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Abstract:− In recent years, there has been a growing interest in using the kernel density estimation technique in 
the a posterior error rate estimation. The resultant error rate estimator, known as the kernel error monitor, is 
very efficient in exploiting the observations. As a result, the observation time required to produce consistently 
reliable error rate estimate can be greatly reduced. The high efficiency of the kernel error monitor is attributed 
to a smoothing process that is used to remove the spurious features exhibited by the observations and thus to 
obtain accurate density estimate. An important question thus arises as to how the smoothing effect can be ad-
justed to achieve optimum error monitoring performance. In this paper, we provide an answer to this question 
based on the mean square error criterion. 
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1. Introduction 
The error rate (ER) is a crucial criterion in evaluating 
the performance of a communication system. During 
the past decades, a considerable amount of effort has 
been devoted to theoretical ER estimation. However, 
due to the lack of either effectiveness or efficiency, 
these a priori approaches, in the sense of presuming 
some specific channel models, can hardly satisfy the 
demand for a practical system monitoring solution. 
The a posteriori ER estimation techniques, which at-
tempt to derive the ER from the observations of the 
receiver, have thus been developed. 

The simplest a posteriori method is to compare 
the received signal to the original one and enumerate 
the transmission errors [1]. This solution is, unfortu-
nately, highly dependent on the prior knowledge of 
the transmitted signal. The pseudo-error monitoring 
method overcomes this problem by extrapolating the 
ER from a set of pseudo-error rate estimates [1]-[8]. 
Compared with the real-error counting solution, the 
pseudo-error monitoring approach is also advanta-
geous in that it can evidently reduce the observation 
time required to produce reliable estimate. However, 
for fast-varying channels, such as that experienced 
by a mobile communication system, this observation 
cost is still unbearable. In pursuit of maximum utili-
zation of the observations and thus least observation 
cost, the strengths of density estimation technique 
have been exploited in kernel error monitoring. The 
effectiveness of this method has already been con-
firmed by computer simulations [8]-[11]. This paper 
goes a step further and considers the optimization of 

kernel ER estimation, or more precisely, the optimi-
zation of the smoothing process, which has a critical 
impact on the performance of a kernel error monitor. 

This paper has been organized as follows. Section 
2 reviews the principle of kernel ER estimation. Sec-
tion 3 analyzes the statistical properties of the kernel 
error monitor and reveals how the optimum smooth-
ing effect can be attained. Section 4 gives simulation 
results to demonstrate the performance advantages of 
the proposed smoothing approach. This paper ends 
with the concluding remarks in Section 5. 

 
 

2. Principle of Kernel ER Estimation 
The subject of density estimation has been studied 
extensively in literature (see [12], [13] and the refer-
ences therein). Among the existing approaches, the 
kernel method has received the most recognition in 
practice for its high efficiency and reliability. A ker-
nel density estimator can be expressed as follows 
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where Xi is the ith observation of random variable x, n 
is the sample size, h is a positive smoothing parame-
ter, f̂  denotes the approximate of the actual density f, 
and K is a kernel function that satisfies 
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A common practice is to select a density function as 
the kernel, the standard Gaussian density for instance. 
It follows from Eq. (1) that f̂  is also a density. The 
value of h determines the amount of details of the 
observed distribution to be inherited by the resultant 
density approximate. If h is set too small, the spuri-
ous fine structure will become visible, and if h is set 
too large, some important features of the distribution 
will be obscured. The optimum value of h relies on 
the choice of the kernel, the actual density, and the 
criterion used to evaluate the quality of the density 
approximate. If the concerned statistic is a Gaussian 
distribution with variance σ 

2, the optimum smooth-
ing parameter for the standard Gaussian kernel has 
been found to be [12] 
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which is obtained by minimizing the mean integrated 
square error (MISE) of the density estimate, that is, 
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The density approximation technique can be read-

ily applied in ER estimation as follows 
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where 0̂P  denotes the desired ER estimate, Pm is the 
probability that the mth symbol is transmitted, xm is 
the corresponding decision statistic, m̂f  is the density 
estimate of xm, and εm  specifies the error region for 
xm. For a unidimensional decision statistic, εm can be 
expressed as (-∞, rm1)  (rm2, ∞), where rm1 and rm2 
are the thresholds and -∞ ≤  rm1 < rm2 ≤ +∞. For ease of 
presentation, let us assume that the source symbols 
are equiprobable and suffer the same degree of deg-
radation in transmission, that is, fm can only be iden-
tified by its mean value. The ER estimator given in 
Eq. (5) is accordingly simplified to 
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where x represents an arbitrary decision statistic. The 
kernel ER estimation can thus be performed in two 
successive steps: approximate the probability density 
function of a decision statistic and integrate the result 
over the corresponding error region. 

Rather than relying on some special events as the 
real-error counting and the traditional pseudo-error 
monitors do, the kernel error monitor, as shown in 
Eq. (6), uses all the observations to construct an ER 
estimate. The benefit of this high efficient data utili-
zation strategy is that the kernel monitor can provide 
more reliable service within a fixed observation time, 
or alternatively, can significantly reduce the observa-
tion cost without degrading the monitoring capability. 

Using Eq. (1), we can rewrite Eq. (6) as follows 
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where r1 and r2 are respectively the lower and upper 
thresholds of decision statistic x, and T represents the 
area under the tails of a kernel, i.e., 
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Therefore, the kernel ER estimate can be interpreted 
as the average coverage of n pairs of tails. Each pair 
of tails is associated with a specific observation, and 
its coverage reflects the probability that this observa-
tion could be an error. As can be seen from Eq. (8), 
for a fixed kernel and a given set of observations, the 
coverage area of a tail is solely determined by the 
smoothing parameter h. Since the standard Gaussian 
kernel is so prevalent that it has become almost a real 
standard, the optimization of kernel ER estimation is 
essentially the problem of optimizing the smoothing 
effect. 

3. Optimum Smoothing Effect 
The smoothing parameter in Eq. (3), although widely 
accepted in statistical data analysis, does not fit well 
into the context of ER estimation. This is due to the 
fact that in error monitoring we are more concerned 
with the tail property of a probability density but not 
the density itself. Accordingly, the MISE criterion, 
which emphasizes the quality of the density estimate, 
loses its justification. The mean square error (MSE) 
of the ER estimate seems more a reasonable choice 
and thus has been adopted in this study. The MSE is 
given by 
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Let us consider a BPSK system, and without loss 

of generality, use the decision statistic corresponding 
to bit ‘1’. In this case, the error region is specified by 



a unique threshold r and can be expressed as (r, +∞). 
The kernel error monitor in Eq. (7) thus becomes 
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where the standard Gaussian kernel is assumed, and 
Q represents the Gaussian error function, i.e., Q(x) = 

21/2 /2(2 )
x

te dtp ¥- -ò . The estimation bias and variance 
of this error monitor are respectively (see Appendix I) 
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holding if 
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By substituting Eq. (11) and Eq. (13) into Eq. (9) and 
forcing the derivative of the MSE with respect to h to 
be zero, we can obtain 
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The optimum smoothing parameter can then be de-
termined by solving Eq. (14). Let 
 

2 / 3p b a= -     
 

32 1
27 3

q a ab c= - + . 

 
As is well known [13], under the condition that 
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Eq. (14) has a unique real solution, and it is given by 
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So far, we have described a method to minimize the 
MSE of the ER estimate in kernel ER estimation. It 
is achieved by selecting the optimum smoothing pa-
rameter. The method is valid whenever the standard 
Gaussian kernel applies. However, it should be noted 
that Eq. (16) for the optimum smoothing parameter 
cannot be used directly since it depends on the un-
available knowledge of the distribution of concern. A 
natural solution to this problem is to assume a Gaus-
sian model. For a Gaussian distribution with mean µ 
and variance σ 2, by combining Eq. (12) and Eq. (14), 
we can find that h should satisfy 
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to guarantee the validity of the approximations in Eq. 
(11) and Eq. (13). Besides, it can be verified that for 
Gaussian statistics Eq. (16) is always true. Therefore, 
in this case, Eq. (18) by itself is sufficient to justify 
the smoothing parameter suggested in Eq. (17).  

4. Simulation Results 
The benefit of smoothing the observation sequence 
appropriately is illustrated in Fig. 1and Fig. 2. Fig. 1 
compares the rms (root mean square) error perform-
ances of the optimum kernel error monitor and the 
real-error counting monitor, which can be treated as 
a kernel monitor with smoothing parameter zero. Fig. 
2 compares their observation costs to produce ER es-
timate of equal quality (evaluated by the rms error). 
In both simulations, the signal is assumed to be cor-
rupted by the additive white Gaussian noise only.  As 
is clearly demonstrated in Fig. 1, at a relatively low 
error rate, by selecting the optimum smoothing pa-
rameter, the quality of the ER estimate and hence the 



monitoring reliability can be remarkably improved. 
However, at a high error rate the optimum kernel er-
ror monitor performs even worse than that without 
any smoothing, at least in the sense of minimum es-
timation error. This is due to the fact that the kernel 
estimator is biased in nature and the estimation bias 

dominates the estimation error when the error rate is 
high. Alternatively, the optimum smoothing process 
can be employed to alleviate the unbearable observa-
tion time cost of satisfying a prescribed consistency 
expectation at low error rates, as is shown in Fig. 2, 

5. Conclusions 
A kernel error monitor is characterized by the proc-
ess of smoothing the observations to extract useful 
information. This paper analyzes the statistical prop-
erties of the kernel error monitor and proposes an op-
timum smoothing process for minimizing the MSE 
of the ER estimate. In the conducted simulations, the 
resultant kernel error monitor has shown much better 
efficiency than the real-error counting monitor in ex-
ploiting the observations. 
 
 
Appendix: 
Derivation of the bias and variance of 
the kernel error rate estimator 
Assume that the observations of the concerned statis-
tic, {Xi}, are independent identically distributed ran-
dom variables and the number of observations, n, is 
sufficiently large. It follows from Eq. (10) that  
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Substituting x with r-hy in Eq. (A.1) gives 
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Fig. 1. Normalized rms error of the optimum kernel 
error monitor and the real-error counting monitor. 
Each estimate is based on 10000 observations. 
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Fig. 2. Ratio of the observation time taken by the 
real-error counting monitor to that taken by the op-
timum kernel error monitor to produce ER estimate 
of equal quality. 



 
the previous expression can be simplified to 
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Expanding f(r+hy) and f(r-hy) in Taylor series, i.e., 
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and assuming that all terms of order higher than four 
are negligible, we can obtain 
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The variance of the kernel ER estimate in Eq. (13) 

can be derived similarly. Substitute x with r-hy in the 
first term of the right side of Eq. (A.2) to obtain 
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Again, using the Taylor series expansions of f(r+hy) 
and f(r-hy) and neglecting higher order terms, we get 
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Using the following integrals 

 

 

0

-1/2Q( ) (2π)y dy
¥

=ò  

 

 

0
Q( ) 0.25y y dy

¥
=ò   

 
2 1/ 2

0

2Q( ) (2π)
3

y y dy
¥

-=ò  

 

 

3

0
Q( ) 0.375y y dy

¥
=ò  

 

 

2

0

1/ 2 1 / 2Q ( ) (2π) 0.5πy dy
¥ - -= -ò  

 
2 2 1/ 2 1/ 2

0

2 5Q ( ) (2π) π
3 12

y y dy
¥

- -= -ò  

 
we can rewrite Eq. (A.4) and Eq. (A.5) as follows 
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from which Eq. (11) and Eq. (13) readily follow. 

Eq. (12) and Eq. (14) are derived respectively by 
forcing the most significant neglected terms in the 
right sides of Eq. (A.6) and Eq. (A.7) (not shown in 
the equations) to be far smaller than the least signifi-
cant survivals.  
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