
Easy clustering with openMosix

JAVIER BILBAO, GORKA GARATE, ANDONI OLOZAGA, ALVARO DEL PORTILLO
Department of Applied Mathematics

University of the Basque Country
School of Engineering Alda. Urkijo, s/n 48013 - Bilbao

SPAIN

Abstract: - In order to resolve some calculations and some equation systems, personal computer may be
unsatisfactory because some of these operations can require supercomputation capabilities. Clustering is a very
good option to avoid a very high cost, and to make a complete use of some PCs with different uses such as
laboratory. We will present some easy ways to cluster some computers and some tests to compare processes
running in a cluster and in only one computer.

Key-Words: - clustering, parallel computation, middleware, Linux, execution time

1 Introduction
Different types of engineering applications are
implemented in order to calculate or resolve
massive calculations. Some of these applications use
commercial software such as Mathematica, Matlab,
Ansys, Nastran, Cosmos, and so on. Workstations
and personal computers are used to run the software,
and, although the problem that has to be solved is
not extremely difficult, the execution time is usually
more than 1 hour, commonly several hours.

In spite of the great advance in the computer
technology in the last years that has allowed the
development of computers with calculation
capacities that were inconceivable some years ago,
the execution time is not reduced because of the
increase of the difficulty and precision of the
models.

Apart from the solution of buying
supercomputers of thousands of euros, or using the
future new technology of dual core microprocessors,
there is another option: clustering of personal
computers. A computer cluster is a group of locally
connected computers that work together as a unit.

The way to implement a computer cluster is not
unique. One of the more popular implementations is
a cluster with nodes running Linux as the operating
system and free software to implement the
parallelism. A popular software to run the cluster
and applications among the nodes of the cluster is
openMosix [1].

Actually, openMosix is a Linux kernel extension
for single-system image clustering. This kernel
extension turns a network of ordinary computers
into a supercomputer for Linux applications. Once
you have installed openMosix, the nodes in the

cluster start talking to one another and the cluster
adapts itself to the workload. Processes originating
from any one node, if that node is too busy
compared to others, can migrate to any other node.

Fig. 1. Logo of openMosix project

In this paper, we present some easy ways to

cluster some computers without the necessity of
patching the operating system. In fact, it will not be
necessary to install the operating system on the hard
disk. Tests of compression and rendering are also
presented.

2 Clustering
In general, clustering is a technology or a set of
technologies that allow multiple computers to work
together to solve common computing problems. The
computing problems in question can be anything
from complex CPU-intensive scientific
computations to a horde of miscellaneous processes
with no underlying commonality [2], [3].

At the beginning, clusters were developed in
order to resolve problems of supercomputation, but
nowadays it is not their only use [4]. The increase of
the use of the web technology has caused the
implementation of clusters in different servers with
the aim of service to a high number of clients. This
type of technology have been implemented in
services such as web servers, email, e-commerce, or
high performance data bases.

A cluster system may be considered as being
made up of four major components, two hardware
and two software [5]. The two hardware
components are the nodes that perform the work and
the network that interconnects the nodes to form a
single system. The two software components are the
collection of tools used to develop user parallel
application programs and the software environment
for managing the parallel resources of the cluster
[6].

Clusters of computers can be classified in two
groups: high availability clusters (such as web
servers) and high performance clusters
(supercomputation) [7].

An operating system allows an application to be
launched from storage media into memory and to
execute through to completion (termination).
openMosix, as a “Single System Image”, provides
the ability for an application to be launched from
any cluster node into memory and to execute on any
node in the cluster (as a virtual instance of the
application) [8]. Any given virtual application
instance is migrated to the node with the most
available capacity or resources.

A cluster can also be implemented in “normal”
computers, PCs, that are used for example in a
laboratory of a university. Traditional way began
with the creation of a partition of the hard disk to
install the Linux chosen by the user. Linux
distribution was able to be chosen by the user, but
not the version. The version had to be compatible
with the patch of the openMosix, and the version of
openMosix was usually lower that the last version of
the Linux kernel. So if you had a Linux installed in
your computer, you had to install another one and
put the respective link in the Lilo or Grub menu (in
order to select Windows, normal Linux or Linux-
openMosix). When you had the openMosix last
version, you had to patch the Linux kernel. And
after that, configure the result.

Some developers think that looking at the
problem from the technical perspective, managing a
cluster of 30 nodes, where each node contains a full
Linux distribution (including GUI) is not so
different from managing a single node that contains
a full Linux distribution. From the security
perspectives, however, each additional non-essential
software package that is stored on these drone or
slave nodes adds both unnecessary risk and
unwanted cost.

Sometimes this differential, from the technical
perspective (administrate a cluster of 30 nodes or 1
single node with Linux), is not so small. It depends
on the network (whether the cluster is part of a big
network, because the generated traffic by the other

computers of the net), the storage media (whether
the operating system is on the hard disk, because if
it is on a live-cd there is a task to translate the
operating system to the memory and a diminution of
the memory amount free to implemented the
application), and other different situations (such as
running the operating system by a virtual machine in
order to not “touch” the hard disk or because the
Linux-openMosix version is not supported by the
“modern” computer –such as some recent Pentium
IV and the clusterKnoppix 3.6).

On the other hand, not all distributions are the
same. Heterogeneous cluster construction allows an
organization to take advantage of the feature
differences that separate the relevant Linux
distributions. In other words, by planning for the
cluster, selecting the right distribution for the master
node(s) and the right distribution for drone nodes,
you will build the right cluster for your
organization.

Three are the easy ways to implement a cluster
with openMosix as software to balance the nodes
and to migrate the processes:

1. Use only clusterKnoppix distribution by

a live-cd.
2. Use Chaos distribution with live-cd.
3. Use diskless.

2.1 clusterKnoppix
clusterKNOPPIX is a modified Knoppix
distribution using the OpenMosix kernel. Features:

• openMosix terminal server - uses PXE,
DHCP and tftp to boot linux clients via the
network.

• No cdrom drive/harddisk/floppy needed for
the clients openMosix autodiscovery - new
nodes automatically join the cluster (no
configuration needed).

• Cluster Management tools - openMosix
userland/openMosixview. Every node has
root access to every other node via
ssh/RSAkeys MFS/dfsa support.

• Every node can run full blown X (PC-
room/demo setup) or console only (more
memory available).

When you boot your computer (where there is

installed any operating system, including Windows),
you only have to introduce the CD-ROM of
clusterKnoppix and the Knoppix operating system
will start (with openMosix). Linux will be loaded
into the RAM memory. If there is more computers

with the clusterKnoppix started, they will see each
other and will make up a cluster. By themselves.
But there is one disadvantage and one previous task:
the disadvantage is that the last version (3.6) of
clusterKnoppix does not run very well with some
Pentium IV; the previous task is creating a DHCP
server and a domain (if they do not exist).

2.2 Chaos
The main goal of the Chaos Linux openMosix
distribution is to provide the best union in the
conflicting interest between the security and
manageability of a compact operating system, and
the need for a user friendly and fully featured
operating system, in the cluster environment [11].

The cluster would consist of one or two home
nodes (master nodes), furnished with the complete
software suite required to effectively execute
objective tasks on the cluster, and supplemented
with slave or drone nodes that contain only enough
software to start the host hardware and to join the
cluster effectively.

Note that the home node (or master node) is the
only node that needs the application existing on
storage media. Each and every other node (drone
node) in the cluster could run a distribution that is as
small as the Linux kernel itself. That is to say, one
of the computers of the cluster (master node) will
have the clusterKnoppix and it will be the
“manager” of the cluster; all the other nodes
(drones) will have Chaos distribution and they will
not access to the shell (all processes have to be sent
from the master node).

Chaos is designed to be a compact Linux and
openMosix distribution that is secure and highly
distributable. Chaos does not interfere with the host
operating system, running entirely from RAM it also
frees the CDROM boot media [12], [13].

Chaos is not intended to be fully-laden with
application software; it is well suited as a minimized
“drone node” distribution. Though, the biggest
advantage of using Chaos is its focus on security
and deployment methodology.

Chaos is the first Linux and openMosix
distribution to add native network security to the
cluster deployment. Every node in the cluster does
its own packet filtering, and establishes IPSEC
tunnels as required. This is performed transparently,
requiring no user intervention.

While Chaos is capable of PXE booting new
nodes, CD booting will be used.

Fig. 2. Use of Chaos: monitorization of the working

nodes using Mosmon

2.3 Diskless
The term diskless refers to the fact that slave nodes
systems do not need a local file system device to
boot and run.

When slave nodes of the cluster boot, they send a
boot request to the network that can be intercepted
by the appropriate managing computer, the master
node. The master computer then sends an image to
the drone nodes. This image carries a fully
functional computer's most important programs
along with instructions on how to load other
programs off of the network. The slave nodes then
create a virtual hard drive in their RAM and load the
image there.

Usually, the boot is made by wake on LAN
(WOL) process.

Diskless clusters use Network File System (NFS)
to access to files among the nodes. NFS provides
remote access to shared file systems across

networks. This means that a file system may
actually be sitting on the master machine, but a
drone machine can mount that file system and it will
look on the slave machine like the file system
resides on the local machine.

It is just a question of combining the idea of a
diskless operation with openMosix and the result
was an openMosix cluster that could be expanded as
easily as plugging a new computer into the LAN
and telling it to boot off the network.

But there are limitations on the type of
computation that can be made on this kind of node:
intensive I/O applications can be executed on such
nodes but will not scale well and will slow down
each calculation, resulting in inefficiency [14].

Besides, memory swapping is important because
if an application’s needs exceed the amount of
available physical memory, the program could crash
or the operating system might hang. Although
memory can be swapped across the network to non-
local drives, this action will drastically degrade the
cluster’s performance. For these reasons, if jobs
with unknown memory requirements will run on the
cluster, or we have nodes with very low memory,
diskless nodes are not recommended [15].

But it is clear which the advantages are: efficient
sharing of resources, easy administration, data
security (since there is not hard disk, there is not
physically-unsecured systems to contain data after
they are powered off), no complaints from users of
computers that are slave nodes in the cluster
(computers remain non-upset after their use).

3 Tests
Some case studies have been implemented for
performance evaluation of these easy ways. We will
present tests with file compression and image
rendering. When the cluster is made up of 15
computers, there are 10 Pentium III, 256 Mb RAM,
and 5 Pentium IV, 256 Mb RAM, and all nodes are
running clusterKnoppix or Chaos, that is, they use
RAM memory to install the operating system image
and to run the process. When the cluster is made up
of 4 computers, they are Pentium IV, 2 with 512 Mb
RAM, and 2 with 1 Gb RAM.

3.1 File compression
In order to do this probe, 19 .wav files of two music
CDs were dumped to the hard disk.

After that, the compression process was
implemented by means of a free software,
BladeEnc.

The process has been programmed to do the
compression of all .wav files of the CD in parallel,
that is to say, each .wav file has been treated by an
execution process of the BladeEnc software.

When this process has been carried out by only
one Pentium IV computer, it has taken 33 minutes
27 seconds, but with a global time of 172 minutes
and 20 seconds if the task is developed sequentially.
But when the process has been implemented by a
cluster of 15 Pentium IV and Pentium III computers,
the execution time has been 25 minutes 48 seconds:

0
20
40
60
80

100
120
140
160
180

Pentium IV Cluster

Fig. 3. Execution time for a cluster of fifteen
computers and one Pentium IV to file compression

This last implementation has been monitorized

by means of the openMosixview software. In the
next figure it is shown how various processes have
migrated to the rest of the nodes of the cluster:

Fig. 4. Monitorization of the working nodes when

the processes are migrating among the nodes of the
cluster

m
in

ut
es

Fig. 5. Monitorization of the working nodes with the

load balance and used memory

Fig. 6. Use of the memory and load of each node of

the cluster when cluster runs processes

The cluster took approximately 15% time less to

carry out the operation sequentially, but the time
difference between only one computer and the
cluster (with 4 computers) is increased when the
number of files that have to be compressed is also
increased. However, if the process is developed in
parallel, the difference is reduced: the cluster took
77% time less than only one Pentium IV:

0

5

10

15

20

25

30

35

Pentium IV Cluster

Fig. 7. Execution time for a cluster of fifteen
computers and one Pentium IV to file compression

When the compression is implemented by the

cluster, there is a constant direct access to the hard
disk of the computer that launched the processes to
the other nodes of the cluster. And although
openMosix has a oMFS file system that allows any
node of the cluster to access to the file system of the
other nodes, this access time is higher than the time
that a computer needs to access to its own hard disk.

On the other hand, the process (compression of a
music file) is quite brief and an only Pentium IV is
able to run various processes at the same time (in
parallel), so the advantage of the cluster will be
more notorious when the tasks will be bigger in time
(sequentially).

Other aspect to take into account is the traffic of
the network among the computers of the cluster. If
the cluster is not isolated with a switch or hub, and
the computers are interconnected with other
computers out of the cluster, there is a constant and
considerable traffic that reduces the efficiency of the
operation. So, it is highly recommended to run the
processes in a separated cluster, because the time
gain can be up to 250%.

3.2 Rendering case study
We designed a simple scene made up of three cubes,
and the effect was a turn. This scene has been
programming to be rendered by the software POV-
Ray (Persistence of Vision Ray Tracer).

The next shell script was done using Python
language:

#!/usr/bin/python

import os, time

framesperproc=10
totalframes=50

filename='sc00'
infile=filename+'.pov'
outfile=filename+'.tga'
geometry='Width=640 Height=480 '

print time.localtime()
print '#'*80

for startframe in range(0,totalframes,framesperproc):
print "started rendering "+"from "+str(startframe)+' to
'+str(startframe+framesperproc)+' ...'
os.system('time povray +A0.4 Display=false
+geometry+'+KFI'+str(startframe)+'
+KFF'+str(startframe+framesperproc)+' +I'+infile+'
+O'+outfile+' 2>/dev/null&')

m
in

ut
es

It was specified that 50 images of the scene had to
be obtained, and in each process 10 of these images
would be dealt with. Therefore, 5 processes are
created.
When the rendering process was done in a Pentium
IV, it took 2 minutes and 42 seconds.
The same task done in a cluster of 4 Pentium IV
computers took an execution time of 1 minute and 6
seconds.

0

20

40

60

80

100

120

140

160

180

Pentium IV Cluster

Fig. 8. Execution time for a cluster of fifteen
computers and one Pentium IV to file compression

Fig. 9. Cluster made up of computers of a teaching

laboratory

4 Conclusion
This paper presents three easy ways to implement a
cluster with openMosix as software to balance the
nodes and to migrate the processes: clusterKnoppix,
Chaos and the use of diskless.

Results of some evaluations show that the use of
a cluster requires lower execution time, but that it is

conditioned by some external constraints such as the
traffic of the network, etc.

References:
[1] J. Bilbao, G. Garate, First step in a PC cluster
development with openMosix, WSEAS Transactions
on Computers, 6, vol. 3, December 2004, pp. 2068-
2072
[2] O. Pino, R. F. Arroyo, F. J. Nievas, Los clusters
como plataforma de procesamiento paralelo
[3] R. M. Yañez, Introducción a las tecnologías
clustering
[4] D. Santo, El proyecto de cluster SSI openMosix
[5] E. Plaza, Cluster heterogéneo de computadoras
[6] M. A. Perez, Arquitecturas paralelas
[7] M. Catalán i Coït, Manual para Clustering con
openMosix
[8] M. Colomer, Clustering con openMosix
[9] T. Sterling, Beowulf cluster computing with
Linux, MIT Press, Cambridge, 2001
[10] D. Robbins, openMosix, http://www.intel.com
[11] Ian Latter, Security and openMosix; Securely
deploying SSI cluster technology over untrusted
networking infrastructure, http://itsecurity.mq.
edu.au/papers/White Paper - Security and
openMosix.pdf, December 2003
[12] Moshe Bar, HPC Computing Applied to
Business Applications, http://openmosix.
sourceforge.net/Business_Applications_2003.pdf,
2003
[13]Giacomo Mulas, Turning a group of
independent GNU/Linux workstations into an
(Open)Mosix cluster in an untrusted networking
environment and surviving the experience,
http://www.democritos.it/events/openMosix/papers/
cagliari.pdf, November 2002
[14] B. Des Ligneris, M. Barrette, M. Dagenais,
Thin-OSCAR: Diskless Clustering for All,
http://www.linuxworld.com/read/43718.htm
[15] C. Stanton, R. Ali, Y.C. Fang, M.A. Hussain,
Installing Linux High-Performance Computing
Clusters, Power Solutions, 4, 2001, pp. 11-16

se
co

nd
s

