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Abstract: This paper is concerned with the problem of estimating the frequencies of exponential sinusoids. A new 
method based on the autocorrelation samples for estimating the frequency of noisy exponential sinusoids is 
introduced. The proposed method uses the approach of estimating frequencies from phase differences. Properties 
of the conventional frequency estimator, which uses the raw data, and of the proposed method, which uses the 
autocorrelation samples, are derived analytically and their performances are investigated using numerical 
simulation. Accuracy and robustness of the proposed method is statistically assessed by Monte Carlo simulations. 
The results obtained show that the proposed method out performs the conventional approach in terms of accuracy 
and convergence ratio especially for low signal to noise ratio. 
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1  Introduction 
The estimation of the parameters of exponential 
sinusoids embedded in additive white Gaussian noise 
is one of the classical topics addressed in the signal 
processing literature. In particular, the estimation of 
frequencies is of great interest for several applications 
such as communications, sonar, radar, and biomedical 
signal processing [1,2]. The problem of frequency 
estimation has been widely explored. Some of the 
algorithms that have been previously proposed for 
frequency estimation include those based on linear 
prediction estimation [3,4], and those based on 
adaptive notch filters [5]. However, most of these 
algorithms do not have good estimation performance 
at low signal to noise ratio (SNR). 

In this paper, we propose the use of an algorithm, 
which employs the approach of estimating frequencies 
from phase differences [6,10,11]. This algorithm has 
low computational complexity. Later, we propose the 
use of the autocorrelation samples to run the 
algorithm. A preliminary work in which we have 
addressed this problem, was published in [12]. This 
new approach lead to better results than the 
conventional one, which uses raw data samples 
directly. 

The outline of this paper is as follows. Section 2 
states the problem and presents the algorithm proposed 
to estimate the instantaneous phases of the components 
of the signal. In section 3, the problem of estimating 
the frequencies from phase differences is addressed.  
In section 4, we derive the autocorrelation-based 

method. In section 5, we investigate the performance 
of the proposed method via numerical simulation. A 
comparison with the conventional approach is also 
conducted. Finally, section 6 concludes the paper. 
 
 
2  Problem Statement and Algorithm 
derivation 
Consider a complex sinusoidal signal, which has been 
corrupted by noise in receiver. The received signal, 

, is expressed as follows,  )(ky
 

∑
=

+=

=+=
p

i
iii jkfjkx

Nkkvkxky

1
)2exp()(

,,1),()()(

ϕπα

K

 (1) 

 
where  is the number of samples received, and  is 
the number of sinusoids present in the signal . , 

N p

if iα  
and iϕ  are, respectively, the frequency, the amplitude 
and the initial phase of the ith sinusoid. The additive 
noise  is assumed to be complex white Gaussian 
noise with zero mean and variance 

)(kv
2σ . The additive 

noise  is assumed to be independent of the signal 
. It is also assumed that the real and imaginary 

parts of the noise are independents. These assumptions 
can be formulated as follows, 
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where the symbol  stands for statistical 
expectation, 

}{⋅E

lk ,δ  is the kronecker symbol, and * is the 
complex conjugate. 

The problem addressed here is how to estimate the 
instantaneous phase of each sinusoid of the signal. For 
the moment, let us assume that the frequencies are 
known. Let the following notations, 
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where )exp(0, iii jA ϕα= .  and kiA , ki ,Φ  are, respectively 
the instantaneous complex amplitude and phase of the 
ith sinusoid at time . k
The estimation of the vector of the complex 
amplitudes, , is given by minimizing 
the criterion V [6], 
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where λ  is the forgetting factor, and where the 
prediction error )(nkε  is defined as below, 
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where  is the prediction of  based on the 
previous estimates. If we admit that the signal’s 
parameters vary slowly in time,  can be 
modeled in a neighborhood  of  by the following 
equation, 
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where is the estimate of the instantaneous complex 
amplitude of the i

kiA ,
ˆ

th sinusoid at time . k
Since the criterion V  is quadratic, it can be minimized 
analytically for sufficiently large  ( ) by, 
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It can be seen that the last equation can be rewritten 
into recursive fashion, 
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Finally, the estimate of the of instantaneous phase 
vector, },,{ ,,1 kpkk ΦΦΦ K= , is calculated according to the 
relation given by equation (4). 
The estimation of the instantaneous angle phases is 
based on the assumption that the frequencies, { , 
are known. However, in most applications the 
frequencies are unknown. In such cases, the algorithm 
described above can be used together with a recursive 
update scheme for estimating the frequencies { . A 
derivation of such a scheme is presented in the 
following section. 
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3  Frequency Estimation from Phase 
Differences  
The approach of estimating frequencies from phase 
differences has been developed by Kay [10]. This 
approach is well known by its computational 
simplicity and its good performance. A new derivation 
of this method, providing its adaptive version, has 
been introduced by Lang et al [6]. This algorithm 
adaptively updates the signal frequencies with each 
new phase observation according to [6, 9]. 
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where the phase differences are given by, 
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ρ  is user-chosen tuning variable in the interval . [1,0]

The characteristics of the algorithm, including its 
tracking and its suppressing noise ability, depends on 
the forgetting factors λ  and ρ . Thus both of them 
have to be chosen as a compromise between tracking 
sensitivity and accuracy. It is also important to know 
the optimum relation between them so as to minimize 
the total estimation error. This optimal relation is 
given in [9] by, 
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4  Autocorrelation-based Approach 
Let {  denote the theoretical autocorrelation function 
of ,  
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Under the assumption made in equation (2), The 
autocorrelation function of  is given by: )(ty
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It follows from equation (19) that the sequence of 

autocorrelation samples { ( ) is a noise 
corrupted sinusoidal signal with the same frequencies 
as the raw data (1). This observation suggests that the 
frequency estimator can be determined by fitting a 
sinusoidal model to the autocorrelation sequence. It 
should be remarked here that the idea of using sample 
autocorrelations in lieu of raw data to run frequency 
estimator enhances the SNR. This idea has been 
proposed in [7,8] for the estimation of the parameters 
of auto-regressive mean-average model. In the next 
section, we demonstrate the performance of this 
approach via numerical examples. 
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5  Simulation Results 
In this section, we demonstrate the performance of the 
proposed method with numerical examples. For 
comparison purposes, we also show the performance 
of the raw data-based approach. 

Example 1: In this example, we illustrate the 
performances of the two approaches for different SNR. 
For this purpose, we consider a data set of 600=N  that 
consists of a single complex sinusoid with additive 
noise, 
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where 11 =α ,  and 13.01 =f 1ϕ  is randomly chosen in the 
interval ]2,0[ π . The variance 2σ of the complex white 
Gaussian noise with zero mean is chosen to yield a 
given SNR, which is defined by, 
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In the runs, the values of λ  and ρ  are given 
respectively according to: 
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where 995.0=iλ , 9995.0=eλ  and 95.0)0( =λ . 
 
The results are presented in Fig.1, Fig.2 and Fig. 3 for 
SNR equal to -10dB, 5dB and 25dB, respectively. 
These figures depict the estimate frequencies obtained 
by the two approaches. Fig.1 shows clearly the 
superiority of the autocorrelation-based approach 
(convergence rate and accuracy) for an SNR equal to   
–10dB. Fig.2 and Fig.3 show that even for higher SNR, 
the proposed method still performs the conventional 
one. 

Example 2: In order to discus the frequency 
estimation accuracy for the two approaches, in more 
detail, we propose the use of the Sum Square Error 
(SSE) as a performance metric for the two approaches 
versus SNR. A Monte Carlo simulation is carried out in 
this example. The SSE is calculated from a 10000 
trials, and it is evaluated as, 
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)(ˆ kft  is the estimate of the frequency at time  in the 
t

k
th realization of Monte Carlo loop. 

The results obtained by the two approaches are 
presented in Fig.4. These results show that the 
autocorrelation-based approach out performs 
significantly the raw data-based one especially at low 
SNR, notice a gain of more than 12dB for an SNR of –
10dB. This result demonstrates the robustness of the 
proposed approach against the noise effect. 
 
 
6  Conclusion 
A new method, based on using autocorrelation samples 
to run the phase differences approach, for estimating 
the frequencies of a complex sinusoidal signal has 
been proposed. The performance of this method is 
investigated by comparison with the data-based 
approach via numerical examples. It is shown that the 
proposed approach yield better performance for low 
SNR. 
 



 
Fig.1: Frequency estimates for  dBSNR 10−=

 

 
Fig. 2: Frequency estimates for   dBSNR 5=

 

 
Fig. 3: Frequency estimates for . dBSNR 25=

 

 
Fig.4: Sum Square Error of the frequency estimation 

versus SNR. 
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