
Branch and Bound-Based Scheduling of Tasks on Unrelated Parallel
Multiprocessor Systems Using Petri Nets

ABOLFAZL JALILVAND1, SOHRAB KHANMOHAMMADI1, FEREIDOON SHABANI NIA2

1Faculty of Electrical and Computer Engineering
University of Tabriz

2Faculty of Electrical and Electronics Engineering
Shiraz University

IRAN

Abstract: This paper deals with scheduling n jobs in an m -machine job-shop environment to minimizes the
maximum overall completion time of all jobs called make-span. In this multiprocessor scheduling problem we
assume that the jobs are available at time zero and have no sequence- dependent setup times on machines. For
solving the scheduling problem we develop a new Branch and bound algorithm which constructs its search tree
gradually and doesn’t need large size of memory. We will propose a lower bound cost for Branch and bound
method. Furthermore for initializing the root node in the search tree a heuristic upper bound cost will be
introduced which reduces the branch-and-bound computations. For applying the resultant optimum schedule on
the manufacturing system a supervisor Petri net is introduced. The proposed methods will be verified through a
computational experiment.

Key-Words: Manufacturing systems, Petri nets, Branch and Bound, Task scheduling, Make-span.

1 Introduction
The problem of assigning a given collection of tasks
to a given set of processors with a minimum make-
span is commonly referred to as the multiprocessor
scheduling problem [1]. The search for a solution to
the multiprocessor scheduling problem is performed
with the aid of a search tree that represents the
solution space of the problem, that is, all possible
permutations of task–to–processor assignments and
schedule orderings. The branch-and-bound (B&B)
strategy has been successfully used for searching the
solution space and finding optimal or near-optimal
solutions to the problem of scheduling tasks on
multiprocessor architectures [2-4].
 The solution space is often represented by a
search tree where each vertex in the search tree
represents a specific task–to–processor assignment
and schedule ordering, and one or many vertices
represent the optimal solution whenever one exists.
The root vertex of the search tree represents an
empty schedule and each of its descendant vertices
(children) represents the scheduling of one specific
task on one specific processor. The children of each
of these child vertices represent the scheduling of yet
another task on one processor [2].
 Scheduling jobs on unrelated parallel machines is
a common problem, where a set of machines is

available to process the jobs simultaneously. In the
general case of unrelated machines, the processing
time for a job on a machine is independent of its
processing time on other machines. In a
manufacturing plant, for example, many machines
may be able to process a job but with different
speeds depending on the machine's technology. In
such a system assuming that each machine can
operate on each of jobs, we encounter nm distinct
leaves (goal nodes) in search tree. Constructing this

tree thoroughly needs ∑
=

n

k

km
1

 memory cells, so that

even for low number of jobs and machines, it needs a
large size of memory which causes run time to
decrease in computer-based application of B&B
algorithm.
 In this paper we introduce a new method, which
enables us to construct the search tree gradually, to
solve this problem. Using this new algorithm,
vertices are generated just when the B&B algorithm
needs to explore them. A standard approach for
evaluating effectiveness of a heuristic solution is to
compare the value of the heuristic solution with a
lower bound on the optimal solution [5]. For this
reason, we establish a lower bound on the make-
span. Furthermore for initializing the root node in the
search tree a heuristic upper bound cost will be

introduced which reduces the branch-and-bound
computations. For applying the resultant optimum
schedule on the manufacturing system a supervisor
Petri net is used.

2 The Multiprocessor System
The multiprocessor system consists of a set of
processors (manufacturing cells) indexed
by { }mIi ,...,2,1 =∈ and a set of jobs, indexed
by { }nJj ,...,2,1 =∈ where each of jobs can be
processed by each of the machines. It is assumed that
the required processing time of each job is different for
each of machines. Furthermore it is assumed that there
are no sequence- dependent setup times on machines.
In other word, the main problem is to determine that
which job must be processed by any machine and once
a set of jobs is assigned to a machine, it is not
necessary to find the job sequence on that machine.
We can summarize all of these processing times in a

mn × time matrix as follows:
 (1)mnjitT ×=][

Where jit represents the processing time of jth job ith
machine. If a machine isn't eligible to process a specific
job it can be considered by setting the corresponding
processing time in T to infinity. We introduce iC as
the completion time of the last job scheduled on ith
machine which can be defined as follows:

 (2)∑
=

=
in

j
jii tC

1

Where in is number of jobs scheduled on machine i
and jit is the processing time of job j on machine

i . By using iC , the make-span (maxC) can be defined
as:

 (3))(maxmax i
Ii

CC
∈

=

Where the objective of scheduling is to minimize the
make-span.

3 Branch and Bound Algorithm
Branch and Bound is a common search technique for
combinatorial optimization. B&B improves over
exhaustive enumeration, because it avoids the
exploration of those regions of the solution space,
where it can be certified (by means of lower bounds)
that no solution improvement can be found. B&B
constructs a solution of a combinatorial optimization
problem by successive partitioning of the solution
space. The branch refers to this partitioning process
(generating the child vertices); the bound refers to

lower bounds that are used to construct a proof of
optimality without exhaustive search (process of
evaluating the cost of new child vertices). The
exploration of the solution space can be represented
by a search tree, where its nodes represent sets of
solutions, which can be further partitioned in
mutually exclusive sets. Each subset in the partition
is represented by a child of the original node.
Whenever a new vertex is generated which could
lead to an optimal solution, it will be referred to as
an active vertex. The power of the B&B strategy lies
in alternating branching and bounding operations on
the set of active vertices.
 A goal vertex in the search tree represents a
complete solution where all tasks have been
scheduled on the processors. An “acceptable”
complete solution is also called a feasible solution.
An intermediate vertex represents a partially
complete schedule. The level of a vertex is the
number of tasks that have been assigned to any
processor in the current schedule. The cost of a
vertex is the quality of the schedule represented by
the vertex.

2 node of tree-Sub

root

leaves

0

1

1

1

2

3

3

3

3

2

2 2

2

3

1

1

Fig.1: The structure of a tree.

 The B&B algorithm starts by sequencing one of
the available operations called branching the node.
By branching a node, a new node is formed and the
node is kept in the search space if its lower bound
value is better than the upper bound value or vice
versa. A heuristic is used to schedule the remaining
operations for every node and the best solution found
so far will be recorded as the upper bound value. The
next node to be branched is the one with the best
lower bound value, as it is deemed to have the best
potential. As more nodes are branched, more and
more operations will be sequenced, and the upper
bound value will become smaller and smaller [6].
 An algorithm that computes a lower bound on the
cost of any solution in a given subset prevents
further searches from a given node if the best cost
found so far is smaller than the cost of the best
solution that can be obtained from the node (lower
bound computed at the node). In this case the node is
killed and no children need to be searched; otherwise
it is alive.

3.1 Upper-Bound Cost
It is well known that B&B computations can be
reduced by using a heuristic to find a good solution to
act as an upper bound prior to the application of the
enumeration algorithm, as well as at certain nodes of
the search tree [3]. An upper-bound cost (UBC) is
used to initialize the root vertex. The more accurate
the upper-bound cost is, the faster the B&B
algorithm will get because more vertices can be
pruned at each step. For the mentioned scheduling
problem we introduce a heuristic UBC as follows:
 Consider the jobs one by one from 1 to n .
Related to each job, after adding the make-spans of
scheduled machines to the corresponding processing
times related the new job we select the machine with
minimum overall time and consider its index as the
machine which the corresponding job is assigned to
it. When this process is completed we have a
sequencing of machines related to jobs. Now we
calculate the completion time of each machine and
based on them we compute maxC of this sequencing
as a UBC using (3).

3.2 Lower-Bound Cost
In this section we show that a lower bound cost
(LBC) can be found as follows:

 (4)∑
= ∈

=
n

j
ji

Ii
t

m 1
)min(1LBC

For proofing this relation as it was explained the
make-span of each sequence is }{maxmax i

Ii
CC

∈
=

where iC is defined by formulation (2). It can be
shown that:

 (5)max
1

1 CC
m

m

i
i ≤∑

=

Substituting (2) in (5) we have:

 (6)max
1 1

1 Ct
m

m

i

n

j
ji

i
≤∑∑

= =

Considering that in is the number of jobs scheduled
on machine i and based on that the total number of

scheduled jobs on machines is nn
m

i
i =∑

=1
 we can

rewrite equation (6) as follows:

 (7)max
1

1 Ct
m

n

j
ji ≤∑

=

To minimize the make-span we must choose an
optimum schedule to achieve }min{ maxC . Assuming

that njt ji ,...,2,1 : * = is the processing time of the
optimal sequencing we have:

 (8)}min{1
max

1

* Ct
m

n

j
ji ≤∑

=

 (9)∑∑
== ∈

≤
n

j
ji

n

j
jiIi

tt
1

*

1
}{min

Using (8) and (9) we have:

(10)
}min{}{min1LBC max

1
Ct

m

n

j
jiIi

≤= ∑
= ∈

This indicates the truth of (4).

4 The New Branch and Bound

Algorithm
In this section we introduce a new B&B algorithm
based on a new method which constructs the search
tree step by step. For solving the problem it is
required to consider all possible combinations for
assigning n distinct jobs to m individual machines.
In our new approach, instead of constructing the
whole of the search tree for mentioned

multiprocessor system which needs ∑
=

n

k

km
1

 memory

cells, we just need a 1×n vector D which reduces
this high size of memory to only n memory cells.
The key idea in proposed B&B algorithm is to
produce the nodes of this search tree one by one just
when the B&B algorithm needs to explore it. First
we introduce an algorithm that can produce each of
the possible combinations of m machines and the n
jobs assigned to them, one by one.

Algorithm I:

1- Get n as the number of jobs and m as the
number of machines.

2- Set []T111 K=D as the initial value of D
and set nf = as a temporary flag.

3- Get D as the new sequence of machines which
can be assigned jobs respectively.

4- Set 1)()(+= ff DD .
5- IF mf >)(D and 1>f THEN set 1)(=fD and

1−= ff then go to step 4 ELSE go to step 6.
6- IF mf ≤)(D THEN go to step 3 ELSE go to step

7.
7- End.

As it can be seen in this algorithm we only needs a
1×n vector and this decreases the memory size

considerably. Now based on algorithm I we
introduce a B&B algorithm to solve the mentioned
scheduling problem.

Algorithm II:

1- Get n as the number of jobs, m as the number
of machines and T as the matrix which includes
machines processing times on jobs.

2- Set []T111 K=D as the initial value of D
and set nf = as a temporary flag.

3- Get D as the sequence of machines which are
assigned jobs respectively and Calculate the
make-span (maxC) of machines based on
formula (3) then set MC (minimum make-span)
equal to maxC .

4- Get):1(fD as the sequence of machines which
are assigned jobs respectively and calculate the
make-span (maxC) of machines.

5- IF MCC ≥max THEN go to step 7 ELSE go to
step 6.

6- IF nf = THEN set maxCMC = and go to step 7
ELSE set 1+= ff and go to step 4.

7- Set 1)()(+= ff DD .
8- IF mf >)(D and 1>f THEN set 1)(=fD and

1−= ff then go to step 7 ELSE go to step 9.
9- IF mf ≤)(D THEN go to step 4 ELSE go to step

10.
10- End.

 This B&B method performs a depth first search in
an exhaustive manner. In this algorithm the value of
f in every stage indicates the level of the search

tree. When the fth element of vector D exceeds m , it
denotes that the branching must be restart from the
previous node. This process will be done by resetting
the fth element of D to 1 and decrementing f by 1.
Creating a new node at the level f , the make-span of
the path from root to this new node will be tested and
if it isn't less than the current LBC that node is killed
by incrementing the corresponding element at
vector D . Otherwise that node will be remained as a
activate node and the branching will be continued by
incrementing f and creating a new node at the next
level of the search tree. The branching may be
continued until it reaches a leaf where nf = . In this
algorithm each node is constructed when it must be
tested and there isn't need to construct the whole
search tree at once.
 Because their powerful modeling capability for a
variety of systems, Petri Nets have been chosen as
the modeling tool for modeling, in this paper. Next
sections deal with Petri nets and using them for
modeling the manufacturing systems [9]. Also to
apply the optimum sequence obtained trough B&B
algorithm, we introduce a supervisor Petri net.

5 Petri Nets
A Petri Net (PN) is a 5-tuple, ()0,,,, MWFTPPN=
where [10]:

{ }mpppP K21= is a finite set of places.
{ }ntttT K21= is a finite set of transitions.
() ()PTTPF ××⊆ U is a set of arcs (flow relations)

 { }K321: →FW is a weight function.
{ }K210:0 →PM is the initial marking .

Φ=TPI and Φ≠TPU .
A Petri net structure ()WFTPN ,,,= without any

specific initial marking is denoted by N , and a Petri
net with the given initial marking is denoted
by ()0,MN .

The dynamical behavior of a system is modeled
by changing the state or marking in Petri nets
according to the following (firing) rules:

1- A transition t is said to be enabled if each input
place p of t is marked with at least ()tpw , tokens,
where ()tpw , is the weight of the arc from p to t.

2- An enabled transition may or may not fire
depending on whether or not the event actually
takes place (firing conditions are ok).

3- Firing of an enabled transition t removes ()tpw ,
tokens from each input place p to t and adds
()ptw , tokens to each output place p of t, where
()tpw , and ()ptw , are the weights of the arcs

from p to t or t to p respectively.

 In graphical representation of a Petri net, places
are represented by circles and transitions are shown
by hollow bars. The relationship between places and
transitions is represented by directed arcs. Also each
Petri net can be denoted by two input and output
matrices related to transitions of Petri net. For
example The Petri net of Fig. 2 depicts the firing of a
transition.

OH 2

H

O

t2

OH 2

H

O

t2

a b
Fig.2: Transition (firing): (a) Marking before firing

(b): Marking after firing.

 In un-timed Petri net one can prohibit controlled
transition from firing but cannot force the firing of a
transition at a particular time. In a timed Petri net
controlled transitions are forced to fire, by
considering the time dependent firing functions. In
timed Petri nets, each transition has its specific time

which determines the transition's holding time. When
a transition is fired during its holding time the
network's marking is not changed and as soon as its
holding time elapsed the marking of network will be
changed based on the former mentioned firing rules
[11-12].

6 Applying B&B Using Petri Nets
For modeling the mentioned multiprocessor job-shop
system it is considered that each machine has an
input buffer and an output buffer as shown in Fig. 3.
In this work to simplify the model the wait times are
included in machining times.

M oBiB

Fig. 3: Schematic diagram of a machine

The Petri net model of each machine is designed
regarding its input and output buffers as shown in
Fig. 4.

1bp

2bp

3bp

4bp 4t

3t2t

1t

2mp

1mp

Fig.4: Petri net model of the machine.

In this model the places are defined as:
p1b: the input buffer is empty.
p2b: the input buffer is full.
p3b: the output buffer is empty.
p4b: the output buffer is full.
p1m: the machine is idle.
p2m: the machine is busy.
Also each transition in Fig. 4 is defined as:
t1: A part enters the input buffer.
t2: A part enters the machine.
t3: The part exits the machine.
t4: The part leaves the output buffer.

 Based on this Petri net model we can model the
multiprocessor system by considering m identical
models which are parallel together. For applying the
optimum sequencing obtained by B&B algorithm we
introduce a Petri Net model. Fig. 5 shows this Petri
net model. In this model we consider a place
(njp j ,...,2,1 : =) to each job. Regarding that each
job can be assigned to each of the machines hence
we consider m output arcs from each of these places

(one output arc is related to one machine). To apply
the optimum sequence it is needed to determine
which job will be assigned to which machine. For
this purpose we consider m additional places

mip ji ,...,2,1 : = related to each job j (totally mn ×
additional places). We can apply the desired
sequencing by proper putting one token in one place
of each of these n sets of places.

1p np

1mp nmp11p n1p

11t
n1t 1mt

nmt

'pm'p1

1b
p

2b
p

3b
p

4b
p

4 t

3 t
2 t

1 t

2m
p

1m
p

1b
p

2b
p

3b
p

4b
p

4 t

3 t
2 t

1 t

2m
p

1m
p

KKK

K

K

1M mM

Fig. 5: Petri net-based application of the desired

sequencing.

In this Petri net model we can assign the processing
time of each job by each machine to corresponding
transition from the set of transitions labeled:

⎩
⎨
⎧
=
=

mi
nj

t ji ,...,2,1
,...,2,1

 : . In such a case regarding the

processing times related to jit other transitions will
be un-timed.

7 Computational Results
In order to evaluate performance of the heuristic
approaches developed in this paper, a computational
experiment was conducted. The results are provided
in Table 1. In this computational experiment, the
minimum make-spans of the schedules obtained by
the B&B were compared with the lower bound cost
(LBC) and upper bound cost (UBC) by using

%100)
MC

LBCUBC(×
− . For each testing problem,

instances were generated and for each instance, the
matrix of machining times was randomly generated.
In this table it can be seen that maximum value of

%100)
MC

LBCUBC(×
− is less than 70. Furthermore

it can be seen that in each case the UBC and LBC
have acceptable values near to the obtained
minimum make-span so that the difference of these
two values in worst case is less than 70% of MC.

Table 1: Computational results
n m LBC UBC MC

%100)
MC

LBCUBC
(×

−

8 2 142 171 162 17.90
8 4 65.5 103 87 43.10
8 6 36.5 60 52 45.19
8 8 21 45 35 68.57
12 2 235.5 294 248 23.59
12 4 82.75 114 98 31.89
12 6 44.17 77 55 59.69
12 8 38.5 54 52 29.81
16 2 339 370 350 8.85
16 4 94.75 122 105 25.95
16 6 58 92 74 45.94
16 8 36.75 52 49 31.12
20 2 331.5 426 334 28.29
20 4 119.75 153 134 24.81
20 6 78.5 115 94 38.83
20 8 40 69 48 60.42

8 Conclusions
In this paper, multiprocessor scheduling was
discussed were n jobs must be scheduled in an m-
machine job-shop environment. We assumed no
sequence- dependent setup times on machines. For
solving the scheduling problem we developed a new
Branch and Bound system which constructs its
search tree step by step and doesn’t need large size
of memory. A lower bound limit for Branch and
Bound method was introduced. Furthermore for
initializing the root node in the search tree a heuristic
upper bound was proposed which reduced the
branch-and-bound computations. For applying the
resultant optimum schedule on the manufacturing
system a supervisor Petri net was constructed.
Evaluating the proposed methods a computational
experiment was done.

References:
[1] S. Fujita, M. Masukawa and S. Tagashira, A Fast

Branch-and-Bound Algorithm with an Improved
Lower Bound for Solving the Multiprocessor
Scheduling Problem, Proc. of 9th international
conference on parallel and distributed systems
(ICPADS02), 2002, pp. 611-616.

[2] J. Jonsson and K. G. Shin, A Parameterized
Branch-and-Bound Strategy for Scheduling
Precedence-Constrained Tasks on a

Multiprocessor System, Proc. of International
Conference on Parallel Processing, August 11-
15, 1997, pp. 158-165.

[3] X. Wang and J. Xie, Branch and bound
algorithm for flexible flow shop with limited
machine availability, Asian Information-Science-
Life, Vol.1, No.3, 2003.

[4] R. Z. Rios Mercado, and J. F. Bard, A Branch
and Bound Algorithm for Permutation Flow
Shops with Sequence Dependent Setup Times,
IIE Transactions, 1999(31), pp. 721-731.

[5] D. He, A. Babayan, A. Kusiak, Scheduling
manufacturing systems in an agile environment,
Robotic and Computer Integrated
Manufacturing, Vol. 17, No. 1-2, 2001, pp. 87-
67.

[6] P. Y. Gan, K.S. Lee and Y. F. Zhang, A Branch
and Bound algorithm based process planning
system for plastic injection mould bases, the
international Journal of Advanced
Manufacturing System, Vol. 18, 2001, pp. 624-
632.

[7] S. Olaffson, and L. Shi, A method for scheduling
in parallel manufacturing systems with flexible
resources, IIE Transactions, 2000(32), pp. 135-
146.

[8] S. Khanmohammadi, Single array Branch and
Bound method, Iranian Journal of Engineering,
Vol. 3, Nos. 1&2, 1990, pp. 71-72.

[9] A. Jalilvand and S. Khanmohammadi, Modeling
of Flexible Manufacturing Systems by Timed
Petri Net, International Conference on
Computational Intelligence (ICCI-2004),
December 17-19, 2004, Istanbul, Turkey, pp.
141-144.

[10] Tado Murata, Petri nets: properties, analysis
and application, Proc. of IEEE, Vol. 77, No. 4,
April 1989, pp. 541-580.

[11] A. Jalilvand and S. Khanmohammadi, Using
Petri Nets and Branch and Bound Algorithm for
Modeling and Scheduling of a Flexible
Manufacturing System, WSEAS Transaction on
Systems, Issue 7, Vol.3, September 2004, pp.
2580-2585.

[12] A. Jalilvand and S. Khanmohammadi, Task
scheduling in Manufacturing Systems Based on
an Efficient Branch and Bound Algorithm, Proc.
of IEEE Conference on Robotics, Automation
and Mechatronics (RAM2004), December 1-3,
2004, Singapore, pp. 271-276.

