Application of IKE protocol for IPsec VPN into Embedded System
JAEDEOK LIM, MINHO HAN, KIYOUNG KIM
Network Security Department, Information Security Research Division
Electronics and Telecommunications Research Institute(ETRI)

161 Gajeong-dong Yuseong-gu, Deajeon, 305-700
REPUBLIC OF KOREA
Abstract: - IPsec protocol has been deployed widely at remote business environment because of its properties, confidentiality and integrity for network traffic. Before using IPsec protocol, it is needed that negotiations of security associations and keys between two end points of IPsec tunnel. Internet Key Exchange protocol is used when negotiation is done automatically. But because full specification of Internet Key Exchange protocol introduced in RFC standards is so complex and heavy, it is not suitable for embedded system that has small resources. In this paper, we introduce the simplified Internet Key Exchange protocol for embedded system by supporting minimal function for co-working with other implementation. We will prove that this IKE protocol has been implemented based on RFC by working with other commercial IKE protocol and show the negotiation performance of IKE protocol by using test tool. The simplified Internet Key Exchange protocol that is designed and implemented within Xscale Core of Intel IXP2800 Network processor as a part of our works that integrating the security functions such as packet filtering, IDS, IPsec based VPN into network device, router, that is based on IXP2800 network processor.
Key-Words: - IPsec, IKE, Network Security, Information Security, Embedded system, IXP2800.
1 Introduction

As increasing the threats to networks, technologies for network security has been developed and improved more and more. Among these technologies, IPsec protocol has been deployed widely at remote business environment such as telecommuting, remote accesses, controls, conference and so on because of its properties, confidentiality and integrity for network traffic.

 Before using IPsec protocol, it is needed that negotiations of security associations(SA), keys between two end points of IPsec tunnel. This negotiation is done manually or automatically and both methods must be supported at any implementations. Internet Key Exchange(that will be called IKE from now) protocol is used when negotiation is done automatically.
 In this paper, we will introduce the implementation of the simplified IKE protocol that has minimal functions according to RFC standards for suitable working and then can be embedded to the network device like router not the VPN dedicated devices. This work is a part of out project that integrating the security functions such as packet filtering, Intrusion Detection, IPsec based on VPN, access control etc into single network device. We selected router as network device and the main processor of router is IXP2800 that is network processor provided by Intel. The introduced IKE is implemented within Xscale Core that is control unit of IXP2800 network processor.

2 Related Works
At present, IKE protocol has been standardized as RFC 2409[1]. IKE is a hybrid protocol combined with a part of Oakley, SKEME, and Internet Security Association and Key Management Protocol(ISAKMP). IKE negotiates Security Associations(SA) on behalf of IPsec and populates the Security Association Database(SADB). ISAKMP provides a framework for authentication and key exchange but does not define them[2]. ISAKMP is designed to be key exchange independent; that is, it is designed to support many different key exchanges. Oakley describes a series of key exchanges that is called ‘modes’ and details the services provided by each, e.g. Perfect Forward Secrecy(PFS) for keys, identity protection, and authentication[3]. SKEME describes a versatile key exchange technique which provides anonymity, repudiability, and quick key refreshment[4]. Although IKE is a part of Oakley and SKEME, it is not dependent on Oakley and SKEME in any ways.
 An IKE protocol must be implemented based on the standards for compatibility among the implementations and then it is possible to run with each other. But, IKE protocol specification of RFC standards is very complex and heavy, and then the system resources that are needed to work will be more increased. So it is more effective that the resolute removal of vulnerable points exposed until now for security and the implementation of the minimal functions according to RFC standards for suitable working together with other IKE protocol implementations. By this simplification, IKE protocol introduced in this paper can be applied to the current trend that various functions are integrated in a single platform like network device.
3 Design
When a secure function including IPsec as well as any other function is added into a router as additional function, we must consider that the overheads of an added function should be reduced as small as possible in order that router can work its inherent function, that is, packet routing. The full set of IKE protocol specification introduced RFC standards is very complex and heavy therefore it will increase the overheads of system to work. So it is necessary that the resolute removal of vulnerable points exposed until now for security and the implementation of the minimal functions according to RFC standards for suitable working together with other IKE protocol implementations. By this simplification, IKE protocol introduced in this paper can be applied to the current trend that various functions are integrated in a single platform like router.

 Applying IPsec VPN to routers can guarantee networks to secure by providing encrypted channels among networks without additional security devices. The integration of various security functions into a single network device is required to current market for the cost reduction and the effective management of various security devices.

 Simplified IKE(that will be called S-IKE from now) is designed to have a minimal influence on working of inherent functions of router because it is an assist module for security not a dedicated module of router. So it is needed to reduce some functions introduced at RFC standards.

 In RFC standards, there are two mode, main mode and aggressive mode, in phase 1 mode and quick mode in phase 2. Additionally new group mode is also introduced. In each phase 1 mode, there are 4 methods for authenticating peer host respectively. I think that these all functions are needed only at VPN dedicated devices and can increase the overheads at embedded devices. Most VPN devices are working usually with main mode and quick mode at negotiation and authenticating peer host by using pre-shared key and certificate-based RSA signature methods.

 Especially, vulnerable points of aggressive mode are being exposed recently at some papers because of its property that send to messages in plain text and there are some tools opened to the public sites that can check the vulnerability of it[5].

The main functions of S-IKE are as fellows.
· Manual negotiation
· Automatic negotiation with Main mode and Quick Mode
· Pre-shared key and Certificate based RSA signature authentication in Main mode
· Policy and tunnel rule management using GDBM
· Pre-shared key and Private Certificate management using GDBM
· Confidentiality of Negotiation Messages by DES, 3DES, AES
· Integrity of Negotiation Messages by HMAC-MD5, HMAC-SHA1
· Perfect Forward Secrecy(PFS) : DH group 1, 2, 5
 S-IKE uses GDBM interface to manage tunnel policies and keys effectively. Because GDBM interface has an advantage of database with lower cost, it may be suitable for embedded system.

 The architecture of S-IKE is shown in Figure 1. S-IKE is divided into three block in functional; Management block manages all the information needed in negotiation that is tunnel policy, pre-shared key, certificates, negotiated status etc. Negotiation block does a negotiation with other IKE protocol by exchanging messages. Algorithm block encrypts or decrypts messages for confidentiality and authenticates messages for integrity. In addition, PF_KEY interface is used to send security policy(SP) and security association(SA) negotiated to IPsec engine. PF_KEY interface supports secure key management API and is defined in RFC 2367[6]. It is stored in each database that tunnel policies, pre-shared keys, certificates and so on. For proper control of S-IKE, various control programs are used, for example starting and stopping S-IKE, acquiring status of each tunnel, initiating of each keys etc.
[image: image1]
[image: image12.png]

Fig 1. The architecture of Simplified IKE for IXP2800
 Figure 2. Flow chat of S-IKE processing

First of all, S-IKE initiates various negotiation constants, random numbers, status information, each algorithm variables, each interface of PF_KEY and control programs. And S-IKE loads pre-shared keys and certificates from key and certification databases respectively. After initialization is done, S-IKE listens any request from control programs, other IKE protocol and IPsec engine. The main request that S-IKE receives is as follows

· addition of tunnel policy : process that control program sends a tunnel policy to S-IKE. After this process, S-IKE can configure the tunnel policy internally and ready to negotiate for the policy
· negotiation : process that S-IKE negotiate with other IKE protocol. After negotiating, the negotiated SP and SA are sent to IPsec engine through PF_KEY interface
· request of IPsec engine : When a validation of IPsec SA is expired and when SA related the SP to be applied is not exist, IPsec engine can request the new SA to S-IKE. And then S-IKE negotiates for new SA
· other : various request from control programs that is restarting or shutdown of S-IKE, acquiring of tunnel status, re-initialization of keys and certificates

[image: image2]
Fig 2. Flow chat of SE-IKE processing

 S-IKE can negotiate with other IKE protocol only after tunnel policy is added by control program. Adding policy into S-IKE allows S-IKE to know the policy to be negotiated. Whenever tunnel policy is added, S-IKE configures the connection information from the added policy and adds the connection information into the connection list. If negotiation is started, the negotiated connection information has its own state information that has the states of negotiation progress and negotiated SA etc.

[image: image3]
Fig 3. Transition of tunnel status
 Also, S-IKE has the three states of each tunnel policy as follows and this status can be shown by control programs to the user. Figure 3 shows the transition of tunnel states.

· NONE : Policy is stored in DB policy and S-IKE does not know this policy. The policy that has this status cannot be negotiated yet.
· READY : Policy is added into S-IKE. The policy that has this status can be negotiated.
· TUNNEL : Policy has been negotiated and tunnel has been created. The packets of the tunnel are encrypted by IPsec protocol.
Whenever tunnel state is changed, the state is also changed immediately. So manager can identify easily the tunnel state.
4 Development Environment
For implementing S-IKE, I have used the IXDP 2801 Advanced Development Platform and Montavista Linux Pro 3.1. IXDP 2801 Advanced Development Platform is provided by Intel Inc. for developing IXP 28x0 families of network processors[7] and IXP2800 Network processor is used in my board. The IXP2800 network processor is a member of Intel's second-generation network processor family with processing capabilities at OC-192/10 Gbps line rate. Its store-and-forward architecture combines a high-performance Intel XScale core with sixteen 32-bit independent multi-threaded microengines for parallel and pipeline processing of packets[8]. Figure 4 shows IXP2800 network processor functional blocks roughly.

[image: image4]
Figure 4. IXP2800 network processor functional blocks
 Memory controller is used for accessing to external memory, SRAM and DRAM. 16 micro engines is specialized for Network Processing and do the main data plain processing per packet. Xscale Core is General purpose 32-bit RISC processor(ARM version 5 Architecture complaint) used to initialize and manage the network processor and can be used for higher layer network processing tasks. And Montavista Linux Pro 3.1 is used for Xscale core as operating system. It is the development tool for developing linux system under embedded environment[9]. It supports various CPU type including Xscale, linux kernel of 2.4.20 version, over 290 application packages and so on. S-IKE is developed under cross-compilation(or cross development) environment using Montavista Linux Pro 3.1. It is configured host system and target system as shown figure 5.

[image: image5]
Figure 5. Development Environment
 Coding and compiling is done at host and running is done at target board. Local network line is used for loading the executable image into Xscale core of IXP2800 and serial line is used for controlling and debugging target board through console terminal at host. For development of embedded system, cross-compilation environment is more used in large than local-compilation environment because cross-compilation environment can reduce the time of development(or compilation) and support more convenient tools.
5 Test
We had tested that the creation of IPsec VPN tunnels by negotiating between S-IKEs and between S-IKE and CISCO 3700 series router for interoperability with other IKE implementations. And then we check that the packets are encrypted. SA groups used to test are combined with various encryption and authentication algorithms and Diffie-Hellman groups for PFS. S-IKE works well.

 And then we had tested with IxVPN test S/W tool and IXIA test device for the performance of S-IKE as shown figure 6. IXIA device plays a role of peer host to be negotiated virtually and various test group can be configured by IxVPN[10].

[image: image6]
Figure 6. Performance test of S-IKE with IXIA

 The test group used in performance test is that 3DES-MD5, DH group 2 in Phase 1 and 3DES-SHA1, DH group 5 in Phase 2. Test is iterated 10 times under the same condition as above. The result is shown in table 1 and the value is an average of each test. And S-IKE can create about 6 tunnels per second.
Table 1. Performance of SE-IKE

	Tunnel setup rate

(Average Tunnel Creation rate)
	5.8454 tunnels/sec

	Phase 1 latency (Main mode)
	0.0949 second

	Phase 2 latency (Quick Mode)
	0.0759 second

	Total latency
	0.1709 second

6 Conclusion

Although the importance of network security is increased, deployment of security devices additionally may be a heavy burden in the aspect of management and the cost. It may be the trend of the security that security functions are integrated into the network devices such as router. So it is an essential technology that adding security functions into device with the minimal overhead to the inherent function of devices.

 This paper introduces S-IKE for IPsec that runs under the embedded system, IXP2800 network processor as the current trend. Although S-IKE does not satisfy all requirements of RFC standards, it may work well because it has the essential functions that are used in most IKE protocol. In practice, S-IKE had tested with CISCO 1700, 3600 series VPN router and test tool, IxVPN.

 IKE protocol that is used currently is called IKEv1. IKEv1 is very complex and vulnerable to security. So the draft version as the improved IKEv1 that is called IKEv2 have been made and will be determined as new standards in recent days. In the future work, we will study and implement the IKEv2 specification.
References:

[1] Harkins, D., and Carrel, D., The Internet Key Exchange(IKE), RFC 2409, November 1998.

[2] Maughhan, D., Schertler., Schneider, M., and J. Turner, Internet Security Association and Key Management Protocol(ISAKMP), RFC 2408, November 1998.

[3] Orman, H., The Oakley Key Determination Protocol, RFC 2412, November 1998.

[4] Krawczyk, H., SKEME: A Versatile Secure Key Exchange Machnism for Internet, IEEE Proceedings of the 1996 Symposium on Network and Distributed Systems Security.

[5] IKECrack – Bruteforce crack for IPsec, http://ikecrack.sourceforge.net

[6] McDonald, D., Metz, C. , and Phan, B., PF_KEY Key Management API, Version 2, RFC 2367, July 1998.

[7] Intel® IXDP2801 and Intel® IXDP2851 Advanced Development Platforms System User’s Guide, Part number: C58425-002 Rev 01, August 2004.
[8] Intel® IXP2800 Network Processor: Hardware Reference Manual, Intel Corporation, Aug 2004.

[9] MontaVista® Linux® Professional Edition 3.1 User’s Guide, February 2004.

[10] IxVPN User’s Guide, Release 1.10, Part No. 909-0121-02 Rev. A, March 2004.
IPsec Engine

Priv. cert.

Directory

Host cert.

Directory

CA cert.

Directory

conf. file

other

Control

programs

policy DB

Micro Engine

key DB

other

IKE

PF_KEY socket interface

Algorithm

block

Negotiation

block

Management

block

S-IKE is

running

ME

ME

ME

ME

ME

ME

ME

ME

ME Cluster 1

Other

Unit

ME

ME

ME

ME

ME

delete policy from S-IKE

create tunnel

delete SA

add policy to LE-IKE

delete SA & policy from S-IKE

TUNNEL

READY

NONE

ME

ME

ME

ME Cluster 0

Xscale

Core

SRAM & DRAM

Controller

Scratched

Memory

Xscale(Linux)

negotiate

request from IPsec engine

negotiate

add policy

listen

requests

load pre-shared keys and ca/private cert.

Initiate S-IKE

start

� EMBED Unknown ���

IXP2800

Network

 Processor

Debug port

Network port

Host for

Developing

Local network

serial

MontaVista

Linux Pro 3.1

Target Board

(IXDP 2801)

� EMBED Unknown ���

Target board

(IXDP2801)

Negotiation with configured SAs

Test port

IXIA test device

Configure

test group

IxVPN

� EMBED Unknown ���

Host for developing

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10.png]

[image: image11.png]B ow T wiei

_1165912603

_1179163968

