
An Efficient Logical Clock for Replaying Message-Passing Programs

WEI WANG BINXING FANG

Department of Computer Science
Harbin Institute of Technology

92 Dazhi Street, Nangang District, Harbin 150001, Harbin
P. R. China

Abstract: - Cyclic debugging is one of the most important and most commonly used activities in programs
development. During cyclic debugging, the program is repeatedly re-executed to track down errors when a failure
has been observed. The cyclic debugging approach often fails for parallel programs because parallel programs reveal
nondeterministic characteristics due to message race conditions. Execution replay is a technique developed to
facilitate the debugging of nondeterministic programs. The trace file can be used to force the replay of the parallel
program with the same input. The size of trace file is very important to evaluate the scalability of record&replay
scheme. This paper proposes an improved clock system, called 1-n clock. By combining local logic clock and vector
clock, 1-n clock can compress the size of trace file. This method especially supports record&replay of long-running
parallel programs.

Key-Words: - Cyclic debugging, record, replay, trace, vector clock, 1-n clock

1 Introduction
Debugging is a process to find out and correct errors
by analyzing the program, and debugging is the one
of the most important stages in software
development. Cyclic debugging [1] is one of the
most important and most commonly used activities
in programs development. During cyclic debugging,
the program is repeatedly re-executed to track down
errors when a failure has been observed.

The executions of parallel programs can be
nondeterminism. An execution is called
nondeterministic if two subsequent runs with
identical user input cannot be guaranteed to have the
same behavior. During software development this
nondeterministic behavior can be very troublesome,
as it prevents a reconstruction of what happened
during an earlier execution. In fact, nondeterminisim
is just one of the difficulties to debug parallel and
distributed programs. Lack of global time, multiple
threads of control and complex patterns of
interaction might make it complex to track down the
fault using the information gathered.

Nondeterministic execution of erroneous
parallel programs may result in transient errors,
which appear very infrequently or vanish when
debugging tools are used. The most classical
technique used to catch transient errors appearing
during executions of parallel programs is to record
an initial execution and to force subsequent
replayed executions to be deterministic with respect

to the initial execution, using the recorded
information. Debugging an erroneous program then
amounts to record an erroneous execution and to
apply cyclic debugging techniques during
subsequent replayed executions. This mechanism
can be called record/replay. The primary goal of
record/replay is to replay a recorded execution as
accurately as possible. A second goal is to record
with as little intrusion as possible. The third goal is
to operate swiftly. When replay is considered,
record in implied. So for convenience, we only use
the terminology relay in the following contents.

Replay algorithms are either based on the data
or the synchronization of instructions. The former is
called content-driven replay, and the latter is called
ordering-driven replay. Replay was first introduced
in [2], which is a content-driven strategy, and the
similar approach is described in [3]. The biggest
drawback of these approaches is the requirement of
significant monitor and storage overhead. Probably
the first ordering-driven method is Instant Replay
[4]. Several methods are the extension of Instant
Replay, including [5], [6], etc. Better introduction
about replay systems is given in [7]. One of the first
implementations of a replay mechanism for MPI
was proposed in [8]. In order to apply an execution
replay system in practice, a number of properties
should be satisfied, including accuracy, non-
intrusiveness, space and time efficiency, etc.

 As mentioned above, the size of trace file is an
important item to evaluate record/replay algorithm,
especially for those long-running parallel programs.
To replay the execution of a parallel programs
accurately, a timestamp should be assigned to every
events occurred during the execution of a parallel
program. Vector clock is kind of ideal logical clock,
which is used widely in replay stage. But one defect
of vector clock is its scalability, for its size equals to
the number of processes participating in the
execution of a parallel program. This condition will
enlarge the size of trace file, especially be a serious
disadvantage when long-running parallel programs
are concerned. In this paper, we proposed an
efficient logical clock system, called 1-n clock,
which have a high compression rate compared with
traditional vector clock.

In section 2 the background about parallel
program execution is given. Section 3
introduces the 1-n clock system. The
experiment results are shown in section 4, and
the conclusion remarks will be given in section
5.

2 Parallel Program Execution Model

2.1 General Model
In traditional asynchronous distributed system, the
sites are connected together with a communication
network. Processes are different sites cooperate by
exchanging messages and do not share any clock or
memory. The message transmission time is arbitrary
but finite. A parallel program execution consists of
n sequential processes denoted by 0 1 n-1P , P , , P… ,
which communicate via exchanging asynchronous
messages. A parallel Program Execution (PE) in a
distributed system is represented by a
pair (,)PE E= → , where E is a finite set of
events and→ represents Lamport’s Happened-
Before relation[9], a casual precedence relation.
The execution of a process in a computation can
viewed as a sequence of events with events
across processes ordered by→ . There are two
relations between events in → , one is
precedence, and the other is concurrency. Two
events e and f are concurrent
if () ()e f f e¬ → ∧¬ → , otherwise they have
precedent relation between each other.

It is common to depict parallel programs
execution using an equivalent graphical

representation called a space-time diagram,
illustrated in Figure 1. P0, P1 and P2 are
processes, and a, b, c, d, e, f are events.

f

e

b

d c

a P0

P1

P2

Figure1: The example of space-time diagram

2.2 Equivalent Execution

Replay must provide any number of equivalent
executions based on some previously observed
program execution. According to Leu et al, an
equivalent execution can be defined as follows [10]:

Two executions of a process p are considered
to be equivalent, if the process p receives the same
information from the other processes at the same
instants. The instant of an arbitrary event is defined
by the interval in which only this event takes place.
This means that two executions of a parallel
program will be considered to be equivalent if the
execution of each of its processes is equivalent
For shared variable programs it suffices to make
sure that the variable reading events obtain the same
value during the two executions, while for message
passing programs, two executions are equivalent if
all message receiving events get the same message
in the two executions.

3 1-n Clock Description

3.1 Vector clock
A vector clock (VC) system is a timestamp
mechanism that exactly tracks causality among
events produced by a distributed computation.
Vector clock is introduced in 1988[11][12].
Whether the corresponding events are or not
causally related can be indicated by comparison of
their vector timestamps. The vector clock is the
extension of Lamport logical clock by assigning a
vector of integers VCi[1…n] to each process Pi, and
its properties are listed following:
For two events e and f, iPe∈ , jPf ∈ ,
(1) If e and f has precedent relation, then the
following condition is true:

()[] ()[]i je f V e i V f i→ ⇔ ≤

(2) if e and f happens concurrently, noted by
e f& , the following condition is true:

()[] ()[]

()[] ()[]
j i

i j

V f i V e i
e f

V e j V f j

<⎧⎪⇔ ⎨ <⎪⎩
&

3.2 1-n Clock system
The most serious defect of a vector clock sytem is
its scalability, for its size equals to the number of
processes. This situation will affect the efficiency of
the record phrase. For long-running programs, the
trace files with large volume are generated. Here we
propose a compound clock system, which combine
logical clock (Lamport clock) and VC. Our method
can compress the size of trace file sharply and the
equivalent execution can be reconstructed
accurately according the clock of event.

Definition 1 A non-communicational event is
such an event, which it operate on local data set,
neither send or receive data with events with other
processes.

Definition 2 A communicational event is such
an event, which will exchange data with events in
other processes when its local operation is complete.

Our idea comes from the following observation:
the ith component of a VC corresponds to the
process Pi in the execution of a parallel program P.
If only a local non-communicational event happens,
the value of ith component of a VC just increases by
one, no operation to other n-1 components. The
values of other n-1 components are updated only
when communicational events happen. If the local
non-communicational events happen continuously,
the large amount redundant clock information is
stored in the trace file. Here is the problem.

Our solution is to timestamp the local non-
communicational events with only one integer, and
timestamp communication events with n-length
vector clock. We call it 1-n clock system. Figure 2
shows a1-n clock system.

In a execution of P with n processes, let k1 be
the number of local non-communicational events,
and k2 be the number of communicational events,
every clock value is store with a integer, then the
Compression Rate (CR) of 1-n clock compared with
traditional VC can be obtained as following:

1 2

1 2

1
()
k nkCR

n k k
+

= −
+

3.3 Record phase
In order to obtain these events for a particular
program run, a program’s source code is

instrumented and re-execution is initiated. The
events (and corresponding data) are stored in trace
files. The data are afterwards used to determine
suitable recovery lines, and to force equivalent
execution of the (nondeterministic) message-passing
program.

For communication events, the primary method
of generating trace information does not require any
changes to the user’s MPI program. The user can
link against the instrumented MPI library to
automatically generate trace output that marks each
MPI call as a phase. This library makes use of a
standard MPI feature specific to profiling: each MPI
routine has an alternative name characterized by a
name-shift. MPI calls are replaced with wrapper
routines that output trace information, and invoke
MPI through the name-shifted interface. We utilize
of characteristic of the PMPI library to trace the
events. When a message-passing operation
happened, the clock is generated. The clock is
appended to the message sent to other processes.
The clock system can be constructed.

For there are too many kinds of non-
communicational events, we only concern limited
types of events and define several corresponding
macros to record its happening.

e1

e2

e4 e3 e2

-
2
2

21

3
3
2

1

4

-
-
21 3

-
3
2 4

P1

P2

P3

e1 e3 e4

e1 e2 e3

Figure2: 1-n Clock system in a Parallel Program
Execution

3.4 Replay phase
During the replay phase, to construct an equivalent
execution, the order of event should be assure
strictly. As we have given a compress clock system,
the problem which should be addressed in replay
phase is how to reconstruct the traditional vector
clock for 1-n clock.

In fact, the strategy is very simple. The
communicational event has been time stamped by
vector clock. For those non-communication events,
its vector clock can be obtained by the most recent
VC of communication events. For example, the VC
of e4 in P1 can be construct from e3, the result is

(4,3,3). The clock can be reconstructed conveniently
and correctly, so the equivalent execution can be
obtained.

Now we will give the properties of 1-n clock
system formally, 1-n clock is represented by 1NC,
assume two events are e and f, and iPe∈ , jPf ∈ .

iP and jP are two processes:
1 Both e and f are non-communicational events:

(1) 1 () 1 ()e f NC e NC f→ ⇔ <
(2) 1 () 1 ()e f NC e NC f⇔ =&

2 Both e and f are communicational events
The same rule as Vector clock

3 Without loss of generality, let e be a non-
communicational event and f be a communication
events f,
(1) 1 () 1 ()[]i je f NC e NC f i→ ⇔ <
(2) e f& , otherwise (1).

From the discussion above, we can see that the
casual order can be described by the 1-n clock
system. The accuracy of replaystage is proved.

4 Experiment Results
To evaluate our ideas, we analyzed execution of
several message-passing programs.

First we instrument the execution of a parallel
application named “nbody”, with traditional VC and
our 1NC. We run “nbody”four times with iteration
tmes 6, 10, 15, 20 respectively. The comparison of
size of trace files generated is shown in Figure 3.
We also obtain the result of other parallel
applications. The comparison results are listed in
Table 1

Now we will analysis these experiment results.
Token Ring just passes token between processes,
there is no local non-communication events, so the
CR is 0. Nbody, N-Queen and Integer Sort are both
iterative application, some local computation events
happened, so the 1-n clock can generate the
corresponding CR. The conclusion can be drawn
that the 1-n clock is more appropriate for those
loosely synchronization application, not for the
communication intensive applications.

5 Conclusion Remarks
Execution replay is a technique developed to
facilitate cyclic debugging of nondeterministic
programs. The trace file can be used to force the
replay of the parallel program with the same input.

The size of trace file is very important to evaluate
the scalability of record&replay scheme. This paper
proposes an improved logic clock, called 1-n clock.
By combining local logic clock and vector clock, 1-
n clock can compress the size of trace file. The
parallel programs can be replayed accurately based
on the compressed trace file.

6 10 15 20
0

5

10

15

20

25

30

35

40

Interation times

Th
e

si
ze

 o
f t

ra
ce

 fi
le

s
(k

)

VC
1NC

Figure3 Comparison of size of trace files of nbody

using VC and 1NC

Programs(proces
ses)

Trace
file size

(1-n
clock)(k

B)

Trace
file size
(traditio

nal
VC)(kB)

CR(%)

N-Queen(8) 2.5 3 16.7

IS(Integer
Sort)(8)

11.2 13.9 19.4

Token Ring (16) 0.3 0.3 0

Table 1: Comparison of CR between 1-n Clock and
Traditional VC

Acknowledgments
The author wishes to thank the anonymous referees
for their careful reading of the manuscript and their
fruitful comments and suggestions.

References:
[1] C.E. McDowell, D.P. Helmbold, Debugging
Concurrent Programs, ACM Computing Survey,
Vol.21, Issue 4, 1989, pp.593-622.

[2] R. Curtis, L. Wittie, BugNet: A Debugging
System for Parallel Programming Environments,
Proc. of the 3rd Intl. Conf. on Dist. Computing
Systems, 1982, pp.394-399.

[3] E.T. Smith, Debugging Tools for Message-
Based, Communicating Processes, Proceedings 4th
Intl. Conference on Distributed Computing Systems,
1984, pp.303-310.

[4]T.J. LeBlanc, J.M. Mellor-Crummey, Debugging
Parallel Programs with Instant Replay, IEEE
Transactions on Computers, Vol.36, Issue 4, 1987,
pp.471-481.

[5]C. Clemencon, J. Fritscher, R. Ruhl,
Visualization, Execution Control and Replay of
Massively Parallel Programs within Annai's
Debugging Tool, Proc. High Performance
Computing Symposium, HPCS '95, Montreal,
Canada, 1995, pp. 393-404.

[6]J. Xiong, D. Wang, W. Zheng, M. Shen, Buster:
An Integrated Debugger for PVM, Proc. ICAPP '96,
2nd Intl. Conference on Algorithms and
Architectures for Parallel Processing, 1996, pp.
124-129,.

[7]F. Cornelis, A. Georges, M. Cristiaens, M.Ronsse,
T. Ghesquiere, K. De Bosschere, A Taxonomy of
Execution Replay Systems, International
Conference on Advances in Infrastructure for
Electronic Business, Education, Science, Medicine,
and Mobile Technologies on the Internet, 2003, CD-
ROM paper 59.

[8]C. Clemencon, J. Fritscher, An Implementation
of Race Detection and Deterministic Replay with
MPI, Technical Report CSCS TR-94-01, Swiss
Scientific Computing Center,1995.

[9]L. Lamport, Time, Clocks, and the Ordering of
Events in a Distributed System, Communications of
the ACM, Vol.21, Issue 7, 1978, pp.558-565.

[10]Eric Leu, Andre Schiper, Abel Wahab
Zramdini, Execution Replay on Distributed Memory
Architectures, Proc. 2nd IEEE Symposium on
Parallel & Distributed Processing, 1990, pp.106-
112.

[11]C.J. Fidge. Timestamp in Message Passing
Systems that Preserves Partial Ordering. In Proc.
11th Australian Computing Conference, 1988, pp.

56–66.

[12]F. Mattern. Virtual Time and Global States of
Distributed Systems. InCosnard, Quinton, Raynal,
and Robert, editors, ”Parallel and Distributed
Algorithms” Conference, 1988, pp.215–226.

