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Abstract: - Distributed real time Commit protocols have been an area of extensive research in the past decade and a very less amount of the work [1,2,3,4] has been reported in the literature. However, most of the past research investigate the behavior of these protocols either under read-before-write model or write only (blind write) model. The effect of both types of write models has not been investigated collectively in any previous work.  These protocols also require a considerable amount of memory for maintaining temporary objects (data structure) created during execution of transactions. This paper presents a new memory efficient commit protocol (MECP) for distributed real time database systems, in which, write operation is divided into two types: blind write and update. The data items locked by a committing cohort can be lent to a newly arrived higher priority cohort in case of access conflicts same as in [1,2]. The proposed protocol optimizes the memory required for maintaining the information (records of temporary objects) of the lender & borrower cohorts [1] using the data items in conflicting way. We also present the comparative study of our protocol with PROMPT and 2SC commit protocols.
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1 Introduction
In real time applications, where the database is of limited size or is growing at a slower rate than memory capacities are growing, data is kept in main memory. Even though main memory cost is dropping rapidly and size is increasing, the size of database is also increasing very rapidly. The database does not and will never fit in main memory [7]. This fact must underlie the design of a practical database system. Hence, many of these database systems are disk resident because the amount of data they store is too large (and too expensive) to be stored in the non volatile main memory. Important data base system resources are CPU, disks & main memory which are physical resources [5] and data items which can be viewed as logical resource.  More work is needed for the effective use of available main memory space. The buffer is used to store the execution code, copies of files & data pages, and any temporary objects produced. The buffer manager controls the main memory. The availability of memory space affects transactions response time [8]. Before the start of execution of a transaction, buffer is allocated to the transaction. When memory is running low, a transaction may be blocked from execution. The amount of memory available in system thus limits the number of concurrently executable transactions [6].  In large scale real time database systems, the execution of transaction will be significantly slowed down if available memory is low.  The decision needs to be taken into account the transactions’ timing requirements to ensure that transactions receive their required resources in time to meet their deadlines. In addition, the effectiveness of memory allocation in reducing individual transaction’s response time should be considered so as to make the best use of the available memory. So, it is important for the database designer to develop memory efficient protocols so that more number of transactions can be executed concurrently at any instant. 
Several distributed real time commit protocols have been proposed in the literature. Besides 2PC and its variants, Soparkar et al. [4] have proposed a protocol. The problem with this approach is that many actions are irreversible in nature. Gupta et al. proposed optimistic commit protocols. These protocols try to improve system concurrency by allowing executing transactions to borrow data from transactions in their commit stage. This creates dependencies among transactions. If a transaction depends on other transactions, it is not allowed to start commit processing and has to be blocked until the transactions, on which it depends, have committed. The blocked committing transaction may include a chain of dependencies as other executing transactions may have data conflicts with it. Enhancement has been made in PROMPT protocol proposed in [2], which allows executing transactions to borrow data in a controlled manner from the healthy transactions in their commit phase. However, it does not consider the type of dependencies between two transactions. The abort of a lending transaction aborts all transactions that have borrowed data from it. The performance of the system is dependent on chosen threshold value of health factor. The technique proposed by Lam et al. [3] maintains three copies of each modified data item (before, after and further) for resolving execute-commit conflicts. This not only creates additional workload on the systems and consumes more memory for storage of temporary objects but also has priority inversion problems. Based on the concepts given in papers [2] and [3], Biao Qin and Yunsheng Liu proposed a protocol, double space commit (2SC) [1], which classifies the dependencies between lender and borrower cohorts into commit and abort. 
All above protocols consume a considerable amount of memory for maintaining the intermediate temporary records which, in turn, also create additional workload on the system. The proposed protocol reduces the need for large number of the intermediate temporary records, and thus relieves the system from additional load. Further, the protocols above [1] consider a blind write model. A blind-write model is not unrealistic and it occurs in real life information processing for example, recording and editing new telephone numbers, opening new accounts, changing addresses, etc. However, there are many applications such as banking, intelligent network services database etc. where we need write - after read model. One of the significant differences between our work and the works reviewed above is that we have categorized the write operation as a blind write (read is not performed before the data item is written) and update write (read-before-write). 

The rest of the paper is organized as follows. In Section 2, we describe distributed real time database system model. Section 3 discusses data access conflict resolving strategies. Complete pseudo code of the protocol is given in section 4 whereas Section 5 describes memory optimization achieved by the proposed protocol. Section 6 discusses our simulation model and results. Section 7 concludes the paper with future directions.

2 Distributed Real Time Database System Model

In a distributed database system model, the global database is partitioned into a collection of local databases stored at different sites. A communication network interconnects the sites and all sites communicate via messages exchange over the communication network.
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Fig. 1 Distributed Real-time Database System Model

We assume that the transactions are firm real time transactions. Each transaction in this model exists in the form of a coordinator process that executes at the originating site of the transaction and a collection of cohorts executing at remote sites, where the required data items reside. If there is any local data in the access list of the transaction, one cohort is executed locally. Before accessing a data item, the cohort needs to obtain locks on the data item. We also assume that: 

· The processing of a transaction requires the use of CPU and data items located at local site or remote site.
· Arrivals of transactions at a site are independent of the arrivals at other sites and use Poisson distribution.

· A distributed real time transaction is said to commit, if the coordinator has reached to the commit decision before the expiry of the deadline at its site. This definition applies irrespective of whether cohorts have also received and recorded the commit decision by the deadlines.

· The database is in disk at all sites.

Each cohort makes a series of read and update accesses. 

3 Data Access Conflicts Resolving Strategies
A flag is attached with each data item. The flag is set in any of the three modes if a data item is being locked by a cohort at the time of its arrival at a site. The definitions of Modes are given below.

Mode 1

If a cohort want to use a data item and it is not locked by any other cohort, it sets the flag of data item in Mode 1.

Mode 2

If a cohort T2 wants to update a data item read by another cohort T1 in its committed phase, it convert  the flag of data item in Mode 2 from Mode 1. Here, T2 is not allowed to commit until T1 is committed. However, if T1 aborts, T2 does not abort.
Mode 3

If a cohort T2 reads/writes an uncommitted data item written by another cohort T1, it converts the flag of data item in Mode 3 from Mode 1. Here, T2 is not allowed to commit until T1 is committed. However, if T1 aborts, T2 also aborts.
Each site Si maintains a List which contains the following information.

List (Si) :{(Tj, D) |Tj is borrower and has locked the dirty data D} 

Write operation is categorized into two: blind write and update write. Let T1 be the cohort in commit phase holding a lock on data item X and T2 be the cohort requesting a lock on data item X. X is in mode 1 (as T1 has locked  it).

Case 1: Read-Write(Blind OR Update) Conflict. 

If cohort T2 requests a Write (Blind OR Update) - Lock while cohort T1 is holding a Read-Lock, the flag associated with data item is set in Mode 2 from Mode 1.

Case 2: Write (Blind) –Write (Blind) Conflict. If cohort T2 requests a Write (Blind)-lock while cohort T1 is holding Write (Blind)-Lock, the flag associated with data item is set in Mode 2 from Mode 1.

Case3:Write(Update)–Write(Update) Conflict

If both locks are Write (Update)–Locks, then the flag associated with data item is set in Mode 3 from Mode 1.
Case 4: Write(Update)–Write(Blind) Conflict. If cohort T2 requests a Write (Blind)-Lock while cohort T1 is holding a Write (Update)-Lock, flag associated with data item is set in Mode 2 from Mode 1.

Case 5: Write(Blind)–Write(Update) Conflict. If cohort T2 requests a Write (Update) -Lock while cohort T1 is holding Write (Blind) -Lock, flag associated with data item is set in Mode 3 from Mode 1.

Case 6: Write(Blind OR Update)-Read Conflict. If cohort T2 requests a Read-Lock while cohort T1 is holding a Write (Blind OR Update)-Lock then flag associated with data item is set in Mode 3 from Mode 1.

We next describe possible scenarios that may arise when T2 has accessed the data item locked by T1. Three situations may arise.

T1 receives decision before T2 has completed its local data processing:

1. If global decision is to commit, T1 commits. 

All the cohorts using the data items locked by T1 whose flag in either Mode 2 or Mode 3 will execute as usual.

Flag either in Mode 2 or Mode 3 of data items locked by T1 is set to Mode 1.

2. If the global decision is to abort, T1 aborts. 

 All cohorts using the data items whose flag is in Mode 2 and already locked by T1 will execute as usual. Flag in Mode 2 on data items locked by T1 is set to Mode 1.
All cohorts, using data items in Mode 3 and locked by T1, abort. Flag in Mode 3 on data items locked by T1 is set to 0. Cohorts dependent on data set of T1 deleted from the List.

T2 completes data processing before T1 receives global decision:   

T2 does not send WORKDONE message.

T2 is blocked until its deadline expires or T1 gets decision. 

In the first case, T2 aborts and is deleted from the List. In the second case, if T1 aborts, T2 will also abort and is deleted from List;

T2 aborts before T1 receives decision:

In this situation, T2’s updates are undone and T2 will be removed from the List.

4 Algorithm
On the basis of above discussion, the complete pseudo code of the protocol is given as below.

if (T1 receives global decision before, T2 ends execution) then

 {

One: if (T1’s global decision is to commit) then      

 {    T1 commits;

All the cohorts using the data items in Mode 2 or 3 locked by T1 will execute as usual.

Flag either in Mode 2 or Mode 3 of data items locked by T1 is set in Mode 1.

The cohorts dependent on T1 will be deleted from the List.  } 

else //T1’s global decision is to abort

{    T1 aborts;

All cohorts using the data items with Mode 2 flag and locked by T1 will execute as usual. Flag in Mode 2 on data items locked by T1 is set in Mode 1.
All cohorts using the data items with Mode 3 flag and locked by T1 abort. Flag in Mode 3 on data items locked by T1 is set to 0. The cohorts dependent on data set of T1 will be deleted from the List. }}

else if ( T2 ends execution  before T1 receives global decision )  

 {         T2’s workdone message is blocked;
Do {T2 wait for next event/message;

         
       Switch (type of event/message)


       {

       Case 1: if (T2 misses deadline)

              
{ Undo the computation of T2;

  Abort T2;

  Delete T2 from the List; } 

       Case 2: if (T1 commits/aborts)

               

 GoTo One; }


    }while (1);  }

else //T2 is aborted by higher transaction

       // before T1 receives decision


{ Undo the computation of T2;

                Abort T2; Delete T2 from the List;} 

5 Optimization of Memory 

It is assumed that the number of data items in the database at each site is N. The memory required for maintaining the record of data items lent by a single cohort is computed below.

Case 1: Memory Required in [1]

At least, a flag is required corresponding to every data item to show its locking status when it is locked by a cohort. So, the minimum memory required to keep the information of locking status of the data items is N/8 bytes (a flag needs at least single bit storage). Again, each site maintains a list of lenders, and also each lender maintains two lists: commit dependent cohorts and abort dependent cohorts with dirty data used by them. This can be implemented by two ways.

1. With linear list, or

2. with linked list 

In case 1, it is quite difficult and there may be wastage of a lot of memory in maintaining the record of dependency information due to high level of dynamism in the conflicts. In second, a dependency list has to be  maintained which contains the id of committing cohorts (lenders) who have lend their modified data to newly arrived cohorts .  Each lender in this dependency list also maintains two lists which contain id of abort and commit dependent cohorts with dirty data items utilized by them.

The memory required for keeping the record of data items lend by a single cohort is computed below. Let us assume that on an average each lender has p cohorts in dependency list and q cohorts in abort dependency list.

M=M1+ (M2 OR M3)*N, where

	M

M1

M2

M3

Nd
	Total Memory Required by one node of lender

Memory required for dependency list is 14 bytes (4*3 bytes for address+2 bytes for id).

Memory required for the list of commit dependent cohorts and dirty data item is 8*p bytes.

Memory required for maintaining the list of abort dependent cohorts and dirty data item  is  8*q bytes
No. of data items lent by the cohort=p + q.


Case 2: Memory Required in MECP
Minimum memory required to keep the record of Modes of every data item at a site is two bit. So, the total required memory is N/4 bytes. Here, a single list is being maintained for keeping the information of borrower cohort and dirty data used by it. This requires 8 bytes of memory (2 bytes for borrower id + 2 bytes for dirty data + 4 bytes for address of the next node).Comparing to case 1, there is additional need of N/4 bytes memory at each site to keep the information about the Mode of every data item. With the increase in the transaction arrival rate and transaction size, there are chances of more conflicts resulting in more number of dependent cohorts on committing cohorts. If there are L cohorts lending data at any instant of time, the additional memory required is 14*L bytes in case 1 as compared to case 2 (see in table 1). Although, it seems initially more number of bytes are needed for keeping the Mode information of data items, the proposed protocol competes with [1] at high transaction arrival rate and long transaction size.

Table 1.  Study of memory requirement

	Commit Protocol
	flags at each site (Memory- bytes)
	Single lender (Memory- bytes)

	2SC
	N/8
	14+8*Nd

	MECP
	N/4
	8*Nd


6 model parameters, Simulation Results and Performance Evaluation

A distributed real time database system consisting of n sites have been simulated. The default values of different parameters used in the simulation experiments are given in Table 2. The concurrency control scheme used is 2PL-HP. Miss Percentage is the primary performance measure.
Table 2. Default values for the model parameters

	Parameters
	Meaning
	Default setting

	Nsite
	Number of Site
	4

	AR
	Arrival Rate

(Poisson)
	4 Transactions/ Second

	Tcom
	Communication Delay
	100 ms (constant)

	SF
	Slack Factor
	1-4 (uniform distribution)

	Noper
	No. of Operations in a Transaction
	3-20 (uniform distribution)

	PageCPU
	CPU page Processing Time
	5 ms

	PageDisk
	Disk page Processing Time
	20 ms

	DBsize
	Database Size
	200 Data Objects/Site

	Pwrite
	Write Operation Probability
	.60


6.1 Impact of Transaction Arrival Rate

Fig.1 and Fig. 2 show impact of transaction arrival rates at transaction length 3-20. As anticipated, the miss ratio for the protocols increases with increase in transaction arrival rate. At higher arrival rate, the probability of lock conflicts for the data items and queueing delay for the use of system resources are more. The performance of the MECP is approximately at par with 2SC and PROMPT due to the better approach used for resources utilization and minimizing the queueing delay.
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6.2 Impact of Transaction Size

Fig. 3 and Fig. 4 show the miss ratio for the protocols at different transaction size at network communication delay 100ms & 0ms and transaction arrival rate 10. Increase in the size of transaction also increases the possibility of more conflicts. In this case, MECP performs approximately at par with PROMPT and 2SC at higher & low transaction size due to better buffer management. 
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7 Conclusion
This paper deals with a new commit protocol with blind and update type write collectively for distributed real time database systems. It also optimizes the storage cost by only maintaining the information of borrower cohort along with data item used by it in conflicting way. It is shown that this protocol performs at par as compared with PROMPT and 2SC commit protocols. 
It is well suited to data intensive application where the transaction arrival rate and its size are high. Further, work is needed to make MECP application to distributed mobile real time database systems where memory capacity is a bottleneck due to portability of the system.
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