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Abstract: - Orthogonal Frequency Division Multiplexing (OFDM) has become a very popular method for high
data rate wireless communications because of its advantages over single carrier modulation schemes on multi-path,
frequency selective fading channels. However, inter-carrier interference due to Doppler frequency shifts, and multi-
path fading severely degrades the performance of OFDM systems. Estimation of channel parameters is required
at the receiver. In this paper, we present a channel modeling and estimation method based on time-frequency
representation of the received signal. The Discrete Evolutionary Transform provides a time-frequency procedure
to obtain a complete characterization of the multi-path, fading and frequency selective channel. Performance of the
proposed method is tested on different levels of channel noise, Doppler frequency shifts, and jamming interference
powers.
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1 Introduction
Orthogonal Frequency Division Multiplexing (OFDM)
is considered an effective technique for broadband wire-
less communications because of its great immunity to
fast fading channels and inter-symbol interference (ISI).
It has been adopted in several wireless standards such
as digital audio broadcasting (DAB), digital video broad-
casting (DVB-T), the wireless local area network (W-
LAN) standard; IEEE 802.11a, and the metropolitan
area network (W-MAN) standard; IEEE 802.16a [1,
2]. OFDM partitions the entire bandwidth into paral-
lel subchannels by dividing the transmit data bitstream
into parallel, low bit rate data streams to modulate the
subcarriers of those subchannels. As such OFDM has
a relatively longer symbol duration than single car-
rier systems (due to the lower bit rate of subchannels)
which makes it very immune to fast channel fading and
impulse noise. The independence among the subchan-
nels simplifies the design of the equalizer. Because of
all these advantages, OFDM is becoming a standard
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in digital audio / video broadcasting and wireless com-
munications. However, inter-carrier interference (ICI)
due to Doppler shifts, phase offset, local oscillator fre-
quency shifts, and multi-path fading severely degrades
the performance of multi-carrier communication sys-
tems [1, 3]. For fast-varying channels, especially in
mobile systems, large fluctuations of the channel pa-
rameters are expected between consecutive transmit
symbols. Estimation of the channel parameters is re-
quired to employ coherent receivers. Most of the chan-
nel estimation methods assume a linear time–invariant
model for the channel, which is not valid for fast vary-
ing environments [4, 5]. A complete time-varying char-
acterization of the channel can be obtained by employ-
ing time-frequency representation methods.

We present a time–varying channel modeling and
estimation method based on the time–frequency repre-
sentation of channel output. The Discrete Evolution-
ary Transform (DET) provides a time-frequency rep-
resentation of the received signal by means of which
the spreading function of the multi-path, fading and
frequency-selective channel can be modeled and esti-
mated.



2 OFDM System Model
In an OFDM communication system, the available band-
width Bd is divided into K subchannels. The input
data is also divided into K-bit parallel bit streams. These
bit streams are mapped into some complex constella-
tion points: Xn,k, k = 0, 1, · · ·K −1 where n is the
time index and k is the frequency index. Blocks of data
are modulated onto a set of subcarriers of correspond-
ing subchannels with bandwidth ∆f = Bd/K. The
modulation is efficiently implemented using a K-point
Inverse Discrete Fourier Transform (IDFT). Then the
data are passed through a Parallel/Serial (P/S) converter
to form a serial data stream xn,k. Before sending the
xn,k’s to the channel, last LCP samples are inserted
in front and called the Cyclic Prefix (CP). This is done
to mitigate the effects of intersymbol interference (ISI)
caused by the channel time spread [1, 2]. The length of
the CP is taken at least equal to the length of the chan-
nel impulse response.As a result, the effects of the ISI
are easily and completely eliminated. Furthermore, the
receiver can implement demodulation of the OFDM by
using fast signal processing algorithms such as FFT.

For a channel of bandwidth Bd and K subchan-
nels, symbol duration is T = 1

∆f
= 1

Bd/K = K
Bd

.

However, the actual block duration is Tf = K+LCP
Bd

.
For a system with Bd = 800kHz., K = 512 and
LCP = 64, Tf = 512+64

800kHz = 720µs.

At the receiver, the CP part is eliminated. Demod-
ulation is performed by a K-point DFT operation on
xn,k to get Rn,k. If the CP is long enough, the inter-
ference between two OFDM blocks is eliminated and
the subchannels can be viewed as independent of each
other, i.e., Rn,k = Hn,k Xn,k + Nn,k, where Hn,k

are the samples of channel frequency response at n∆f

of the nth block, and Nn,k is the Fourier transform of
the additive Gaussian white (AGWN) channel noise
with zero mean and σ2 variance. A simple equalizer
is sufficient for each subchannel at the receiver, i.e.,
X̂n,k = Rn,k/Hn,k. Then the decision is made upon
X̂n,k. The channel estimation problem is to obtain the
channel parameters Hn,k.

2.1 Channel Model
In wireless communications, the multi-path, fading chan-
nel with Doppler frequency shifts is generally modeled
as a linear time-varying system with the following im-

pulse response [6, 7]:

h(t, τ) =
L−1∑

i=0

γi(t)δ(τ − τi) (1)

where γi(t) are independent Gaussian processes with
zero mean, σ2

i variance, and normalized overall power,
τi are delay profiles describing the channel dispersion
with τmax as the maximum delay and L is the total
number of paths. The variance σ2

i is a measure of
the average signal power received at path i, character-
ized by the relative attenuation of that path, αi. In the
dicrete–time, the channel can be modeled by

h(m, �) =
L−1∑

i=0

αi ejψim δ(� − Ni) (2)

where ψi represents the Doppler frequency, αi is the
relative attenuation, and Ni is the time delay caused
by path i. The Doppler frequency shift ψi, on the car-
rier frequency ωc, is caused by an object with radial
velocity υ and can be approximated by

ψi
∼= υ

c
ωc, (3)

where c is the speed of light in the transmission medium
[8]. In wireless mobile communication systems, with
high carrier frequencies, Doppler shifts become sig-
nificant and have to be taken into consideration. The
channel parameters cannot be easily estimated from
the impulse response, however the estimation problem
can be solved in the time-frequency plane by means
of the so called spreading function. The generalized
transfer function of this linear time–varying channel
is obtained by taking the discrete Fourier transform
(DFT) with respect to �, i.e.,

H(m, ωk) =
L−1∑

i=0

αi ejψim e−jωkNi (4)

where ωk = 2π
K k, k = 0, 1, · · · , K − 1. Furthermore,

the spreading function of the channel is obtained by
calculating the DFT of h(m, �) with respect to m,

S(Ωs, �) =
L−1∑

i=0

αiδ(Ωs − ψi)δ(� − Ni) (5)

which displays peaks located at the time-frequency po-
sitions determined by the delays and the corresponding
Doppler frequencies, and with αi as their amplitudes



[8]. If we extract this information from the received
signal, we should then be able to figure out the trans-
mitted data symbol.

3 Channel Modeling and Estimation
for Wireless OFDM Systems
Assume we are given bit stream bn converted into N -
bit parallel blocks, and then mapped onto some trans-
mit symbols Xn,k drawn from an arbitrary constella-
tion points where n ∈ Z is the time index, Z is the
set of integers, and k = 0, 1, · · · , K − 1, denotes the
frequency or subcarrier index. We then insert some pi-
lot symbols, pn,k ∈ {−1, 1} at some pilot positions
(n′, k′), known to the receiver: (n′, k′) ∈
P = {(n′, k′)|n′ ∈ Z, k′ = iS + (n′mod(S)), i ∈
[0, P − 1]} where P is the number of pilots, and the
integer S = K/P is the distance between adjacent pi-
lots in an OFDM symbol [6].

The nth OFDM symbol sn(m) is obtained by tak-
ing the inverse discrete Fourier transform (IDFT) and
then adding a cyclic prefix of length LCP (where LCP

is chosen such that L ≤ LCP + 1, and L is the time-
support of the channel impulse response.)

sn(m) =
1√
K

K−1∑

k=0

Xn,ke
jωkm (6)

m = −LCP ,−LCP + 1, · · · , 0, · · · , K − 1 where
again ωk = 2π

K k, and each OFDM symbol has N =
K + LCP length. The overall transmit symbol is then
given by s(m) =

∑
n sn(m− nN). The channel out-

put suffers from multi-path propagation, fading and
Doppler frequency shifts introduced by the nature of
the wireless channel:

yn(m) =
L−1∑

�=0

h(m, �) sn(m − �)

=
L−1∑

i=0

αi ejψim sn(m − Ni)

=
1√
K

K−1∑

k=0

Xn,k

L−1∑

i=0

αi ejψim ejωk(m−Ni)

The transmit signal is also corrupted by Additive White
Gaussian Noise η(m) over the channel. The received
signal for the nth frame can then be written as rn(m) =
yn(m) + ηn(m). The receiver discards the Cyclic Pre-
fix and demodulates the signal using a K-point DFT

as

Rn,k =
1√
K

K−1∑

m=0

[yn(m) + ηn(m)] e−jωkm

=
1
K

K−1∑

s=0

Xn,s

L−1∑

i=0

αi e−jωsNi

×
K−1∑

m=0

ejψim ej(ωs−ωk)m + Zn,k (7)

If the Doppler effects in all the channel paths are neg-
ligible, ψi = 0, ∀i, then the channel is almost time–
invariant within one OFDM symbol. In that case, the
last summation in the above equation gives K δ(s−k),
and

Rn,k = Xn,k

L−1∑

i=0

αi e−jωkNi + Zn,k

= Xn,k Hn,k + Zn,k (8)

where the channel frequency response Hn,k is the dis-
crete Fourier transform of h(nN, �), and Zn,k is the
Fourier transform of the noise, η(nN + m). By es-
timating the channel frequency response coefficients
Hn,k, data symbols, Xn,k, can be recovered according
to equation (8). However, if there are large Doppler
frequency shifts in the channel, then the time–invariance
assumption above is no longer valid. Here we consider
time–varying channel modeling and estimation and ap-
proach the problem from a time–frequency point of
view [7, 8]. In the following we briefly explain the Dis-
crete Evolutionary Transform as a tool for the time–
frequency representation of non–stationary signals.

3.1 The Discrete Evolutionary Transform
A non-stationary signal, x(n), 0 ≤ n ≤ N−1, may be
represented in terms of a time-varying kernel X(n, ωk)
or its corresponding bi-frequency kernel X(Ωs, ωk).
The time–frequency discrete evolutionary representa-
tion of x(n) is given by [9],

x(n) =
K−1∑

k=0

X(n, ωk)ejωkn, (9)

where ωk = 2πk/K, K is the number of frequency
samples, and X(n, ωk) is the evolutionary kernel.

The discrete evolutionary transformation (DET) is
obtained by expressing the kernel X(n, ωk) in terms
of the signal. This is done by using conventional sig-
nal representations [9]. Thus, for the representation



in (9) the DET that provides the evolutionary kernel
X(n, ωk), 0 ≤ k ≤ K − 1, is given by

X(n, ωk) =
N−1∑

�=0

x(�)wk(n, �)e−jωk�, (10)

where wk(n, �) is, in general, a time and frequency de-
pendent window. The DET can be seen as a general-
ization of the short-time Fourier transform, where the
windows are constant. The windows wk(n, �) can be
obtained from either the Gabor representation that uses
non-orthogonal bases, or the Malvar wavelet represen-
tation that uses orthogonal bases [9]. Details of how
the windows can be obtained for the Gabor and Mal-
var representations are given in [9]. However, for the
representation of multipath wireless channel outputs,
we need to consider signal-dependent windows that are
adapted to the Doppler frequencies of the channel.

3.2 Channel Estimation using DET
We will now consider the computation of the spread-
ing function by means of the evolutionary transforma-
tion of the received signal. The output of the channel
yn(m) for the nth OFDM symbol can be written as,

yn(m) =
1√
K

L−1∑

i=0

K−1∑

k=0

αi ejψim ejωk(m−Ni)Xn,k

Now calculating the discrete evolutionary representa-
tion of yn(m):

yn(m) =
K−1∑

k=0

Yn(m, ωk)ejωkm

=
1√
K

K−1∑

k=0

Hn(m, ωk)Xn,ke
jωkm (11)

By comparing the above two representations of yn(m),
we get the corresponding evolutionary kernel as

Yn(m, ωk) =
1√
K

L−1∑

i=0

αi ejψim e−jωkNiXn,k (12)

Finally, the channel frequency response for the nth

OFDM symbol can be obtained by

Hn(m, ωk) =
√

K Yn(m, ωk)
Xn,k

(13)

The evolutionary kernel Yn(m, ωk) can be calculated
directly form yn(m) [9] and channel parameters α�, ψ�,

and N� can be obtained form the spreading function
S(Ωs, �). However, (13) indicates that to estimate the
channel frequency response, we need the input data
symbols Xn,k at pilot positions. Two possible solu-
tions can be implemented:

1. One complete OFDM symbol, after every C sym-
bols can be sent as pilot so that Xn,k = pn,k ∈
{−1, 1},∀k, n = rC, r ∈ Z . In this case, the
spreading function can be calculated by these pi-
lot values, and can be used until the next pilot
OFDM symbol.

2. Other pilot symbol patterns [2, 5, 6] can be used
and data symbols Xn,k can be detected using
any of the pilot aided channel estimation and fil-
tering methods [2, 5] by X̂n,k = Rn,k/Ĥn,k.
Then the detected data can be used for the es-
timation of the spreading function via DET.

Using either of these approaches, the DFT of H(m, ωk)
with respect to m, and the inverse DFT with respect
to ωk, gives us the spreading function S(Ωs, �) from
which all the parameters of the channel will be ob-
tained and the transmitted data symbol will be detected.

The time-frequency evolutionary kernel of the chan-
nel output is obtained by replacing yn(m) in equation
(10), or

Yn(m, ωk) =
K−1∑

�=0

yn(�)wk(m, �)e−jωk�

=
1√
K

K−1∑

s=0

Xn,s

L−1∑

i=0

αie
−jωsNi

×
N−1∑

�=0

wk(m, �)ej(ψi+ωs−ωk)� (14)

We consider windows of the form wp(m, �) = ejψp(m−�)

presented in [7] that depends on the Doppler frequency
ψp. This window will give us the correct representa-
tion of Yn(m, ωk) only when ψp = ψi, in fact, using
the window wi(m, �) = ejψi(m−�), above representa-
tion of Yn(m, ωk) becomes,

Yn(m, ωk) =
√

K
L−1∑

i=0

αie
j(ψim−ωkNi) Xn,k

which is the expected result multiplied by K. We con-
sider windows wp(m, �) = ejωp(�−m) where 0 ≤ ωp ≤



π. When ωp coincides with one of the Doppler fre-
quencies, the spreading function displays a large peak
at the time-frequency position (Ni, ψi), corresponding
to delay and Doppler frequency of that transmission
path, with magnitude proportional to attenuation αi.
When ωp does not coincide with any of the Doppler
frequencies, the spreading function displays a random
sequence of peaks spread over all possible delays. Then
it is possible to determine a threshold that permits us
to obtain the most significant peaks of the spreading
function corresponding to possible delays and Doppler
frequencies. Finally, estimated channel frequency re-
sponse can be used to detect the data symbols.

4 Simulation Results
In the experiments, the wireless channel is simulated
randomly, i.e, the number of paths, 1 ≤ L ≤ 5, the
delays, 0 ≤ Ni ≤ LCP − 1 and the doppler frequency
shift 0 ≤ ψi ≤ ψmax, i = 0, 1, · · · , L−1 of each path
are picked randomly. Input data is BPSK coded and
modulated onto K = 128 sub-carriers, 12 % of which
is assigned to the pilot symbols. The OFDM sym-
bol duration is chosen to be T = 200µs, and TCP =
50µs. Frequency spacing between the sub-carriers is
F = 5kHz. First, the Signal-to-Noise Ratio (SNR)
of the channel noise is changed between 0 and 15dB,
for fixed values of the maximum doppler ψmax on
each path, and the bit error rate (BER) is calculated
by four different approaches: 1) No Channel Estima-
tion, 2) Pilot Symbol Assisted (PSA) Channel Equal-
ization 3) Proposed Approach, and 4) Known Chan-
nel parameters. The spreading function, hence all the
parameters of the channel are estimated by the pro-
posed method and shown in Fig. 1. Figures 2 and
3 show the BER versus SNR for normalized Doppler
frequency ψmax = 0.0001πrad(50Hz) and ψmax =
0.001πrad(500Hz) respectively. Notice that our pro-
posed mothod improves the performance of PSA chan-
nel estimation even with low SNR values. Finally, the
SNR is fixed to 15dB while the normalized Doppler
frequency is changed from 500Hz to 5kHz, and BER
is shown in 4 for each of the above methods.

5 Conclusions
In this work, we present a complete characterization of
the multi-path, fading OFDM channels with Doppler
frequency shifts using a time-frequency approach. The
Discrete Evolutionary Transform allows us to obtain a
representation of the time-dependent channel transfer

function from the noisy channel output. At the same
time, using the estimated channel parameters, a bet-
ter detection of the input data can be achieved. Ex-
amples show that, our method has a considerably bet-
ter BER performance than PSA channel estimation.
Alternative to the DET method proposed here, other
time-frequency analysis techniques or wavelet trans-
form can be used to characterize the time-varying com-
munication channel.
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Fig. 1. Estimated spreading function for one symbol.
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