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Abstract: This paper deals with scheduling n  jobs in an m -machine job-shop environment to minimizes the 
maximum overall completion time of all jobs called make-span. In this multiprocessor scheduling problem we 
assume that the jobs are available at time zero and have no sequence- dependent setup times on machines. For 
solving the scheduling problem we develop a new Branch and bound algorithm which constructs its search tree 
gradually and doesn’t need large size of memory. We will propose a lower bound cost for Branch and bound 
method. Furthermore for initializing the root node in the search tree a heuristic upper bound cost will be 
introduced which reduces the branch-and-bound computations. For applying the resultant optimum schedule on 
the manufacturing system a supervisor Petri net is introduced. The proposed methods will be verified through a 
computational experiment.   
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1 Introduction 
The problem of assigning a given collection of tasks 
to a given set of processors with a minimum make-
span is commonly referred to as the multiprocessor 
scheduling problem [1]. The search for a solution to 
the multiprocessor scheduling problem is performed 
with the aid of a search tree that represents the 
solution space of the problem, that is, all possible 
permutations of task–to–processor assignments and 
schedule orderings. The branch-and-bound (B&B) 
strategy has been successfully used for searching the 
solution space and finding optimal or near-optimal 
solutions to the problem of scheduling tasks on 
multiprocessor architectures [2-4].  
     The solution space is often represented by a 
search tree where each vertex in the search tree 
represents a specific task–to–processor assignment 
and schedule ordering, and one or many vertices 
represent the optimal solution whenever one exists. 
The root vertex of the search tree represents an 
empty schedule and each of its descendant vertices 
(children) represents the scheduling of one specific 
task on one specific processor. The children of each 
of these child vertices represent the scheduling of yet 
another task on one processor [2]. 
     Scheduling jobs on unrelated parallel machines is 
a common problem, where a set of machines is 

available to process the jobs simultaneously. In the 
general case of unrelated machines, the processing 
time for a job on a machine is independent of its 
processing time on other machines. In a 
manufacturing plant, for example, many machines 
may be able to process a job but with different 
speeds depending on the machine's technology. In 
such a system assuming that each machine can 
operate on each of jobs, we encounter nm  distinct 
leaves (goal nodes) in search tree. Constructing this 

tree thoroughly needs ∑
=

n

k

km
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 memory cells, so that 

even for low number of jobs and machines, it needs a 
large size of memory which causes run time to 
decrease in computer-based application of B&B 
algorithm.  
     In this paper we introduce a new method, which 
enables us to construct the search tree gradually, to 
solve this problem. Using this new algorithm, 
vertices are generated just when the B&B algorithm 
needs to explore them. A standard approach for 
evaluating effectiveness of a heuristic solution is to 
compare the value of the heuristic solution with a 
lower bound on the optimal solution [5]. For this 
reason, we establish a lower bound on the make-
span. Furthermore for initializing the root node in the 
search tree a heuristic upper bound cost will be 



introduced which reduces the branch-and-bound 
computations. For applying the resultant optimum 
schedule on the manufacturing system a supervisor 
Petri net is used.  
 
 
2 The Multiprocessor System 
The multiprocessor system consists of a set of 
processors (manufacturing cells) indexed 
by { }mIi ,...,2,1 =∈  and a set of jobs, indexed 
by { }nJj ,...,2,1 =∈  where each of jobs can be 
processed by each of the machines. It is assumed that 
the required processing time of each job is different for 
each of machines. Furthermore it is assumed that there 
are no sequence- dependent setup times on machines. 
In other word, the main problem is to determine that 
which job must be processed by any machine and once 
a set of jobs is assigned to a machine, it is not 
necessary to find the job sequence on that machine. 
We can summarize all of these processing times in a 

mn ×  time matrix as follows: 
  (1)mnjitT ×= ][  

Where jit  represents the processing time of jth job ith 
machine. If a machine isn't eligible to process a specific 
job it can be considered by setting the corresponding 
processing time in T  to infinity. We introduce iC  as 
the completion time of the last job scheduled on ith 
machine which can be defined as follows: 
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Where in  is number of jobs scheduled on machine i  
and jit  is the processing time of job j  on machine 

i . By using iC , the make-span ( maxC ) can be defined 
as:   

  (3))(maxmax i
Ii

CC
∈

=  

Where the objective of scheduling is to minimize the 
make-span. 
 
 
3 Branch and Bound Algorithm 
Branch and Bound is a common search technique for 
combinatorial optimization. B&B improves over 
exhaustive enumeration, because it avoids the 
exploration of those regions of the solution space, 
where it can be certified (by means of lower bounds) 
that no solution improvement can be found. B&B 
constructs a solution of a combinatorial optimization 
problem by successive partitioning of the solution 
space. The branch refers to this partitioning process 
(generating the child vertices); the bound refers to 

lower bounds that are used to construct a proof of 
optimality without exhaustive search (process of 
evaluating the cost of new child vertices). The 
exploration of the solution space can be represented 
by a search tree, where its nodes represent sets of 
solutions, which can be further partitioned in 
mutually exclusive sets. Each subset in the partition 
is represented by a child of the original node. 
Whenever a new vertex is generated which could 
lead to an optimal solution, it will be referred to as 
an active vertex. The power of the B&B strategy lies 
in alternating branching and bounding operations on 
the set of active vertices. 
     A goal vertex in the search tree represents a 
complete solution where all tasks have been 
scheduled on the processors. An “acceptable” 
complete solution is also called a feasible solution. 
An intermediate vertex represents a partially 
complete schedule. The level of a vertex is the 
number of tasks that have been assigned to any 
processor in the current schedule. The cost of a 
vertex is the quality of the schedule represented by 
the vertex. 
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Fig.1: The structure of a tree. 
 

     The B&B algorithm starts by sequencing one of 
the available operations called branching the node. 
By branching a node, a new node is formed and the 
node is kept in the search space if its lower bound 
value is better than the upper bound value or vice 
versa. A heuristic is used to schedule the remaining 
operations for every node and the best solution found 
so far will be recorded as the upper bound value. The 
next node to be branched is the one with the best 
lower bound value, as it is deemed to have the best 
potential. As more nodes are branched, more and 
more operations will be sequenced, and the upper 
bound value will become smaller and smaller [6]. 
     An algorithm that computes a lower bound on the 
cost of any solution in a given subset prevents 
further searches from a given node if the best cost 
found so far is smaller than the cost of the best 
solution that can be obtained from the node (lower 
bound computed at the node). In this case the node is 
killed and no children need to be searched; otherwise 
it is alive. 



3.1 Upper-Bound Cost 
It is well known that B&B computations can be 
reduced by using a heuristic to find a good solution to 
act as an upper bound prior to the application of the 
enumeration algorithm, as well as at certain nodes of 
the search tree [3]. An upper-bound cost (UBC) is 
used to initialize the root vertex. The more accurate 
the upper-bound cost is, the faster the B&B 
algorithm will get because more vertices can be 
pruned at each step. For the mentioned scheduling 
problem we introduce a heuristic UBC as follows: 
     Consider the jobs one by one from 1 to n . 
Related to each job, after adding the make-spans of 
scheduled machines to the corresponding processing 
times related the new job we select the machine with 
minimum overall time and consider its index as the 
machine which the corresponding job is assigned to 
it. When this process is completed we have a 
sequencing of machines related to jobs. Now we 
calculate the completion time of each machine and 
based on them we compute maxC  of this sequencing 
as a UBC using (3).  
 
3.2 Lower-Bound Cost 
In this section we show that a lower bound cost 
(LBC) can be found as follows:  
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For proofing this relation as it was explained the 
make-span of each sequence is }{maxmax i

Ii
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∈
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where iC  is defined by formulation (2). It can be 
shown that: 
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Substituting (2) in (5) we have: 
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Considering that in  is the number of jobs scheduled 
on machine i  and based on that the total number of 

scheduled jobs on machines is nn
m

i
i =∑

=1
 we can 

rewrite equation (6) as follows: 
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To minimize the make-span we must choose an 
optimum schedule to achieve }min{ maxC . Assuming 

that njt ji ,...,2,1  : * =  is the processing time of the 
optimal sequencing we have: 
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Using (8) and (9) we have: 
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This indicates the truth of (4). 
 
 
4 The New Branch and Bound 

Algorithm 
In this section we introduce a new B&B algorithm 
based on a new method which constructs the search 
tree step by step. For solving the problem it is 
required to consider all possible combinations for 
assigning n  distinct jobs to m   individual machines. 
In our new approach, instead of constructing the 
whole of the search tree for mentioned 

multiprocessor system which needs ∑
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 memory 

cells, we just need a 1×n  vector D  which reduces 
this high size of memory to only n  memory cells. 
The key idea in proposed B&B algorithm is to 
produce the nodes of this search tree one by one just 
when the B&B algorithm needs to explore it.  First 
we introduce an algorithm that can produce each of 
the possible combinations of m  machines and the n  
jobs assigned to them, one by one. 
 

Algorithm I: 

1- Get n  as the number of jobs and m  as the 
number of machines.  

2- Set  [ ]T111 K=D  as the initial value of D  
and set nf =  as a temporary flag. 

3- Get D  as the new sequence of machines which 
can be assigned jobs respectively. 

4- Set 1)()( += ff DD  . 
5- IF mf >)(D  and 1>f  THEN set  1)( =fD   and 

1−= ff  then go to step 4 ELSE go to step 6. 
6- IF mf ≤)(D  THEN go to step 3 ELSE go to step 

7. 
7- End. 

As it can be seen in this algorithm we only needs a 
1×n  vector and this decreases the memory size 

considerably. Now based on algorithm I we 
introduce a B&B algorithm to solve the mentioned 
scheduling problem. 

 



Algorithm II: 

1- Get n  as the number of jobs,  m  as the number 
of machines and T   as the matrix which includes 
machines processing times on jobs.  

2- Set  [ ]T111 K=D  as the initial value of D  
and set nf =  as a temporary flag. 

3- Get D  as the sequence of machines which are 
assigned jobs respectively and Calculate the 
make-span ( maxC ) of machines based on 
formula (3) then set MC  (minimum make-span) 
equal to maxC . 

4- Get ):1( fD  as the sequence of machines which 
are assigned jobs respectively and calculate the 
make-span ( maxC ) of machines.  

5- IF MCC ≥max THEN go to step 7 ELSE go to 
step 6. 

6- IF nf =  THEN set maxCMC =  and go to step 7 
ELSE set 1+= ff  and go to step 4.   

7- Set 1)()( += ff DD . 
8- IF mf >)(D  and 1>f  THEN set  1)( =fD   and 

1−= ff  then go to step 7 ELSE go to step 9. 
9- IF mf ≤)(D  THEN go to step 4 ELSE go to step 

10. 
10- End. 

     This B&B method performs a depth first search in 
an exhaustive manner. In this algorithm the value of 
f  in every stage indicates the level of the search 

tree. When the fth element of vector D  exceeds m , it 
denotes that the branching must be restart from the 
previous node. This process will be done by resetting 
the fth element of  D  to 1 and decrementing f  by 1. 
Creating a new node at the level f , the make-span of 
the path from root to this new node will be tested and 
if it isn't less than the current LBC that node is killed 
by incrementing the corresponding element at 
vector D . Otherwise that node will be remained as a 
activate node and the branching will be continued by 
incrementing f  and creating a new node at the next 
level of the search tree. The branching may be 
continued until it reaches a leaf where nf = . In this 
algorithm each node is constructed when it must be 
tested and there isn't need to construct the whole 
search tree at once.                                       
     Because their powerful modeling capability for a 
variety of systems, Petri Nets have been chosen as 
the modeling tool for modeling, in this paper. Next 
sections deal with Petri nets and using them for 
modeling the manufacturing systems [9]. Also to 
apply the optimum sequence obtained trough B&B 
algorithm, we introduce a supervisor Petri net.  

5 Petri Nets 
A Petri Net (PN) is a 5-tuple, ( )0,,,, MWFTPPN=  
where [10]: 

{ }mpppP K21=  is a finite set of places.    
{ }ntttT K21=  is a finite set of transitions. 
( ) ( )PTTPF ××⊆ U   is a set of arcs (flow relations) 

 { }K321: →FW  is a weight function. 
{ }K210:0 →PM  is the initial marking . 

Φ=TPI   and  Φ≠TPU . 
A Petri net structure ( )WFTPN ,,,=  without any 

specific initial marking is denoted by N , and a Petri 
net with the given initial marking is denoted 
by ( )0,MN . 

The dynamical behavior of a system is modeled 
by changing the state or marking in Petri nets 
according to the following (firing) rules: 

1- A transition t is said to be enabled if each input 
place p of t is marked with at least ( )tpw ,  tokens, 
where ( )tpw ,  is the weight of the arc from p to t. 

2- An enabled transition may or may not fire 
depending on whether or not the event actually 
takes place (firing conditions are ok). 

3- Firing of an enabled transition t removes ( )tpw ,  
tokens from each input place p to t and adds 
( )ptw ,  tokens to each output place p of t, where 
( )tpw ,  and ( )ptw ,  are the weights of the arcs 

from p to t or t to p respectively. 

     In graphical representation of a Petri net, places 
are represented by circles and transitions are shown 
by hollow bars. The relationship between places and 
transitions is represented by directed arcs. Also each 
Petri net can be denoted by two input and output 
matrices related to transitions of Petri net. For 
example The Petri net of Fig. 2 depicts the firing of a 
transition. 
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Fig.2: Transition (firing): (a) Marking before firing 

(b):  Marking after firing. 
 

     In un-timed Petri net one can prohibit controlled 
transition from firing but cannot force the firing of a 
transition at a particular time. In a timed Petri net 
controlled transitions are forced to fire, by 
considering the time dependent firing functions. In 
timed Petri nets, each transition has its specific time 



which determines the transition's holding time. When 
a transition is fired during its holding time the 
network's marking is not changed and as soon as its 
holding time elapsed the marking of network will be 
changed based on the former mentioned firing rules 
[11-12]. 
 
 
6 Applying B&B Using Petri Nets 
For modeling the mentioned multiprocessor job-shop 
system it is considered that each machine has an 
input buffer and an output buffer as shown in Fig. 3. 
In this work to simplify the model the wait times are 
included in machining times. 

M oBiB

 
Fig. 3: Schematic diagram of a machine 

 
The Petri net model of each machine is designed 
regarding its input and output buffers as shown in 
Fig. 4.  
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Fig.4: Petri net model of the machine. 
 

In this model the places are defined as: 
p1b: the input buffer is empty.  
p2b: the input buffer is full. 
p3b: the output buffer is empty. 
p4b: the output buffer is full. 
p1m: the machine is idle. 
p2m: the machine is busy. 
Also each transition in Fig. 4 is defined as: 
t1: A part enters the input buffer. 
t2: A part enters the machine. 
t3: The part exits the machine. 
t4: The part leaves the output buffer. 

     Based on this Petri net model we can model the 
multiprocessor system by considering m identical 
models which are parallel together. For applying the 
optimum sequencing obtained by B&B algorithm we 
introduce a Petri Net model. Fig. 5 shows this Petri 
net model. In this model we consider a place 
( njp j ,...,2,1 : = ) to each job. Regarding that each 
job can be assigned to each of the machines hence 
we consider m output arcs from each of these places 

(one output arc is related to one machine). To apply 
the optimum sequence it is needed to determine 
which job will be assigned to which machine. For 
this purpose we consider m additional places 

mip ji ,...,2,1 : =  related to each job j  (totally mn ×  
additional places). We can apply the desired 
sequencing by proper putting one token in one place 
of each of these n  sets of places. 
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Fig. 5: Petri net-based application of the desired 

sequencing.  
 

In this Petri net model we can assign the processing 
time of each job by each machine to corresponding 
transition from the set of transitions labeled: 

⎩
⎨
⎧
=
=

mi
nj

t ji ,...,2,1
,...,2,1

 : . In such a case regarding the 

processing times related to jit other transitions will 
be un-timed. 
 
 
7 Computational Results 
In order to evaluate performance of the heuristic 
approaches developed in this paper, a computational 
experiment was conducted. The results are provided 
in Table 1. In this computational experiment, the 
minimum make-spans of the schedules obtained by 
the B&B were compared with the lower bound cost 
(LBC) and upper bound cost (UBC) by using 

%100)
MC

LBCUBC( ×
− . For each testing problem, 

instances were generated and for each instance, the 
matrix of machining times was randomly generated. 
In this table it can be seen that maximum value of  



%100)
MC

LBCUBC( ×
−  is less than 70. Furthermore 

it can be seen that in each case the UBC and LBC 
have acceptable values near to the obtained 
minimum make-span so that the difference of these 
two values in worst case is less than 70% of MC. 
 

Table 1: Computational results 
n m LBC UBC MC 

%100)
MC

LBCUBC
( ×

−  

8 2 142 171 162 17.90 
8 4 65.5 103 87 43.10 
8 6 36.5 60 52 45.19 
8 8 21 45 35 68.57 
12 2 235.5 294 248 23.59 
12 4 82.75 114 98 31.89 
12 6 44.17 77 55 59.69 
12 8 38.5 54 52 29.81 
16 2 339 370 350 8.85 
16 4 94.75 122 105 25.95 
16 6 58 92 74 45.94 
16 8 36.75 52 49 31.12 
20 2 331.5 426 334 28.29 
20 4 119.75 153 134 24.81 
20 6 78.5 115 94 38.83 
20 8 40 69 48 60.42 

 
 
8 Conclusions 
In this paper, multiprocessor scheduling was 
discussed were n jobs must be scheduled in an m-
machine job-shop environment. We assumed no 
sequence- dependent setup times on machines. For 
solving the scheduling problem we developed a new 
Branch and Bound system which constructs its 
search tree step by step and doesn’t need large size 
of memory. A lower bound limit for Branch and 
Bound method was introduced. Furthermore for 
initializing the root node in the search tree a heuristic 
upper bound was proposed which reduced the 
branch-and-bound computations. For applying the 
resultant optimum schedule on the manufacturing 
system a supervisor Petri net was constructed. 
Evaluating the proposed methods a computational 
experiment was done. 
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