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Abstract: - Embedded systems need more computational power to satisfy today’s applications’ needs, like 
audio/video encoding/decoding, image processing, etc. An option for increasing the computational power of a 
system is to include various microprocessors and make them work in parallel. This paper presents a study of the 
viability of making a multiprocessor system on a chip (MPSoC) using the MicroBlaze soft-processor core from 
Xilinx. Performance of data communication is studied, and also a parallel application is used for testing speedup 
and efficiency of the system. 1 
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1   Introduction 
 
The increasing computing power needed for some 
complex applications has meant that parallel 
programming techniques and systems for solving 
complex problems in an optimal time, like clusters, 
multiprocessor systems, grid sytems, etc. have 
appeared. 
Embedded systems need more computational power 
to satisfy today’s applications’ needs, like 
audio/video encoding/decoding, image processing, 
etc. and multiprocessor systems on a chip (MPSoC) 
are an option to deal with this increasing 
computational needs [1] and [2]. 
A parallel computing system is  made up of various 
processing elements (PE) that work cooperatively to 
solve a problem. There are two main paradigms for 
communicating the PEs and allowing data exchange 
between them: message passing and shared memory. 
Each of them has its own pros and cons, but usually 
message passing is more popular in clusters and grid 
systems, and shared memory is popular in 
multiprocessor systems [3],[4] and [5]. 
In this paper a study of the use of various MicroBlaze 
processors in an embedded system and different 
architectures for communication between them are 
proposed. The message passing paradigm for data 
exchange between processors will be used. 
In section 2, the main characteristics of the 
MibroBlaze soft-core processor used in our parallel 
system will be presented. In section 3 some 
communication alternatives for data exchanging 

between processors will be discussed. Some of its 
characteristics will be shown, as well as some tests 
about data communication performance. In section 4 
a complete system using the chosen data 
communications architecture and some results 
showing the performance of the complete system will 
be presented. Section 5 will show conclusions about 
this work and future work lines about parallel 
architectures for embedded systems. 
 

2   MicroBlaze soft-processor core 
 
The MicroBlaze embedded soft core is a reduced 
instruction set computer, optimized for Xilinx FPGA 
implementations. Figure 1 shows a block diagram of 
the MicroBlaze core [6]. 
The MicroBlaze embedded soft-core includes the 
following features: 
 
• Thirty-two 32-bit general purpose registers 
• 32-bit instruction word with three operands and two 
addressing modes 
• Separate 32-bit instruction and data buses that 
conform to IBM’s OPB (On-chip 
   Peripheral Bus) specification  
• Separate 32-bit instruction and data buses with 
direct connection to on-chip block 
   RAM through a LMB (Local Memory Bus) 
• 32-bit address bus  
• Single issue pipeline  
• Instruction and data cache  
• Hardware debug logic 



• FSL (Fast Simplex Link) support 
• Hardware multiplier (in Virtex-II and subsequent 
devices) 
 

 
Fig.1. MicroBlaze block diagram[6] 

 
The MicroBlaze core implements a Harvard 
architecture. It means that it has separate bus 
interface units for data and instruction access. Each 
bus interface unit is further split into a Local Memory 
Bus (LMB) and IBM’s On-chip Peripheral Bus 
(OPB). The LMB provides single-cycle access to on-
chip dual-port block RAM. The OPB interface 
provides a connection to both on-and off-chip 
peripherals and memory. The MicroBlaze core also 
provides 8 input and 8 output interfaces to Fast 
Simplex Link (FSL) buses. The FSL buses are uni-
directional non-arbitrated dedicated communication 
channels. 
 

3   Communication Architecture 
As seen in the previous section, MicroBlaze contains 
eight input and eight output FSL interfaces. The FSL 
channels are dedicated unidirectional point-to-point 
data streaming interfaces. The FSL interfaces on 
MicroBlaze are 32 bits wide. Further, the same FSL 
channels can be used to transmit or receive either 
control or data words. The performance of the FSL 
interface can reach up to 300 MB/sec. This 
throughput depends on the target device itself. The 
FSL bus system is ideal for MicroBlaze-to-
MicroBlaze or streaming I/O communications [7]. 
 
The main features of the FSL interface are: 
 
• Unidirectional point-to-point communication 
• Unshared non-arbitrated communication mechanism 
• Control and Data communication support 
• FIFO-based communication 
• Configurable data size 
• 600 MHz standalone operation 
 
The FSL bus is driven by one Master and drives one 
Slave. The next figure shows the principle of the FSL 
bus system and the available signals. 

 

 
Fig.2. Fsl bus signals[7] 

 
Xilinx EDK provides a set of macros for reading and 
writing to or from an FSL link. There are two ways of 
reading/writing on an FSL link: blocking or not 
blocking, and also there are different instructions for 
reading/writing data words or control words. 
For testing and measuring the capabilities of the FSL 
links, a simple system has been built. This system 
consists of 2 MBlaze cores interconnected via 2 FSL 
links, BlockRAM blocks for data and instruction 
memory for each processor connected to the local 
memory buses, an uartlite core for debugging an I/O 
purposes connected to MB_0, and a timer for 
measuring data transfer times connected also to 
MB_0. A diagram of this system can be seen in the 
next figure: 
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Fig.3. 2 MicroBlaze system for testing communications 

 
This system was used to test the viability of 
transmitting data over the FSL links and for 
measuring the time consumed in this task. 
For testing the speed of the links, a program for data 
transfers has been developed. The program was used 
for transferring different sizes of data, from a simple 
32 bit word to a matrix of 32x32 unsigned integers (4 
Kbytes). 
In the next graph we can see the different speeds 
obtained with these tests. 
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Fig.4. Direct transfer speeds over FSL link 

 
In this graph the cycles per word consumed for 
different sizes of data transmitted are represented. 
With direct transfer we mean that the data is 
transferred using the macros provided by Xilinx for 
managing the FSL links invoking the macro for each 
word to be transferred, not using any kind of control 
loops. The time measured only includes the time to 
invoke Xilinx macro to send data in one side, and to 
receive data on the other side, it does not includes the 
time to read/write data from/to memory. With this 
kind of transmission and large data sizes, speeds of 2 
cycles per word transmitted are reached. This 
configuration is good if a low volume of data is 
transferred, but for high sizes of data it is not feasible 
to call the FSL transfer macro for each word, because 
it will make the program size too big. For example, 
for transferring matrices a double for must be used to 
control the loop to access each element of the matrix 
and call the FSL transfer instruction only once in 
each iteration of the loop. With this kind of 
transmission, a lot of cycles will be spent in the 
control loop code. The results of the matrix transfers 
are shown in the next figure. 
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 Fig.5. Matrix transfer speeds over FSL link 
 

As can be seen for matrix transfer, speeds of nearly 
11 cycles per word can be reached. This is more than 
5 times slower than direct transfer, but still quick 
enough to obtain good results in parallel algorithms 
with large computing times per data word processed. 
In this case, the time measured includes the time for 
reading words from memory, invoking Xilinx macro, 
and time spent in control instructions from the control 
loop (incrementing loop variable, testing range, etc). 
 
After testing the capabilities of the FSL links for 
point to point data transfers, it was necessary to 
decide which “network” architecture to use for 
connecting various processors in a cluster. There are 
many network topologies that can be materialized 
with point to point links. The pros and cons of three 
of them will now be discussed and the viability of 
using them in a MultiMicroBlaze design using FSL 
links for point to point data transfer: 
 
-Completely Meshed: a completely meshed network 
is a network in which each node is connected to every 
other node in the network. It is a good way to reduce 
the travelling time of packets over a network, because 
data goes directly from sender to receiver, but its 
main disadvantage is that the number of links grows 
extremely quickly when the number of nodes is 
increased. A completely meshed network topology 
with MBlaze and FSL links will only be possible for 
just 9 MBlazes, because of the limitation of 8 FSL 
links for each MicroBlaze processor. 
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Fig.6. Completely meshed network 

 
-Ring Network: a ring network is a network in which 
each node in the network is connected to the 
following and the preceding node in the network, 
forming a ring. Data is passed from node to node 
until it reaches the destination node. With MBlaze 
and FSL links there will not be a size limit for the 
network, because each MBlaze would just use 2 FSL 
links. The main problem of this topology is that data 
transfers from two nodes that are far from each other 
are very time consuming. 
 



 
Fig.7. Ring Network 

-Star Network: a star network is a network in which 
each node is connected to a central node. The weak 
point of this topology is that if the central node fails, 
the whole system fails. This weakness is not very 
important in an embedded system, where all the 
nodes are in the same chip. Using this topology it is 
possible to build systems with 1 MBlaze as a central 
node, and up to 8 MBlazes as general nodes. Also 
bigger systems can be built by linking various 
subsystems together. This is the choice taken for 
developing our Multi MicroBlaze System. 
 

 

 
Fig.8. Star network (left), and linked star 

networks (right) 
 
With this architecture, the central node will be the 
one that decides which fragments of the work are 
assigned to each general node, and will also be 
responsible for grouping the results given by the 
general nodes. 
 

4   Complete System 
Once the communication method (FSL links) and the 
network topology (star network) were decided, 4 
systems were built with: 1, 2, 4 and 8 MicroBlazes 
each. The system with 1 MBlaze consisted of just the 
central node, and was built with 1 MBlaze, 16 
KBytes of Block RAM for instruction and data 
memory, an uartlite and a timer attached to the OPB 
bus. The general nodes were built with one MBlaze 
and 16 KBytes of Block RAM for instruction and 
data memory. 
With this system some parallelizable applications for 
testing the speedup obtained due to the use of many 
processors instead of one were used. 
The first application used to test the systems was an 
application that performed matrix multiplications. 

The parallelization of the matrix multiplication 
algorithm implemented consists of sending one or 
more rows of the first matrix, and the whole second 
matrix to each processor. So each processor obtains 
one or more rows of the resulting matrix.  
The speedup of a parallel algorithm is defined as the 
time needed to solve the problem using just one 
processor divided by the time needed to solve the 
problem with p processors. In an ideal system and 
with an ideal parallel algorithm, the speedup would 
be equal to the number of processors p. 
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Another measure of the performance of a parallel 
system is efficiency. Efficiency is defined as the 
speedup per processor. In an ideal system with an 
ideal parallel algorithm, the efficiency would be 
equal to 1. 
 

p

speedup
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With this matrix multiplication program various tests 
were performed with a different number of 
processors, and with different matrix sizes. The time 
measured includes the time for: reading the matrices, 
distributing data to processors, performing the 
multiplication, and reading back the results. The 
results obtained for speedup and performance are 
shown in the following graphics. 
 

32x32 int matrix multiplication
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Fig.9. Speedup and efficiency for 32x32 integer matrix 

multiplication parallel program 



 
As it can be seen in this graph, results are not as good 
as it could be expected. This is because when the 
number of processors is increased, more time is spent 
in communications, consequently the time saved with 
parallelism is spent in data communications. 
The second test consisted of the same matrix 
multiplication algorithm, but using floating point 
matrices. Floating point multiplication requires more 
time than integer multiplication because floating 
point operations must be emulated due to the lack of 
a floating point unit in the MicroBlaze processor. In 
this test, the time consumed in communication will be 
the same as if the matrices were integer, but as the 
processing time is bigger, better results in terms of 
speedup and efficiency are expected. 
The results obtained from this test are shown in the 
next figure. 
 

16x16 float matrix multiplication
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Fig.10. Speedup and efficiency for 16x16 float matrix 

multiplication parallel program 
 
 
As it can be seen in this graph, better results are 
obtained. But efficiency also decreases when the 
number of processors increases, due to the overhead 
in communications. A possible solution for saving 
time in communications and improving the system’s 
efficiency would be to find a way for broadcasting 
messages that are common to all processors instead 
of sending one message to each processor. In this test, 

broadcasting the second matrix to all processor would 
save a lot of time. 
To have an idea of how much FPGA space is needed 
for multiprocessor systems using Microblaze, some 
synthesis results will be presented. The system 
developed has been tested on an RC300 board from 
Celoxica, equipped with a XC2V6000 -4 Virtex 2 
FPGA. The whole system’s clock speed was 50 MHz. 
The synthesis results obtained for the final system (8 
MBlazes) are presented in the following table. 
 
 
Logic Utilization: 
Total Number Slice Registers:     3,017 out of  67,584    4% 
Number of 4 input LUTs:           5,760 out of  67,584    8% 
Number of occupied Slices:        5,098 out of  33,792   15% 
Total Number 4 input LUTs:        8,940 out of  67,584   13% 
Number of Block RAMs:                64 out of     144   44% 
Number of MULT18X18s:                24 out of     144   16% 
Number of GCLKs:                      1 out of      16    6% 

 

Fig.11.  Synthesis results in a XC2V6000-4 
FPGA 

 
From this table, it is clear that a multiprocessor 
system with only 8 processors spends 15% of the area 
of the FPGA, so bigger systems can be fitted into this 
FPGA. The main problem for multiprocessor systems 
on FPGAs is that there is not enough BlockRAM: a 
system with 8 processors with 16 KBytes each, 
spends almost half the BlockRAMs (44 %) of a big 
FPGA even when 16 Kbytes are not as many RAM as 
it would be desirable. A possible option for the 
memory problem would be to use external RAM, but 
FPGA boards usually have 2 or 4 memory banks, so 
they should be shared between different processors 
slowing down memory access. 
 

5   Conclusions 
A system using MicroBlaze and FSL links to 
communicate between them has been developed, and 
with the experiments tested it can be concluded that 
the FSL links are an ideal choice for exchanging data 
between processors due to their high speed data 
transfer rates. A system with 8 processors connected 
with FSL links has been used to test some parallel 
algorithms. With the results of these tests,  it can be 
seen that the system is very appropriate for parallel 
algorithms in which the data transfer time is 
substantially lower than the computing time. 
Analysing the synthesis results, it is clear that what 
limits the number of processors in a multiprocessor 
design on FPGA is the amount of BlockRAM 
available, not the total size of the FPGA. 
 
Future work includes the study of other buses for data 
communication, alternatives to the reduced amount of 



BlockRAM in FPGAs, and the development of a 
software library (probably based on the MPI library) 
to make the writing of parallel programs easier for the 
software developer based on the underlying hardware 
architecture and the communication engine of the 
whole system. 
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