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Abstract: - Hash functions are utilized in the security layer of every communication protocol and in signature authentication schemes for electronic transactions.As time passes more sophisticated applications-that invoke a security layer- arise and address to more users-clients. This means that all these applications demand for higher throughput. In this work a pre-computation technique has been developed for optimizing all frequently used – and those that will be used in the future- hash functions such as MD-5, SHA-1, RIPEMD (all versions),      SHA-256, SHA-384, and SHA-512 etc. Comparing to conventional pipelined implementations of hash functions the applied pre-computation technique leads to a 40%-25% higher throughput. 
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1
Introduction

Nowadays many applications like the Public Key Infrastracture (PKI), IPSec, Secure Electronic Transactions (SET), and the 802.16 standard for Local and Metropolitan Area Networks incorporate authenticating services. All these applications pre-suppose that an authenticating module that includes a hash function is nested in the implementation of the application. Hash functions are also required for authentication to Virtual Private Networks (VPN’s) that companies are establishing in order to exploit on-line collaboration. Moreover digital signature algorithms like DSA that are used for authenticating services like electronic mail, electronic funds transfer, electronic data interchange, software distribution, data storage etc are based on using  a critical cryptographic primitive like hash functions.
From all the above it is quite clear that all applications that incorporate hash functions are addressing to more users-clients and thus it is a prior necessity the increase of their throughput. This is because the cryptographic system, especially the server, has to reach the highest degree of throughput. The high-speed of the hash functions calculation is strongly related to the streamlined communication of the two subscribers of the latter mentioned applications. Especially in these applications that transmission and reception rates are high, any latency or delay on calculating the digital signature of the data packet leads to degradation of the network’s quality of service.       What was observed until nowadays was the use of redundant hardware to increase throughput to a desired level. However, these implementations are not optimal in terms of maximum operating frequency and throughput, due to the fact that these parameters were of no practical interest. Additionally most of the proposed implementations didn’t consider that the products introduced to the market tend to be as small as possible.
The latter mentioned facts were strong motivation to propose a novel methodology for hardware implementation applicable to almost all kind of hash functions. The proposed implementation introduces a negligible area penalty; increasing the throughput and keeping the area small enough as required by most portable communication devices. 
This technique is applicable to a wide range of hash function such as MD-5 [1], SHA-1 [2], RIPEMD that are currently widely deployed and even in SHA-256 [3], SHA-384 [3] and SHA-512 [3] that are going to be used in the near and upper future because of the security problems that have recently been discovered in both SHA-1 [4] and MD-5 [5]. To put into practice the presented technique    two certain hash functions have been used: the SHA-1 hash function representing the now-used hash functions and SHA-256 representing the hash functions that are going to be used in the future replacing the ones that are now-used because of their security problems.
The rest of this paper is organized as follows. In section 2 the proposed implementation is presented in depth, providing details regarding the architecture, the logic and the modifications to decrease the critical path. In section 3 examples of implemented hash functions in FPGA technology are compared to other implementations. Finally in section 4 the paper concludes.
2
Proposed Implementation
Hash functions are iterative algorithms that produce a message digest after a number of similar operations i.e. 64 operations for MD-5, SHA-256 and 80 operations for SHA-1, SHA-384, SHA-512 etc. An approach that increases significantly throughput is the application of pipeline. This has a small area penalty but leads to a significant higher throughput which is the main need of market considering the servers for VPN’s, DSA etc. for this reason, most of the proposed implementations exploit the benefits that pipeline offers, balancing the achieved throughput with the introduced area penalty.

From a survey to all hash functions it is clear enough that the best compromise is to apply four pipeline stages so as to quadruple throughput and keep the hash core small as well. This approach enables four operations to be carried out concurrently 

In Fig. 1, the general architecture for all hash cores is illustrated, where there are four pipeline stages and a single operation block for each round among with the rest necessary parts.
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Fig 1. Typical hash core architecture with 4 pipeline stages including a single operation block
The critical path of the illustrated architecture is located between the pipeline stages. The other units, MS RAM and Constants’ Array, do not contribute due to their nature (memory and hardwired logic respectively), while control unit is a block containing very small counters which also don’t contribute to the overall maximum delay. Thus, optimization of the critical is solely focused on the operation block. 
Although the need for high throughput is recognized the performance of all hardware implementations are degraded because there has not been much effort in optimizing the conventional implementation of the transformation rounds which are responsible for performing every single operation.
In order to produce a hash function implementation with a higher throughput   we should consider how throughput is calculated and then select which term of the formula should be manipulated. The throughput of a hash function implementation is given by the following equation:
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where #bits is equal   to the number of bits processed by the hash function, #operations corresponds to the required clock cycles between successive messages to generate each Message Digest and foperation indicates the maximum operating frequency of the circuit.

From the above equation and considering that a message block, as provided by the padding unit, is at most 512 bits, the two terms that can be manipulated is either #operations or the circuit’s operating frequency, foperation. Manipulation of the #operations is translated to the introduction of more than four pipeline stages. However, this is not optimal regarding the requirement for small-sized implementations. Thus, the targeted design approach should focus to the increase of the operating frequency, foperation, without introducing a significant area penalty. 

2.1
Optimizing block’s operating frequency
The critical path of the illustrated architecture in Fig. 1 is located between the pipeline stages and this is where the pre-computation technique is going to be applied in order to reduce the critical path and thus increase the operating frequency of the operation block which will finally lead to a much higher throughput for the hash function and corresponding for the whole security scheme. 
To all equations describing the operations executed in every hash function a notice that can be made is that some outputs are derived directly from some inputs values respectively. It is possible during one operation to pre-calculate some intermediate values that will be used in the next operation. Furthermore, moving the pipeline stage to an appropriate intermediate point to store these intermediate calculated values, the critical path is divided resulting in a decrease of the maximum delay. 

Let’s consider the example of SHA-1 hash function and how the pre-computation technique is applied. Unfolding the expressions of at, bt, ct, dt, et, as they described in [4], it is observed that at-1, bt-1, ct-1, dt-1 values are assigned directly to outputs bt, ct, dt, et respectively. In Eq. (2) the expressions of at, bt, ct, dt, et, are defined.
	et = dt-1
dt = ct-1
ct = ROTL30(bt-1)

bt = at-1 

at = ROTL5(at-1) + ft(bt-1,ct-1,dt-1) + et-1 +Wt    + Kt
	(2)


where ROTx(y) represents rotation of word y to the left by x bits and ft(z,w,v) represents the non-linear function associated to the round.

From the above, it is derived that the maximum delay is observed on the calculation of the at value. The synthesis of the at results in the datapath illustrated in Fig. 2 with a glitch-free addition, for the inputs at-1, et-1, Wt and Kt. 

The outputs bt, ct, dt, et are derived directly from the at-1, bt-1, ct-1, dt-1 values respectively, and it is possible to pre-calculate some intermediate values and move the pipeline registers to an appropriate intermediate point to store them.

 Thus, Eq. (2) is transformed to generate the intermediate values a*t-1, b*t-1, c*t-1, d*t-1, e*t-1 and gt-1 as described in Eq (3) and illustrated in Fig 3. 

	e*t-1 = et-1+Wt+Kt
d*t-1 = dt-1
c*t-1 = ct-1
b*t-1 = bt-1
a*t-1 = at-1
gt-1 = ft(bt-1,ct-1,dt-1)

et = d*t-1
dt = c*t-1
ct = ROTL30(b*t-1)

bt = a*t-1 

at = ROTL5(a*t-1) +  e*t-1 + gt-1
	(3)
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Fig 2. A single SHA-1 operation block
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Fig 3. Transforming the operation block

Applying the transformation to the operation block and exploiting the fact that outputs bt, ct, dt, et are derived directly from the at-1, bt-1, ct-1, dt-1 values respectively, the critical path is shortened by one adder level, which contributes approximately 30% to the overall maximum delay.
Analyzing Eq. (3) some observations can be made. First, the introduced area penalty is a single register, for each round, that stores the intermediate value gt-1. Second, power dissipation is kept low and almost the same to that of the initial implementation as illustrated in Fig. 2.

Finally, the critical path is reduced to a two stages addition and a multiplexer. Notice that output at enters the multiplexer and feeds a no-load wire   at-1 which stores its value to the register as a*t-1. On the other hand, at the pre-computation block, input et-1 that contributes to the calculation of e*t-1, as well inputs dt-1, ct-1, bt-1, used to calculate gt-1, are fed through the multiplexer from the intermediate register outputs d*t-1, c*t-1, b*t-1, a*t-1, respectively.  

Thus, higher operating frequencies may be achieved, with negligible area overhead, if we replace the operation block of the SHA-1 core with the proposed one, as illustrated above in Fig 3.  

The proposed technique introduces a pre-computational stage which allows timing transformation of the calculation formulas to generate disjoint intermediate signals. Applying further a spatial transformation to the pipeline stages, to store these intermediate signals high-performance operation was finally achieved.
Let’s consider now another example, the SHA-256 hash function and how the pre-computation technique is applied. In Fig 4 the hardware implementation of a single SHA-256 operation is illustrated. It can easily be observed that the critical path for this block that determines the corresponding operating frequency of the block consists of four addition levels and a multiplexer that are required for the values at and et to be computed.
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 Fig 4. A single SHA-256 operation block
The same SHA-256 block where the pre-computation technique has been applied is illustrated in Fig 5 where as it will be shown the critical path has been reduced to three addition levels and a multiplexer, thus resulting to about 30% increase of the operating frequency and the corresponding throughput as well.
Let’s suppose that at a certain point of time all intermediate results for the Xst operation have been computed from the “Pre-Computation” unit. The “Final Computation” unit after the registers demands two addition levels in order to compute the valid values for at and et  while all other values are computed at once. So in the mid time   while   at and et  are being computed the “Pre-Computation” unit has started the computations for the intermediate results that will be needed for the (X+1)st operation. It is reminded that values Wt and Kt are constants that are known and read from registers whenever it is needed.
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Fig 5. Transforming the operation block

After time of two addition level  at and et  have been computed but also values h*t ,bt ,ct ,dt ,ft ,gt that are used in the computations of the (X+1)st operation have also been computed and are valid. The only values that remain to be computed in the “Pre-Computation” unit are p1* and p2* that require valid values for at and et  to have been computed. The computations for p1* and p2* are performed in about time of one addition level after the valid values of at and et  have arise.

 To sum up in time of three addition levels the  valid values for at and et  have been computed but also all intermediate values of the “Pre-Computation” unit that will be needed for the next (X+1)st operation have been computed. So the necessary time for performing all required computations at each operation is the time of three addition levels instead of four in the conventional block implementation in Fig 4. 
It is remarked that Maj(a,b,c), Ch(e,f,g), Σ0(256) (a) and Σ1(256) (e) are bitwise operations that practically are performed in negligible time. 
The pre-computation technique can also be applied in other hash functions such as MD-5, RIPEMD, SHA-384, SHA-512 etc with the same way, resulting in similar results. The introduced area penalty is only one (in SHA-1) or two (in SHA-256) 32-bit registers which are used for storing some intermediate results. The introduced area penalty is about 4% for the whole hash core compared to the conventional pipelined implementations. This means a much less area penalty (about 1% or even less) for the whole security scheme that is included in a corresponding application.  This area penalty sure enough is worth paying for an increase of throughput at about 30%.
3
Experimental results  
In order to evaluate the proposed hash functions implementations, the XILINX FPGA technology was used. The cores were developed for and integrated to a v150bg352 FPGA device. The design was fully verified using a large set of test messages, apart from the test example proposed by the standard. The achieved operating frequency is equal to 97.8 MHz for SHA-1, which corresponds to an increase of about 40% compared to the implementations of [6], [7], [8], [9], [10] and [11]. For a fair comparison, among the compared implementations that are considered, the work that was presented in [12] is included, which although it doesn’t present a competitive throughput it is one of the most recent on the same topic.

Achieving this high frequency, throughput exceeds 2.5 Gbps. In Table 1, the proposed implementation and the implementations of [6], [7], [8], [9], [10] and [11] are compared. From the experimental results, there is about 40% increase of the throughput compared to the previously better performing implementation
	SHA-1
	Frequency (MHz)
	Throughput (Mbps)

	[6]
	43
	119.0

	[7]
	71
	1731.2

	[8]
	72
	1842.2

	[9]
	72
	460.8

	[10]
	55
	1339.0

	[11]
	38.6
	900.0

	Proposed
	98.7
	2526.7


Table 2.  Throughput Comparison of proposed and other alternatives SHA-1 implementations
Furthermore, as far as it concerns the introduced area overhead for the SHA-1 hash core, the proposed implementation presents an increase of approximately 7.5% compared to the nearest performing implementation. The relevant comparisons are shown in Table 2. This turns the proposed implementation suitable for portable and mobile devices, meeting this way the constraint for small-sized designs. 
	SHA-1
	Area 
(CLBs / Dffs)

	[6]
	1004 / -

	[7]
	1018 / 1036

	[8]
	878 / 1735

	[9]
	518 / 1036

	[10]
	2245 / -

	[11]
	1550 / -

	Proposed
	950 / 1164


Table 2.  Area Comparison of proposed and other alternatives SHA-1 implementations

The achieved operating frequency is equal to 65.5 MHz for SHA-256 , which corresponds to an  increase of more than 25% compared to the implementations of [12], [13], and a conventional pipelined implementation that was developed for a fair comparison. Achieving this high frequency, throughput exceeds 2.0 Gbps. In Table 3, the proposed implementation and the implementations of [12], [13] and a conventional pipelined implementation are compared.
	SHA-256
	Frequency (MHz)
	Throughput (Mbps)

	[12]
	83
	326.0

	[13]
	74
	291.0

	Conv.Impl
	50.1
	1632.0

	Proposed
	64.1
	2052.1


Table 3.  Throughput Comparison of proposed and other alternatives SHA-256 implementations

From the experimental results, there is more than 25% increase of the throughput compared to the conventional implementation and more than 600% compared to the previously better performing implementation. The introduced area overhead for the SHA-256 core is approximately 9.5% compared to the conventional implementation. The area penalty compared to the non-pipelined implementations of [12], [13] is much more significant but the comparison is unfair both for area and throughput and that is the reason for developing the conventional pipelined implementation of SHA-256. So far not many works concerning SHA-256 have been presented and thus the comparison is done among only three alternatives with the one of them to have been developed by the authors in order to make fair comparisons.
4
Conclusion
The pre-computation technique has been presented in this paper introducing a pre-computational stage which allows timing transformation of the calculation formulas to generate disjoint intermediate signals and spatial transformation to the pipeline stages. This technique is forming a generic methodology to design high-speed implementations for various families of hash functions.

 A high-speed implementation of the SHA-1 hash function and the SHA-256 hash function was developed in this paper applying the pre-computation technique. It is the first known implementation that exceeds the 2.5 Gbps throughput limit (for the XILINX FPGA technology - v150bg352 device) for SHA-1 hash function and the 2 Gbps throughput limit for SHA-256 hash function. From the experimental results, it was proved that SHA-1 proposed implementation was about 40% faster than any previously known implementation whereas SHA-256 proposed implementation was more than 25% faster than the conventional pipelined implementation.

 Additionally, the introduced area penalty was approximately 7.5% compared to the nearest performing implementation for SHA-1 and 9.5% for SHA-256 compared to the conventional pipelined implementation. This makes both implementations suitable for every new wireless and mobile communication application that urges for high-performance and small-sized solutions. 
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