testing, but testing in order to achieve a “high” coverage is likely to result in development of a mass of low-power tests.

People optimize what we measure them against, at the expense of what we don’t measure. Brian Marick, raises this and several other issues in his papers at www.testing.com (e.g. How to Misuse Code Coverage). Brian has been involved in development of several of the commercial coverage tools.
Another way people measure completeness, or extent, of testing is by plotting bug curves, such as:

· New bugs found per week

· Bugs still open (each week)

· Ratio of bugs found to bugs fixed (per week)

· We fit the curve to a theoretical curve, often a probability distribution, and read our position from the curve.

At some point, it is “clear” from the curve that we’re done. A Common Model (Weibull) and its Assumptions

1. Testing occurs in a way that is similar to the way the software will be operated.

2. All defects are equally likely to be encountered.

3. All defects are independent.

4. There is a fixed, finite number of defects in the software at the start of testing.

5. The time to arrival of a defect follows the Weibull distribution.

6. The number of defects detected in a testing interval is independent of the number detected in other testing intervals for any finite collection of intervals.
In reality, is absurd to rely on a distributional model when every assumption it makes about testing is obviously false for actual project.
BUT WHAT DOES THAT TELL US? HOW SHOULD WE INTERPRET IT?
Earlier in testing history: Pressure is to increase bug counts
· Run tests of features known to be broken or incomplete.

· Run multiple related tests to find multiple related bugs.

· Look for easy bugs in high quantities rather than hard bugs.

· Less emphasis on infrastructure, automation architecture, tools and more emphasis of bug finding (short term payoff but long term inefficiency).
Later in testing history: Pressure is to decrease new bug rate
· Run lots of already-run regression tests

· Don’t look as hard for new bugs.

· Shift focus to appraisal, status reporting.

· Classify unrelated bugs as duplicates

· Class related bugs as duplicates (and closed), hiding key data about the symptoms / causes of the problem.

· Postpone bug reporting until after the measurement checkpoint (milestone). (Some bugs are lost.)

· Report bugs informally, keeping them out of the tracking system

· Testers get sent to the movies before measurement checkpoints.

· Programmers ignore bugs they find until testers report them.

· Bugs are taken personally.

· More bugs are rejected.
When you get past the simplistic answers, you realize that the time needed for test-related tasks is infinitely larger than the time available. Example: Time you spend on: analyzing, troubleshooting, and effectively describing a failure. The fact is, the time is no longer available for:

(Designing tests; (Documenting tests; (Executing tests; (Automating tests; (Reviews, inspections;

(Supporting tech support; (Retooling; (Training other staff.
Today’s business mantra better, faster, cheaper require even more tradeoffs:

· From an infinitely large population of tests, we can only run a few. Which few do we select?

· Competing characteristics of good tests. One test is better than another if it is:

· More powerful

· More likely to yield significant (more motivating, more persuasive) results

· More credible

· Representative of events more likely to be encountered by the user

· Easier to evaluate.

· More useful for troubleshooting

· More informative

· More appropriately complex

· More likely to help the tester or the programmer develop insight into some aspect of the product, the customer, or the environment

No test satisfies all of these characteristics. How do we balance them?

2.3 Process myths in which we trust too much

Every actor in SDP say, you can trust me on this:

(
We follow the waterfall lifecycle

(
We collect all of the product requirements at the start of the project, and we can rely on the requirements document throughout the project.

(
We write thorough, correct specifications and keep them up to date.

(
The customer will accept a program whose behavior exactly matches the specification.

(
We fix every bug of severity (or priority) level X and we never lower the severity level to avoid having to fix the bug.

Amazingly, many testers believe statements like this, Project after Project, and rely on them, Project after Project.
Effects of relying on process myths are:

· Testers design their tests from the specs / requirements, long before they get the code. After all, we know what the program will be like.

· Testers evaluate program capability in terms of conformance to the written requirements, suspending their own judgment. After all, we know what the customer wants.

· Testers evaluate program correctness only in terms of conformance to specification, suspending their own judgment. After all, this is what the customer wants.

· Testers build extensive, fragile, GUI-level regression test suites. After all, the UI is fully specified. We know it’s not going to change.
The oracle problem is not considered at all in spite of difficulties of finding a method that lets you determine whether a program passed or failed a test.

2.4. Multiple Missions

If your TMM level is low, tester’s multiple missions are rarely articulated, wrongly to:

􀂆 Find defects

􀂆 Block premature product releases

􀂆 Help managers make ship / no-ship decisions

􀂆 Minimize technical support costs

􀂆 Assess conformance to specification

􀂆 Conform to regulations

􀂆 Minimize safety-related lawsuit risk

􀂆 Find safe scenarios for use of the product

􀂆 Assess quality

􀂆 Verify correctness of the product

􀂆 Assure quality

Do you know what your group’s mission is? Does everyone in your company agree?
2.5. Weak team composition

A systematic approach to product development (acquisition) which increases customer satisfaction through a timely collaboration of necessary disciplines throughout the life cycle is required such as Integrated Product and Process Development (IPPD) [23]. Particular note should be made of the Team sub-process, as the creation and implementation of an Integrated Product Team (IPT) is, perhaps, the most critical ingredient for the success of the entire IPPD process. Some wrong understanding of team composition causes several confusions listed below.
The optimal test group has diversity of skills and knowledge. This is easily misunderstood:

· Weakness in programming skill is seen as weakness in testing skill (and vice-versa).

· Strength in programming is seen as assuring strength in testing.

· Many common testing practices do not require programming knowledge or skill.

· People who want to be in Product Development but who can’t code have nowhere else to go.

· People who are skilled programmers are afraid of dead-ending in a test group.
The capabilities of the testing team can greatly affect the success, or failure, of the testing effort. An effective testing team includes a mixture of technical and domain expertise relevant to the software problem at hand. It is not enough for a testing team to be technically proficient with the testing techniques and tools necessary to perform the actual tests. Depending on the complexity of the domain, a test team should also include members who have a detailed understanding of the problem domain. This knowledge enables them to create effective test artifacts and data and to effectively implement test scripts and other test mechanisms.

In addition, the testing team must be properly structured, with defined roles and responsibilities that allow the testers to perform their functions with minimal overlap and without uncertainty regarding which team member should perform which duties. One way to divide testing resources is by specialization in particular application areas and non functional areas. The testing team may also have more role requirements than it has members, which must be considered by the test manager.

As with any team, continual evaluation of the effectiveness of each test team member is important to ensuring a successful test effort. Evaluation of testers is performed by examining a variety of areas, including the types of defects generated, and the number and types of defects missed. It is never good practice to evaluate a test engineer's performance using numbers of defects generated alone, since this metric by itself does not tell the whole story. Many factors must be considered during this type of evaluation, such as complexity of functionality tested, time constraints, test engineer role and responsibilities, experience, and so on. Regularly evaluating team members using valid criteria makes it possible to implement improvements that increase the effectiveness of the overall effort.
2.6. Software testing, as a part of software development process, is human intensive work with high uncertainty i.e. risks

There are at list four domains of software engineering where uncertainty is evident: uncertainty in requirements analysis, uncertainty in the transition from system requirements to design and code, uncertainty in software re-engineering and uncertainty in software reuse [24]. Software testing, like other development activities, is human intensive and thus introduces uncertainties and obeys Maxim of Uncertainty in Software Engineering-MUSE [24]. Afore mentioned uncertainties may affect the development effort and should therefore be accounted for in the test plan. We identify three aspects of test planning where uncertainty is present: the artifacts under test, the test activities planned, the plans and their fulfillments themselves. According to MUSE, uncertainty permeates these processes and products. Plans to test these artifacts, therefore, will carry their uncertainties forward. In particular, many testing activities, such as test result checking, are highly routine and repetitious and thus are likely to be error-prone if done manually, which introduces additional uncertainty. Humans carry out test planning activities at an early stage of development, thereby introducing uncertainties into the resulting test plan. Also, test plans are likely to reflect uncertainties that are, as described above, inherent in software artifacts and activities. Care must be taken during test planning to decide on the method of results comparison. Oracles, also, are required for validation and the nature of an oracle depends on several factors under the control of the test designer and automation architect [14,20]. Different oracles may be used for a single automated test and a single oracle may serve many test cases. If test results are to be analyzed, some type of oracle is required: a) oracle that gives exact outcome for every program case, b) oracle that provides range of program outcome and c) oracle that can not provide program outcome for some test cases.
3. Integrated and Optimized Software Testing Process Framework

3.1 The problems with testing
Testing is inefficient for the detection and removal of requirements and design defects. As a result, lessons learned in testing can only help prevent defects in the development of subsequent software and subsequent process improvement. Unlike other engineering disciplines, software development produces products of undetermined quality. Testing is then used to find defects to be corrected. Instead of testing to produce a quality product, software engineers should design in quality [13,18,25]. The purpose of testing should not be to identify defects inserted in earlier phases, but to demonstrate, validate, and certify the absence of defects. Beginning with the Industrial Revolution, many technical fields evolved into engineering fields, but sometimes not until after considerable damage and loss of life. In each case, the less scientific, less systematic, and less mathematically rigorous approaches resulted in designs of inefficient safety, reliability, efficiency, or cost. Furthermore, while other engineering practices characteristically attempt to consciously prevent mistakes, software engineering seems only to correct defects after testing has uncovered them [26].

Many software professionals have espoused the opinion that there are "always defects in software [27]." Yet in the context of electrical, mechanical, or civil engineering the world has come to expect defect-free circuit boards, appliances, vehicles, machines, buildings, bridges, etc.

3.1.1 Follow the basics

All models of the software development life cycle center upon four phases: requirements analysis, design, implementation, and testing. The waterfall model requires each phase to act on the entire project. Other models use the same phases, but for intermediate releases or individual software components.

Software components should not be designed until their requirements have been identified and analyzed. Software components should not be implemented until they have been designed. Even if a software component contains experimental features for a prototype, or contains only some of the final system's features as an increment, that prototype or incremental software component should be designed before it is implemented.

Software components cannot be tested until after they have been implemented. Defects in software cannot be removed until they have been identified. Defects are often injected during requirements analysis or design, but testing cannot detect them until after implementation. Testing is therefore inefficient for the detection of requirements and design defects, and thus inefficient for their removal.

3.1.2 Testing in the life cycle
Burnstein, et al. have developed a Testing Maturity Model (TMM) [28] similar to the Capability Maturity Model® [29]. The TMM states that to view testing as the fourth phase of software development is at best Level 2. However, it is physically impossible to test a software component until it has been implemented.

The solution to this difference of viewpoint can be found in TMM Level 3, which states that one should analyze test requirements at the same time as analyzing software requirements, design tests at the same time as designing software, and write tests at the same time as implementing code. Thus, test development parallels software development. Nevertheless, the tests themselves can only identify defects after the fact.

Furthermore, testing can only prove the existence of defects, not their absence. If testing finds few or no defects, it is either because there are no defects, or because the testing is not adequate. If testing finds too many defects, it may be the product's fault, or the testing procedures themselves.

Branch coverage testing cannot exercise all paths under all states with all possible data. Regression testing can only exercise portions of the software, essentially sampling usage in the search for defects.

The clean-room methodology uses statistical quality certification and testing based on anticipated usage. Usage probability distributions are developed to determine the systems most likely used most often [30]. However, clean-room testing is predicated upon mathematical proof of each software product; testing is supposed to confirm quality, not locate defects. This scenario-based method of simulation and statistically driven testing has been reported as 30 times better than classical coverage testing [31].

Page-Jones dismisses mathematical proofs of correctness because they must be based on assumptions [32], yet both testing and correctness verification are done against the software's requirements. Both are therefore based on the same assumptions; incorrect assumptions result in incorrect conclusions. This indictment of proofs of correctness must also condemn testing for the same reason.

The clean-room methodology's rigorous correctness verification approaches zero defects prior to any execution [33], and therefore prior to any testing. Correctness verification by mathematical proof seems better than testing to answer the question, "Does the software product meet requirements?"

Properly done test requirements analysis, design, and implementation that parallels the same phases of software development may help in early defect detection. However, done improperly (as when developers test their own software), this practice may result in tests that only test the parts that work, and in software that passes its tests but nevertheless contains defects. Increasingly frustrated users insist that there are serious defects in the software, while increasingly adversarial developers insist that the tests reveal no defects.

Test requirements analysis done separately from software requirements analysis can make successful testing impossible. A multi-million dollar project was only given high-level requirements, from which the software developers derived their own set of (often-undocumented) lower-level requirements, to which they designed and implemented the software. After the software had been implemented, a test manager derived his own set of lower-level requirements, one of which had not even been considered by the developers. The design and test requirements were mutually exclusive in this area, so it was impossible for the software to pass testing. This failure scrapped the entire project and destroyed several careers [34].

3.1.3 Defect removal and prevention
Test-result-driven defect removal is detective work; the maintenance programmer must identify and track down the cause within the software. Defect removal is also similar to archeology, since all previous versions of the software, and documentation of all previous phases of the development may have to be researched, if available. Using testing to validate that software is not defective [33], rather than to identify and remove defects, moves their removal from detection to comparative analysis [31].

TMM Level 3 integrates testing into the software lifecycle. This includes testing each procedure or module as soon as possible after each is written. Integration testing is also done as soon as possible after the components are integrated. Nevertheless, the concept of defect prevention is not addressed until TMM Level 4, and then only as a philosophy for the entire testing process.

Testing cannot prevent the occurrence of defects; it can only aid in the prevention of their recurrence in future components. This is why neither CMM nor TMM discusses actual defect prevention, or more accurately, subsequent defect prevention until Level 5. Waiting until one has reached Level 5 before trying to prevent defects can be very costly, both in terms of correcting defects not prevented and in lost business and goodwill from providing defective software.

Waiting until implementation to test a component for defects caused in much earlier phases seems too much of a delay; yet, an emphasis in testing for defect prevention is exactly that. An ounce of prevention may be worth a pound of cure, but one cannot use a cure as if it were a preventative.

There are several methods currently available to accomplish defect prevention at earlier levels of maturity such as Cleanroom Software Engineering [33], Zero Defect Software [35], and other provably correct software methods [36].

3.1.4 Software quality and process improvement
Gene Krinz, Mission Operations' director for the NASA space shuttle, is quoted as saying about the quality of the flight software, "You can't test quality into the software [35]." Clean-room methods teach that one can neither test in nor debug in quality [33].

If quality was not present in the requirements analysis, design, or implementation, testing cannot put it there. One of TMM's Level 3 maturity goals is software quality evaluation. While many quality attributes may be measured by testing, and many quality goals may be linked to testing's ultimate objectives, most aspects of software quality come from the quality of its design.

Procedure coupling and cohesion [32], measures of object-oriented design quality such as encapsulation, inheritance, encumbrance, class cohesion, type conformance, closed behavior, and other quantitative measures of software quality, are established in the design phase. They should be measured soon after each component is designed; do not wait until after implementation to measure them with testing.

Some authors have suggested that analyzing, designing, and implementing tests in parallel with the products to be tested will somehow improve the processes used to develop those products. However, since the software product testers should be different from those who developed it, there needs to be some way for the testers to communicate their process improvement lessons learned to the developers. Testers and developers should communicate effectively; every developer should also act as a tester (but only for components developed by others).

3.1.5 Designing in quality
One of the maturity subgoals of subsequent defect prevention is establishing a causal analysis mechanism to identify the root causes of defects. Already there is evidence that most defects are created in the requirements analysis and design phases. Some have put the percentage of defects caused in these two phases at 70 percent [27].

Clear communication and careful documentation are required to prevent injecting defects during the requirements analysis phase. Requirements are characteristically inconsistent, incomplete, ambiguous, nonspecific, duplicate, and inconstant. Interface descriptions, prototypes, use cases, models, contracts, pre-and post-conditions, etc. are all useful tools.

To prevent injecting defects during the design phase, software components must never be designed until a large part of their requirements have been identified and analyzed. The design should be thorough, using such things as entities and relationships, data and control flow, state transitions, algorithms, etc. Peer reviews, correctness proofs and verifications, etc. are good ways to demonstrate that a design satisfies its requirements.

Preventing the injection of defects during the implementation phase requires that software components never be implemented until they have been designed. It is far too easy to implement a software component while the design is still evolving, sometimes just in the developer's mind. Poor documentation and a lack of structure in the code usually accompany an increased number of defects per 100 lines of code [27]. As I mentioned earlier, this applies even to prototype and incremental software components; those experimental or partial features should be designed before implementation.

The clean-room method has an excellent track record of near defect-free software development, as documented by the Software Technology Support Center, Hill AFB, Utah, regardless of Daich's statements to the contrary [27]. Clean-room is compatible with CMM Levels 2 through 5 [33], and can be implemented in phases at all these levels [30].

3.1.6 Manage testing as a continuous process
The test program is one of the most valuable resources available to a program manager. Like a diamond mine or an oil field, the test program can be the source of vast riches for the program manager trying to gauge the success of his/her program. Unfortunately, it is often a resource that goes untapped. Few program managers exploit the information available to them through their test program. Rather, they view testing as a necessary evil - something that must be "endured" with as little pain as possible. This attitude often clouds their horizon and effectively shrouds the valuable information available via the test program.

Used effectively the test program can provide a rapid and effective feedback mechanism for the development process, identifying failures in the software construction process and allowing for early correction and process improvement. These benefits only accrue, however, if the test program is managed like a "program", with the discipline, rigor, and structure expected of a program. This includes establishing objectives, devising an implementation strategy, assigning resources and monitoring results.

Used in this context, testing becomes a pervasive, systematic, objective confirmation that the other parts of the development process are achieving the desired results. The program manager that exploits the information available through testing recognizes that the test program, not only evaluates the product, it also evaluates the process, by which the product was created. If a defect is found in testing, other checks and balances installed further upstream failed. This information can then be used for real-time improvement of the process.

This is not to say that testing is a panacea for all program problems. For software systems of any significance, it is a practical impossibility to test every possible sequence of inputs and situations that might be encountered in an operational environment. The objective of a test program is to instill confidence in users and developers that the software product will operate as expected when put into service. Because it is impossible to check all possible situations, testing is, by its very nature, a sampling discipline. A typically small number of test cases will be executed and, from the results, the performance of the system will be forecast. Testing is by its very nature a focused snapshot of a system. It is also inherently inefficient. Like the oil field mentioned earlier, for all the logic and analysis done beforehand, many probes come up "dry", with the system operating exactly as expected.

This is not to slight the value of testing. A test that is tailored to and consistent with development methodologies provides a traceable and structured approach to verifying requirements and quantifiable performance.

Preparation of test cases is something that should start very early in a program. The best place to start them is during requirements definition. During the infancy stages of a program, focus on testing provides significant advantages. Not only does it ensure that the requirements are testable, but the process of constructing test cases forces the developer to clarify the requirement, providing for better communication and understanding. As test cases are designed, they should be documented along with their assumptions. These test products should become contract deliverables and should form the basis for regression tests needed during the maintenance phase of the software life cycle. However, test cases are not immune to errors. As such they, too, should be inspected to eliminate defects.

Failed software projects are usually easy enough to analyze after the fact. You can almost always spot some fundamental sound practice that wasn't followed; if it had been followed, the project would have succeeded, or at least failed less completely. Often the good practices that weren't followed are basic ones that practically everyone knows are essential. When that happens, project management can always cite a reason why the practice wasn't followed--an excuse or rationalization. To save everyone a lot of time, we have collected some of the most common bad excuses for not using good practices... The next time you're considering managing a project without a careful risk management plan.

Think of a test case as a question you ask of the program. What are the attributes of the excellent question?

• Information, because?
» Help to reduce project’s uncertainty i.e. STP risks.

How much do you expect to learn from this test?

• Power, because?
» If two tests have the potential to expose the same type of error, one test is more powerful if it is more likely to expose the error.

• Credibility, because?
» Failure of the test should motivate someone to fix it, not to dismiss it.

• Feasibility, because?
» Must give answer, how hard is it to set up the test, run the test, and evaluate the result?

3.1.7 Estimating quality

One of the reasons why projects are late and exceed their budgets is because they have so many defects that they cannot be released to users. Many of these defects escape detection until late in the testing cycle when it is difficult to repair them easily. Then, the testing process stretches out indefinitely. The cost and effort for finding and fixing defects may be the largest identifiable IT system cost estimate, so defects cannot be ignored in the estimating process.

Defect potentials are the sum of errors that occur because of:

· Requirements errors

· Design errors

· Coding errors

· User documentation errors

· Bad fixes or secondary errors.

Defect levels affect IT project costs and schedules. The number and efficiency of defect removal operations can have major impacts on schedules, cost, effort, quality, and maintenance. Quality estimates must consider defect potentials, defect removal efficiency, and maintenance.

All system defects are not equally easy to remove. Requirements errors, design problems, and bad fixes tend to be the most difficult. At the time of delivery, defects originating in requirements and design tend to far outnumber coding defects. While a number of approaches can be used to help remove defects, formal design and code inspections have been found to have the highest defect removal efficiency.

Typically, more than 50% of the global IT population is engaged in modifying existing applications rather than developing new applications. Estimates are required for maintenance for initial releases to repair defects in software applications to correct errors and for enhancements to add new features to software applications. Enhancements can be major, in which features are added or changed in response to explicit user requests, or minor, in which some small improvement from the user’s point of view is added. Major enhancements are formal and rigorous, while minor enhancements may not be budgeted or charged back to users.

Maintenance or normal defect repairs involve keeping software in operational condition after a crash or defect report. Warranty repairs are technically similar to normal maintenance defect repairs, but they differ in a business or legal sense because the clients who report the defects are covered by an explicit warranty.

Maintenance or defect repairs have many complicating factors. These include the severity level of the defect, which affects the turnaround time required for the maintenance activity, and other factors such as:

· Abeyant defects – the maintenance team is unable to make the same problem occur

· Invalid defects – the error is not actually caused by the software application

· Bad fix injection – the repair itself actually contains a new defect

· Duplicate defects – defects are reported by multiple users that only need to be repaired once but involve a substantial amount of customer support time.

Customer support estimates are also required. They are based in part on the anticipated number of bugs in the application, but also on the number of users or clients. Typically, the customer-support personnel do not fix the problems themselves, but record the symptoms and route the problem to the correct repair group. However, the same problems tend to occur repeatedly. Therefore, after a problem has been fixed, customer-support personnel are often able to guide clients through workarounds or temporary repairs.

Error-prone module removal also is a significant cost. Research has shown that software bugs in large systems are seldom randomly distributed and instead tend to accumulate in a small number of portions, called error-prone modules. They may never stabilize because the bad fix injection rate can approach 100%, which means that each attempt to repair a bug may introduce a new bug. The cost of defect repairs then may exceed the original development cost and may continue to grow indefinitely until the error-prone module is totally eliminated. The use of code inspections is recommended.

Other maintenance efforts involve code restructuring, performance optimization, migration across platforms, conversion to new architectures, reverse engineering, restructuring, dead code removal, dormant application removal, and retirement or withdrawal of the application from active service.

To estimate maintenance requirements, analogy, parametric models, or a fixed budget can be used. Overall, it is recommended to:

· Detect and repair defects early

· Collect and analyze defect metrics

· Recognize the tradeoffs between productivity and quality

· Tailor the quality measurements to fit the project and the phase of development.

Define quality carefully and often and agree upon acceptable defect rates early in the process. Then, include defect repair rates in estimates.

· Reduced cycle time of product development is critical to companies’ success

· Testing accounts for 40-75% of the effort

· Requirement defects account for 40-50% of failures detected during testing
· Members spend 50% of test time debugging test scripts
· Member reported that feature interaction problem have resulted in as many as 30 test iterations prior to release

3.2 IOSTP framework state-of-the-art methods implementation
Unlike conventional approaches to software testing (e.g. structural and functional testing) which are applied to the software under test without an explicit optimization goal, the IOSTP with embedded Risk Based Optimized STP (RBOSTP) approach designs an optimal testing strategy to achieve an explicit optimization goal, given a priori [6,22]. This leads to an adaptive software testing strategy. A non-adaptive software testing strategy specifies what test suite or what next test case should be generated, e.g. random testing methods, whereas an adaptive software testing strategy specifies what testing policy should be employed next and thus, in turn, what test suite or test case should be generated next in accordance with the new testing policy to maximize test activity efficacy and efficiency subject to time-schedule and budget constraints. The process is based on a foundation of operations research, experimental design, mathematical optimization, statistical analyses, as well as validation, verification, and accreditation techniques. The use of state-of-the-art methods and tools for planning, information, management, design, cost trade-off analysis, and modeling and simulation, Six Sigma strategy significantly improves STP effectiveness. Figure 1 graphically illustrates a generic IOSTP framework [12].

The focus in this paper is description of IOSTP with embedded RBOSTP Approach to Testing Services that:

· Integrate testing into the entire development process

· Implement test planning early in the life cycle via Simulation based assessment of test scenarios
· Automate testing, where practical to increase testing efficiency

· Measure and manage testing process to maximize risk reduction
· Exploit Design of Experiments techniques (optimized design plans, Orthogonal Arrays etc.)

· Apply Modeling and Simulation combined with Prototyping

· Continually improve testing process by pro-active, preventive (failure mode analysis) Six Sigma DMAIC model
· Continually monitor Cost-Performance Trade-Offs (Risk-based Optimization model, Economic Value and ROI driven STP)

[image: image1.jpg]

Fig. 1 Integrated and optimized software testing process (IOSTP) framework [12]

Framework models are similar to the structural view, but their primary emphasis is on the (usually singular) coherent structure of the whole system, as opposed to concentrating on its composition. IOSTP framework model targeted specific software testing domains or problem classes described above. IOSTP is a systematic approach to product development (acquisition) which increases customer satisfaction through a timely collaboration of necessary disciplines throughout the life cycle. Successful definition and implementation of IOSTP can result in:
· Reduced Cycle Time to Deliver a Product
· Reduced System and Product Costs
· Reduced Risk
· Improved Quality

4 IOSTP framework state-of-the-art methods implementation experiences

The use of state-of-the-art methods and tools for planning, information, management, design, cost trade-off analysis, and modeling and simulation significantly improves STP effectiveness. These IOSTP methods and tools include:

· Information Technology and Decision Support

Document management, process documentation and configuration control (i.e., Configuration Management) are critical activities in the successful implementation of IOSTP framework [12]. A common information system is needed to provide opportunities for team members to access product or process information at any time, from any location. Access should be provided to design information; automated tools; specifications and standards; schedule and cost data; documentation; process methodologies; program tracking; program and process metrics; etc..

· Trade-Off Studies and Prioritization

To fully leverage the IOSTP framework, design trade-offs that optimize system requirements vs. cost should be performed during the earliest phases of the software life cycle. Product/process performance parameters can be traded-off against design, development, testing, operations and support, training requirements, and overall life cycle costs. System attributes such as mission capability, operational safety, system readiness, survivability, reliability, testability, maintainability, supportability, interoperability and affordability also need to be considered. Quality Function Deployment (QFD) is one technique for evaluating trade-off scenarios [13,18]. It is predicated on gaining an understanding of what the end user really needs and expects. The QFD methodology allows for tracking/tracing trade-offs through various levels of the project hierarchy, from requirements analysis, through the software development process, to operational and maintenance support. Testing represents a significant portion of the software development efforts that must be integrated in parallel to QFD. Risk-Based Optimization of Software Testing Process i.e. RBOSTP is part of a proven and documented IOSTP [12,17] designed to improve the efficiency and effectiveness of the testing effort assuring the low project risk of developing and maintaining high quality complex software systems within schedule and budget constraints [21,22]. Basic considerations of RBOSTP are described in [21] article and some RBOSTP implementation issues, experience results are presented in [22]. In our article [22], we describe how RBOSTP combines Earned (Economic) Value Management (EVM) and Risk Management (RM) methodology through simulation-based software testing scenarios at various abstraction levels of the system/software under test activities to manage stable (predictable and controllable) software testing process at lowest risk, at an affordable price and time.

· Cost-Performance trade-offs i.e. IOSTP optimization model

Activity-Based Costing (ABC), which focuses on those activities that bring a product to fruition, is considered a valuabletool for IOSTP framework cost analysis. Costs are traced from IOSTP activities to products, based on the consumption of each product of those activities. The cost of the product is measured as the sum of all activities performed, including overheads, capital costs, etc. Stakeholders are most interested in the benefits that are available and the objectives that can be achieved. The benefit-based test reports present this clearly. Project management is most interested in the risks that block the benefits and objectives. The benefits-based test reports focus attention on the blocking risks so that the project manager can push harder to get the tests that matter through [22].If testers present risk and benefits based test reports, the pressure on testers is simply to execute the outstanding tests that provide information on risk. The pressure on developers is to fix the faults that block the tests and the risks of most concern. Testers need not worry so much about justifying doing more testing, completing the test plan or downgrading “high severity” incidents to get through the acceptance criteria. The case for completing testing is always self-evident: has enough test evidence been produced to satisfy the stakeholders’ need to deem the risks of most concern closed? The information required by stakeholders to make a release decision with confidence might only be completely available when testing is completed. Otherwise, they have to take the known risks of release. How good is our testing? Our testing is good if we present good test evidence. Rather than getting so excited about the number of faults we find, our performance as testers is judged on how clear is the test evidence that we produce. If we can provide evidence to stakeholders for them to make a decision at an acceptable cost and we can squeeze this effort into the time we are given, we are doing a good testing job. This is a different way of thinking about testing. The definition of good testing changes from one based on faults found to one based on the quality of information provided. Consider what might happen if, during a test stage, a regression test detects a fault. Because the test fails, the risk that this test partially addresses becomes open again. The risk-based test report may show risks being closed and then re-opened because regression faults are occurring. The report provides a clear indication that things are going wrong – bug fixes or enhancements are causing problems. The report brings these anomalies directly to the attention of management. Main task is development of a versatile Optimization Model (OM) for assessing the cost and effectiveness of alternative test, simulation, and evaluation strategies. The System/Software under test and corresponding testing strategy-scenario make up a closed-loop feedback control system. At the beginning of software testing our knowledge of the software under test is limited. As the system/software testing proceeds, more testing data are collected and our understanding of the software under test is improved. Software development process parameters (e.g. software quality, defect detection rates, cost etc.) of concern may be estimated and updated, and the software testing strategy is accordingly adjusted on-line. The important ingredients in successful implementation of IOSTP with embedded RBOSTP are (1) a thoughtful and thorough evaluation plan that covers the entire life cycle process, (2) early identification of all the tools and resources needed to execute that software test and evaluation process plan and timely investment in those resources, (3) assuring the credibility of the tools to be employed, and (4) once testing is accomplished, using the resulting data to improve the efficacy of the test event, models and simulations. In order to provide stable (controlled and predictable) IOSTP we integrated two of the leading approaches: Earned (Economic) Value Management (EVM) and Risk Management (RM). These stand out from other decision support techniques because both EVM and RM can and should be applied in an integrated way across the organization that some authors [40,41], recently recognized as Value-Based Testing. Starting at the project level, both EVM and RM offer powerful insights into factors affecting project performance. While this information is invaluable in assisting the project management task, it can also be rolled up to portfolio, program, departmental or corporate levels, through the use of consistent assessment and reporting frameworks. This integration methodology operates at two levels with exchange of information. The higher, decision making level takes into account the efficacy and costs of models, simulations, and other testing techniques in devising effective programs for acquiring necessary knowledge about the system under test. The lower, execution level considers the detailed dimensions of the system knowledge sought and the attributes of the models, simulations, and other testing techniques that make them more or less suitable to gather that knowledge. The OM is designed to allow planners to select combinations of M&S and/or tests that meet the knowledge acquisition objectives of the program. The model is designed to consider the system as a whole and to allocate resources to maximize the benefits and credibility of applied M&S class associated with the overall IOSTP with embedded RBOSTP program [22].

· Prototyping

Prototypes provide a representation of a product/system under development. They facilitate communications between software designers and product/system users by allowing users to better describe or gauge actual needs. For IOSTP, there is a need to rapidly develop prototypes as early as possible during software design and development. Customer manipulation helps clarify requirements and correct misconceptions about what the product should or should not do, thereby reducing the time to complete a fully functional design, and reducing the risk of delivering an unacceptable product. Software prototyping must be controlled to eliminate unnecessary prototyping cycles that cause cost and schedule overruns. It is also necessary to guard against scope creep, in that users may want to add features/enhancements that go beyond the scope of contracted requirements.

· Modeling and Simulation

Modeling and simulation (M&S) techniques are a cost-effective approach to reduce the time, resources and risks, and to improve the quality, of acquired systems. Validated M&S can support all phases of IOSTP, and should be appropriately applied throughout the software life cycle for requirements definition; program management; design and engineering; test and evaluation; and field operation and maintenance presented in our works [6-9, 14-22]. The model of SUT is designed to consider the system as a whole and to allocate resources to maximize the benefits and credibility of applied M&S class associated with the overall IOSTP with embedded RBOSTP program.

Test engineers and operational evaluators play a key role in evaluating system/software performance throughout the life cycle. They identify:

· The information needed and when it must be available. This includes understanding the performance drivers and the critical issues to be resolved.

· The exact priority for what must be modeled first, then simulated, and then tested. This includes learning about the subcomponent level, the components, and the system level.

· The analysis method to be used for each issue to be resolved. Timing may have a significant effect on this. The design function can use models before any hardware is available. It will always be more expedient to use models and simulations at the early stage of system design. However, the design itself may be affected by operational considerations that require examination of real tests or exercise data. It will, given the training and logistic information required of systems today, be prudent in the long run to develop appropriate models and simulations.

· The data requirements and format for the analysis chosen. Included in this determination is the availability of instrumentation, not only for collecting performance data, but also for validating appropriate models and simulations.

Models and simulations can vary significantly in size and complexity and can be useful tools in several respects. They can be used to conduct predictive analyses for developing plans for test activities, for assisting test planners in anticipating problem areas, and for comparison of predictions to collected data. Validated models and simulations can also be used to examine test article and instrumentation configurations, scenario differences, conduct what-if tradeoffs and sensitivity analyses, and to extend test results

Testing usually provides highly credible data, but safety, environmental, and other constraints can limit operational realism, and range cost and scheduling can be limiting factors. Modeling, especially credible model building may be very expensive although M&S can be available before hardware is ready to test. A prudent mix of simulation and testing is needed to ensure that some redesign is possible (based on M&S) before manufacturing begins.

While developing the Software Test strategy, the program office with test-team must also develop a plan to identify and fund resources that support the evaluation. In determining the best source of data to support analyses, IOSTP with embedded RBOSTP considers credibility and cost. Resources for simulations and software test events are weighed against desired confidence levels and the limitations of both the resources and the analysis methods. The program manager works with the test engineers to use IOSTP with embedded RBOSTP to develop a comprehensive evaluation strategy that uses data from the most cost-effective sources; this may be a combination of archived, simulation, and software test event data, each one contributing to addressing the issues for which it is best suited.

Success with IOSTP with embedded RBOSTP does not come easy, nor is it free. IOSTP with embedded RBOSTP, by integrating M&S with software testing techniques, provides additional sources of early data and alternative analysis methods, not generally available in software tests by themselves. It seeks the total integration of IOSTP with embedded RBOSTP resources to optimize the evaluation of system/software worth throughout the life cycle. The central elements of IOSTP with embedded RBOSTP are: the acquisition of information that is credible; avoiding duplication throughout the life cycle; and the reuse of data, tools, and information.

· Measurement and Metrics

The IOSTP approach stresses defining processes and establishing strategic checkpoints to determine process health using accurate measurement and open communications. Defining and using process-focused metrics provides for early feedback and continuous monitoring and management of IOSTP activities [38,39]. Metrics should be structured to identify the overall effects of IOSTP implementation. Measures of success can include schedule, communications, responsiveness and timeliness. Additional important measures include productivity, customer satisfaction and cycle time. Defect metrics are drivers of a IOSTP with embedded RBOST. A defect is defined as an instance where the product does not meet a specified characteristic. The finding and correcting of defects is a normal part of the software development process. Defects should be tracked formally at each project phase. Data should be collected on effectiveness of methods used to discover defects and to correct the defects. Through defect tracking, an organization can estimate the number and severity of software defects and then focus their resources (staffing, tools, test labs and facilities), release, and decision-making appropriately. Two metrics provide a top-level summary of defect-related progress and potential problems for a project: -defect profile and defect age. The defect profile chart provides a quick summary of the time in the development cycle when the defects were found and the number of defects still open. It is a cumulative graph. The defect age chart provides summary information regarding the defects identified and the average time to fix defects throughout a project. The metric is a snapshot rather than a rate chart reported on a frequent basis. In addition, this measure provides a top-level summary of the ability of the organization to successfully resolve identified defects in an efficient and predictable manner. If this metric indicates that problems are accumulating in the longer time periods, a follow-up investigation should be initiated to determine the cause. The metric evaluates the rolling wave risk where a project defers difficult problems while correcting easier or less complex problems. In addition this measure will indicate the ability of the organization to successfully resolve identified defects in an efficient and predictable manner. If this metric indicates that problems are taking longer than expected to close the schedule and cost risks increase in likelihood and a problem may be indicated in the process used to correct problems and in potentially in the resources assigned. If a large number of fixes are ineffective, then the process used for corrections should be analyzed and corrected.

The final test metric relates to technical performance testing. The issues in this area vary by type of software being developed, but top-level metrics should be collected and displayed related to performance for any medium- or high- technical risk areas in the development. The maximum rework rate was in the requirements which were not inspected and which were the most subject to interpretation. Resolution of the defects and after the fact inspections reduced the rework dramatically because of Defect Containment. Defect containment metric tracks the persistence of software defects through the life cycle. It measures the effectiveness of development and verification activities. Defects that survive across multiple life-cycle phases suggest the need to improve the processes applied during those phases. The Defect Age Metric will summarize the average time to fix defects. The purpose of this metric is to determine the efficiency of the defect removal process and, more importantly, the risk, difficulty and focus on correcting difficult defects in a timely fashion. The metric is a snapshot rather than rate chart reported on a frequent basis. The metric evaluates the rolling wave risk where a project defers difficult problems while correcting easier or less complex problems. In addition this measure will indicate the ability of the organization to successfully resolve identified defects in an efficient and predictable manner. If this metric indicates that problems are taking longer than expected to close the schedule and cost risks increase in likelihood and a problem may be indicated in the process used to correct problems and in potentially in the resources assigned [22].

· Risk Management implemented in IOSTP
In order to implement RBOST we use one of favorite schedule risk software includes RISK+ from C/S Solutions, Inc an add-in to Microsoft Project at www.cs-solutions,com. We suggest, also, @RISK for Project Professional from Palisade Corporation, also an add-in to Project at www.palisade.com, Pertmaster from Pertmaster LTD (UK) at www.pertmaster.com reads MS Project and Primavera files and performs simulations. Pertmaster is substituting for an older product, Monte Carlo from Primavera Systems which links to Primavera Project Planner (P3) www.primavera.com . Risk+ User’s Guide provides a basic introduction to the risk analysis process. The risk analysis process is divided into following five steps.

[image: image2.png]Plan
Project

Identify
eporting
Tasks

Enter Risk

arameters

Run
Simulation

Analyze
Outputs

1. The first step is to plan our IOSTP with embedded RBOSTP project. It is important to note that the project must be a complete critical path network to achieve meaningful risk analysis results. Characteristics of a good critical path network model are:

· There are no constraint dates.

· Lowest level tasks have both predecessors and successors.

· Over 80% of the relationships are finish to start.

In the Risk + tutorial, we use the DEMO.MPP project file, which has the characteristics of a good critical path network model. Since the scheduling process itself is well covered in the Project manual we won't repeat it here.

2. The second step is to identify the key or high risk tasks for which statistical data will be collected. Risk + calls these Reporting Tasks. Collecting data on every task is possible; however, it adds little value and consumes valuable system resources. In this step you should also identify the Preview Task to be displayed during simulation processing.

3. The third step requires the entry of risk parameters for each non-summary task. For each non-summary task enter a low, high, and a most likely estimate for duration and/or cost. Next, assign a probability distribution curve to the cost and duration ranges. The probability distribution curve guides Risk + in the selection of sample costs and durations within the specified range. See the section titled "Selecting a Probability Distribution Curve" in the Risk+ manual for more information on selecting a curve type. Update options such as "Quick Setup" and "Global Edit" can dramatically reduce the effort required to update the risk parameters.

4. The fourth step is to run the risk analysis. Enter the number of iterations to run for the simulation, and select the options related to the collection of schedule and cost data. For each iteration of the simulation, the Monte Carlo engine will select a random duration and cost for each task (based upon its range of inputs and its probability distribution curve), and recalculate the entire schedule network. Results from each iteration are stored for later analysis.

5. The final and fifth step is to analyze the simulation results. Depending on the options selected, Risk + will generate one or more of the following outputs:

· Earliest, expected, and latest completion date for each reporting task

· Graphical and tabular displays of the completion date distribution for each reporting task

· The standard deviation and confidence interval for the completion date distribution for each reporting task

· The criticality index (percentage of time on the critical path) for each task

· The duration mean and standard deviation for each task

· Minimum, expected, and maximum cost for the total project

· Graphical and tabular displays of cost distribution for the total project

· The standard deviation and confidence interval for cost at the total project level

Risk + provides a number of predefined reports and views to assist in analyzing these outputs. In addition, you can use Project's reporting facilities to generate custom reports to suit your particular needs.

Project cost and schedule estimates often seem to be disconnected. When the optimistic estimate of schedule is retained, in the face of the facts to the contrary, while producing an estimate of cost, cost is underestimated. Further, when the risk of schedule is disregarded in estimating cost risk, that cost risk is underestimated. In reality cost and schedule are related and both estimates must include risk factors of this estimating process because of uncertainty of test tasks’ cost and time estimation that RBOSTP optimization model testing includes described by equation (1) constraints. The strategy for integration of schedule and risk begins with an analysis of the risk of the schedule [21,22].

· The role of the Six Sigma strategy in software development/testing process
In order to assure controlled and stable (predictive) testing process in time, budget and software quality space we need to model, measure and analyze software-testing process by applying Six Sigma methodology across the IOSTP solution as presented in our works [15-19]. The name, Six Sigma, derives from a statistical measure of a process’s capability relative to customer specifications. Six Sigma is a mantra that many of the most successful organizations in the world swear by and the trend is getting hotter by the day. Six Sigma insists on active management engagement and involvement, it insists on financial business case for every improvement, it insists on focusing on only the most important business problems, and it provides clearly defined methodology, tools, role definitions, and metrics to ensure success. So, what has this to do with software? The key idea to be examined in this article is the notion that estimated costs, schedule delays, software functionality or quality of software projects are often different than expected based on industry experience. Six Sigma tools and methods can reduce these risks dramatically i.e. Six Sigma (6σ) deployment in SDP/STP called DMAIC for “Define, Measure, Analyze, Improve, and Control”, because it organizes the intelligent control and improvement of existing software test process [15-16]. Experience with 6σ has demonstrated, in many different businesses and industry segments that the payoff can be quite substantial, but that it is also critically dependent on how it is deployed. In this paper we will concentrate on our successful approach to STP improvement by applying Six Sigma. The importance of an effective deployment strategy is no less in software than in manufacturing or transactional environments. The main contribution of our [15-19] works is mapping best practices in Software Engineering, Design of Experiments, Statistical Process Control, Risk Management, Modeling & Simulation, Robust Test and V&V etc. to deploy Six Sigma to the Software Testing Process (STP). In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects in our framework of IOSTP with deployed Six Sigma strategy, during 3 years of our 6σ deployment to STP we calculated overall value returned on each dollar invested i.e. ROI of 100:1.

5 Conclusions
In software development organizations, increased complexity of product, shortened development cycles, and higher customer expectations of quality proves that software testing has become extremely important software engineering activity. Software development activities, in every phase, are error prone so defects play a crucial role in software development. At the beginning of software testing task we encounter the question: How to inspect the results of executing test and reveal failures? What is risk to finish project within budget, time and reach required software performance i.e. quality? How does one measure test effectiveness, efficacy, benefits, risks (confidence) of project success, availability of resources, budget, time allocated to STP? How does one plan, estimate, predict, control, evaluate and choose “the best” test scenario among hundreds of possible (considered, available, feasible) number of test events (test cases)? IOSTP framework combines few engineering and scientific areas such as: Design of Experiments, Modeling & Simulation, integrated practical software measurement, Six Sigma strategy, Earned (Economic) Value Management (EVM) and Risk Management (RM) methodology through simulation-based software testing scenarios at various abstraction levels of the SUT to manage stable (predictable and controllable) software testing process at lowest risk, at an affordable price and time. In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects in our framework of IOSTP, during 3 years of our IOSTP framework deployment to STP we calculated overall value returned on each dollar invested i.e. ROI of 100:1.

Lessons Learned

It is my dream that software engineering will become as much of an engineering discipline as the others; users will have just as much confidence that their software is as defect free as their cars, highway bridges, and aircraft. Test should be used to certify that the software components implement their designs, and that these designs satisfy their requirements. Analyzing testing requirements should be done in parallel with analyzing the software components' requirements. Tests should be designed in parallel with designing the components. Test implementation should occur in parallel with implementing the components, and developing integration tests should be done in parallel with integration. The source of software defects is a lack of discipline in proper requirements analysis, design, and implementation processes. Testing must physically occur after implementation, so reliance on it to detect defects delays their correction. Until software defects are attacked at their source, software will continue to be developed as if it were an art form rather than a craft, engineering discipline, or a science.

Treating software testing as a discipline is a more useful analog than treating it as an art or a craft. We are not artists whose brains are wired at birth to excel in quality assurance. We are not craftsmen who perfect their skill with on-the-job practice. If we are, then it is likely that full mastery of the discipline of software testing will elude us. We may become good, indeed quite good, but still fall short of achieving black belt - status. Mastery of software testing requires discipline and training.

A software testing training regime should promote understanding of fundamentals. I suggest three speciﬁc areas of pursuit to guide anyone’s training:

First and foremost, master software testers should understand software. What can software do? What external resources does it use to do it? What are its major behaviors? How does it interact with its environment? The answers to these questions have nothing to do with practice and everything to do with training. One could practice for years and not gain such understanding.

Second, master software testers should understand software faults. How do developers create faults? Are some coding practices or programming languages especially prone to certain types of faults? Are certain faults more likely for certain types of software behavior? How do speciﬁc faults manifest themselves as failures?

Third, master software testers should understand software failure. How and why does software fail? Are there symptoms of software failure that give us clues to the health of an application? Are some features systemically problematic? How does one drive certain features to failure?

Understanding software, faults and failures is the ﬁrst step to treating software testing as a discipline. Treating software as a discipline is the ﬁrst step toward mastering software quality. And there is more, always more to learn. Discipline is a lifelong pursuit. If you trick yourself into thinking you have all the answers, then mastery will elude you. But training builds knowledge so the pursuit itself is worthwhile whether or not you ever reach the summit.
Perhaps we need to embrace Tester Pride and let the world know about the contributions we make.

References:

[1] Boehm B. Software Risk Management. IEEE Computer Society Press, Los Alamitos California, 1989.

[2] Burstein I. at all. Developing a testing maturity model, Part II. Illinois Institute of Technology, Chicago, 1996.

[3] Cristie A. Simulation: An enabling technology in software engineering. CrossTalk the Journal of Defense Software Engineering, April 1999.

[4] http://www.acq.osp.mil. URLs cited were accurate as of April 2002.
[5] http://www.msosa.dmso.mil. URLs cited were accurate as of May 2001.

[6] Lazić, Lj., Velašević, D., Applying simulation to the embedded software testing process, SOFTWARE TESTING, VERIFICATION & RELIABILITY, Volume 14, Issue 4, 1-26, John Willey & Sons, Ltd., 2004.

[7] Lazić, Lj., Automatic Target Tracking Quality Assesment using Simulation, 8th Symposium on Measurement -JUREMA, 29-31 October, Kupari-Yugoslavia, 1986.

[8] Lazić, Lj., Computer Program Testing in Radar System,. Masters thesis, University of Belgrade, Faculty of Electrical Engineering, Belgrade, Yugoslavia, 1987.

[9] Lazić, Lj., Method for Clutter Mup Alghoritm Assesment in Surveilance Radar, 11th Symposium on Measurement -JUREMA, April, Zagreb-Yugoslavia, 1989.

[10] Lazić, Lj., Software Testing Methodology, YUINFO’96, Brezovica, Serbia&Montenegro, 1996.

[11] Lazić, Lj., Velašević, D., Integrated and optimized software testing process based on modeling, simulation and design of experiment, 8th JISA Conference, Herceg Novi, Serbia&Montenegro, June 9-13, 2003

[12] Lazić, Lj., Velašević, D. i Mastorakis, N., A Framework of Integrated and Optimized Software Testing Proces, WSEAS Conference, August 11-13, Crete, Greece, 2003 also in WSEAS TRANSACTIONS on COMPUTERS, Issue 1, Volume 2, January 2003.

[13] Lazić, Lj., Medan, M., SOFTWARE QUALITY ENGINEERING versus SOFTWARE TESTING PROCESS, TELFOR 2003(Communication Forum), 23-26 November, Beograd, 2003.

[14] Lazić, Lj., Velašević, D. i Mastorakis, N., The Oracles-Based Software Testing: problems and solutions, WSEAS MULTICONFERENCE PROGRAM, Salzburg, Austria, February 13-15, 2004, 3rd WSEAS Int.Conf. on SOFTWARE ENGINEERING, PARALLEL & DISTRIBUTED SYSTEMS (SEPADS 2004)
[15] Lazić, Lj., Velašević, D. i Mastorakis, N., Software Testing Process Management by Applying Six Sigma, WSEAS Joint Conference program, MATH 2004, IMCCAS 2004, ISA 2004 and SOSM 2004, Miami, Florida, USA, April 21-23, 2004.

[16] Lazić, Lj., Velašević, D., Software Testing Process Improvement by Applying Six Sigma, 9th JISA Conference, Herceg Novi, Serbia & Montenegro, June 9-13, 2004.

[17] Lazić, Lj., Integrated and Opitimized Software Testing Process, TELFOR 2004 (Communication Forum), 23-26 November, Beograd, 2004.

[18] Lazić, Lj. SOFTWARE TESTING versus SOFTWARE MAINTENANCE PROCESS, Simpozijum Infoteh-Jahorina, 23-25 March, 2005.

[19] Lazić, Lj., Mastorakis, N., Software Testing Process Improvement to achieve a high ROI of 100:1, 6th WSEAS Int. Conf. On MATHEMATICS AND COMPUTERS IN BUSINESS AND ECONOMICS (MCBE’05), March 1-3, Buenos Aires, Argentina 2005.

[20] Lazić, Lj., Mastorakis, N., Applying Modeling&Simulation to the Software Testing Process – One Test Oracle solution, 4th WSEAS Conference on Automatic Control, Modeling and Simulation (ACMOS 2005), TELEINFO 2005, and AEE 2005 WSEAS MultiConference, Prague, Czech Republic, March 13-15, 2005

[21] Lazić, Lj., Mastorakis, N., RBOSTP: Risk-based optimization of software testing process Part 1, accepted in WSEAS Proceedings + JOURNAL in the 9th WSEAS International on COMPUTERS Vouliagmeni, Athens, Greece, July 2005
[22] Lazić, Lj., Mastorakis, N., RBOSTP: Risk-based optimization of software testing process Part 2, accepted in WSEAS Proceedings + JOURNAL in the 9th WSEAS International on COMPUTERS Vouliagmeni, Athens, Greece, July 2005
[23] DoD Integrated Product and Process Development Handbook, August 1998

[24] H. Ziv and D.J. Richardson, Constructing Bayesian-network Models of Software Testing and Maintenance Uncertainties, International Conference on Software Maintenance, Bari, Italy, September 1997.

[25] Humphrey, W. S., Making Software Manageable, CrossTalk, December 1996, pp. 3-6.

[26] Baber, R. L., The Spine of Software: Designing Provably Correct Software: Theory and Practice, John Wiley & Sons Ltd., Chichester, United Kingdom, 1987.

[27] Daich, G. T., Emphasizing Software Test Process Improvement, Crosstalk, June 1996, pp. 20-26, and Daich, Gregory T., Letters to the Editor, CrossTalk, September 1996, pp. 2-3, 30.

[28] Burnstein, I.; Suwannasart, T.; and Carlson, C.R., Developing a Testing Maturity Model: Part I, CrossTalk, August 1996, pp. 21-24; Part II, CrossTalk, September 1996, pp. 19-26.

[29] Paulk, M. C.; Curtis, B.; Chrissis, M. B.; and Weber, C. V., Capability Maturity ModelSM for Software, Version 1.1, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, February 1993.

[30] Hausler, P. A.; Linger, R. C.; and Trammel, Adopting Cleanroom Software Engineering with a Phased Approach, IBM Systems Journal, volume 33, number 1, 1994, p. 95.

[31] Bernstein, L.; Burke Jr., E. H.; and Bauer, W. F., Simulation- and Modeling-Driven Software Development, CrossTalk, July 1996, pp. 25-27.

[32] Page-Jones, M., What Every Programmer Should Know About Object-Oriented Design, Dorset House Publishing, New York, New York, 1995.

[33] Linger, R.C., Cleanroom Software Engineering: Management Overview, Cleanroom Pamphlet, Software Technology Support Center, Hill Air Force Base, Utah, April 1995.

[34] Capability Maturity Model Integration (CMMI), Version 1.1, Software Engineering Institute, CMU/SEI-2002-TR-011, TR-012, March 2002

[35] Schulmeyer, G. G., Zero Defect Software, McGraw-Hill, Inc., New York, New York, 1990.

[36] Martin, J., System Design from Provably Correct Constructs, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

[37] C/S Solutions, Inc., Risk+ User’s Guide, 2002

[38] DoD Defense Acquisition Deskbook -- Compendium of Acquisition-Related mandatory and discretionary guidance, including risk management (http://www.deskbook.osd.mil)

[39] Carleton, Anita D., Park, Robert E., Goethert, Wolfhart B., Florac, Willliam A., Bailey, Elizabeth K., & Pfleeger, Shari Lawarence. Software Measurement for DoD Systems: Recommendations for Initial Core Measures (CMU/SEI-92-TR-19). Software Engineering Institute, Carnegie Mellon University, September 1992.

Available online: www.sei.cmu.edu/publications/documents/92.reports/92.tr.019.html
[40] Le K., Phongpaibul M., and Boehm B., Value-Based Verification and Validation Guidelines, CSE University Southern California, TR UC-CSE-05-502, February 2005
[41] Hillson D., Combining Earned Value Managment and Risk Management to create synergy, found at www.risk-doctor.com, reached April 2005.

PAGE
1

