
Multi MicroBlaze System for Parallel Computing
P.HUERTA, J.CASTILLO, J.I.MÁRTINEZ, V.LÓPEZ

HW/SW Codesign Group
Universidad Rey Juan Carlos
28933 Móstoles, Madrid

SPAIN

Abstract: - Embedded systems need more computational power to satisfy today’s applications’ needs, like
audio/video encoding/decoding, image processing, etc. An option for increasing the computational power of a
system is to include various microprocessors and make them work in parallel. This paper presents a study of the
viability of making a multiprocessor system on a chip (MPSoC) using the MicroBlaze soft-processor core from
Xilinx. Performance of data communication is studied, and also a parallel application is used for testing speedup
and efficiency of the system. 1

Key-Words: - MultiProcessor, FPGA, System on Chip, MicroBlaze

1 This work has been supported by the Spanish PROFIT and Medea+ program Ander FIT-0700000-2003-930
contract.

1 Introduction

The increasing computing power needed for some
complex applications has meant that parallel
programming techniques and systems for solving
complex problems in an optimal time, like clusters,
multiprocessor systems, grid sytems, etc. have
appeared.
Embedded systems need more computational power
to satisfy today’s applications’ needs, like
audio/video encoding/decoding, image processing,
etc. and multiprocessor systems on a chip (MPSoC)
are an option to deal with this increasing
computational needs [1] and [2].
A parallel computing system is made up of various
processing elements (PE) that work cooperatively to
solve a problem. There are two main paradigms for
communicating the PEs and allowing data exchange
between them: message passing and shared memory.
Each of them has its own pros and cons, but usually
message passing is more popular in clusters and grid
systems, and shared memory is popular in
multiprocessor systems [3],[4] and [5].
In this paper a study of the use of various MicroBlaze
processors in an embedded system and different
architectures for communication between them are
proposed. The message passing paradigm for data
exchange between processors will be used.
In section 2, the main characteristics of the
MibroBlaze soft-core processor used in our parallel
system will be presented. In section 3 some
communication alternatives for data exchanging

between processors will be discussed. Some of its
characteristics will be shown, as well as some tests
about data communication performance. In section 4
a complete system using the chosen data
communications architecture and some results
showing the performance of the complete system will
be presented. Section 5 will show conclusions about
this work and future work lines about parallel
architectures for embedded systems.

2 MicroBlaze soft-processor core

The MicroBlaze embedded soft core is a reduced
instruction set computer, optimized for Xilinx FPGA
implementations. Figure 1 shows a block diagram of
the MicroBlaze core [6].
The MicroBlaze embedded soft-core includes the
following features:

• Thirty-two 32-bit general purpose registers
• 32-bit instruction word with three operands and two
addressing modes
• Separate 32-bit instruction and data buses that
conform to IBM’s OPB (On-chip
 Peripheral Bus) specification
• Separate 32-bit instruction and data buses with
direct connection to on-chip block
 RAM through a LMB (Local Memory Bus)
• 32-bit address bus
• Single issue pipeline
• Instruction and data cache
• Hardware debug logic

• FSL (Fast Simplex Link) support
• Hardware multiplier (in Virtex-II and subsequent
devices)

Fig.1. MicroBlaze block diagram[6]

The MicroBlaze core implements a Harvard
architecture. It means that it has separate bus
interface units for data and instruction access. Each
bus interface unit is further split into a Local Memory
Bus (LMB) and IBM’s On-chip Peripheral Bus
(OPB). The LMB provides single-cycle access to on-
chip dual-port block RAM. The OPB interface
provides a connection to both on-and off-chip
peripherals and memory. The MicroBlaze core also
provides 8 input and 8 output interfaces to Fast
Simplex Link (FSL) buses. The FSL buses are uni-
directional non-arbitrated dedicated communication
channels.

3 Communication Architecture
As seen in the previous section, MicroBlaze contains
eight input and eight output FSL interfaces. The FSL
channels are dedicated unidirectional point-to-point
data streaming interfaces. The FSL interfaces on
MicroBlaze are 32 bits wide. Further, the same FSL
channels can be used to transmit or receive either
control or data words. The performance of the FSL
interface can reach up to 300 MB/sec. This
throughput depends on the target device itself. The
FSL bus system is ideal for MicroBlaze-to-
MicroBlaze or streaming I/O communications [7].

The main features of the FSL interface are:

• Unidirectional point-to-point communication
• Unshared non-arbitrated communication mechanism
• Control and Data communication support
• FIFO-based communication
• Configurable data size
• 600 MHz standalone operation

The FSL bus is driven by one Master and drives one
Slave. The next figure shows the principle of the FSL
bus system and the available signals.

Fig.2. Fsl bus signals[7]

Xilinx EDK provides a set of macros for reading and
writing to or from an FSL link. There are two ways of
reading/writing on an FSL link: blocking or not
blocking, and also there are different instructions for
reading/writing data words or control words.
For testing and measuring the capabilities of the FSL
links, a simple system has been built. This system
consists of 2 MBlaze cores interconnected via 2 FSL
links, BlockRAM blocks for data and instruction
memory for each processor connected to the local
memory buses, an uartlite core for debugging an I/O
purposes connected to MB_0, and a timer for
measuring data transfer times connected also to
MB_0. A diagram of this system can be seen in the
next figure:

O
P
B
 B
U
S

Fig.3. 2 MicroBlaze system for testing communications

This system was used to test the viability of
transmitting data over the FSL links and for
measuring the time consumed in this task.
For testing the speed of the links, a program for data
transfers has been developed. The program was used
for transferring different sizes of data, from a simple
32 bit word to a matrix of 32x32 unsigned integers (4
Kbytes).
In the next graph we can see the different speeds
obtained with these tests.

Direct Transfer

0

2

4

6

8

1 5 10 20 40 80 160

Words Transmited

C
y
c
le
s
 p
e
r
W
o
rd

Fig.4. Direct transfer speeds over FSL link

In this graph the cycles per word consumed for
different sizes of data transmitted are represented.
With direct transfer we mean that the data is
transferred using the macros provided by Xilinx for
managing the FSL links invoking the macro for each
word to be transferred, not using any kind of control
loops. The time measured only includes the time to
invoke Xilinx macro to send data in one side, and to
receive data on the other side, it does not includes the
time to read/write data from/to memory. With this
kind of transmission and large data sizes, speeds of 2
cycles per word transmitted are reached. This
configuration is good if a low volume of data is
transferred, but for high sizes of data it is not feasible
to call the FSL transfer macro for each word, because
it will make the program size too big. For example,
for transferring matrices a double for must be used to
control the loop to access each element of the matrix
and call the FSL transfer instruction only once in
each iteration of the loop. With this kind of
transmission, a lot of cycles will be spent in the
control loop code. The results of the matrix transfers
are shown in the next figure.

Matrix Transfer

0

5

10

15

20

2x2 4x4 8x8 16x16 32x32

Matrix Size

C
y
c
le
s
 p
e
r
W
o
rd

 Fig.5. Matrix transfer speeds over FSL link

As can be seen for matrix transfer, speeds of nearly
11 cycles per word can be reached. This is more than
5 times slower than direct transfer, but still quick
enough to obtain good results in parallel algorithms
with large computing times per data word processed.
In this case, the time measured includes the time for
reading words from memory, invoking Xilinx macro,
and time spent in control instructions from the control
loop (incrementing loop variable, testing range, etc).

After testing the capabilities of the FSL links for
point to point data transfers, it was necessary to
decide which “network” architecture to use for
connecting various processors in a cluster. There are
many network topologies that can be materialized
with point to point links. The pros and cons of three
of them will now be discussed and the viability of
using them in a MultiMicroBlaze design using FSL
links for point to point data transfer:

-Completely Meshed: a completely meshed network
is a network in which each node is connected to every
other node in the network. It is a good way to reduce
the travelling time of packets over a network, because
data goes directly from sender to receiver, but its
main disadvantage is that the number of links grows
extremely quickly when the number of nodes is
increased. A completely meshed network topology
with MBlaze and FSL links will only be possible for
just 9 MBlazes, because of the limitation of 8 FSL
links for each MicroBlaze processor.

MB

MB

MB

MB MB

Fig.6. Completely meshed network

-Ring Network: a ring network is a network in which
each node in the network is connected to the
following and the preceding node in the network,
forming a ring. Data is passed from node to node
until it reaches the destination node. With MBlaze
and FSL links there will not be a size limit for the
network, because each MBlaze would just use 2 FSL
links. The main problem of this topology is that data
transfers from two nodes that are far from each other
are very time consuming.

Fig.7. Ring Network

-Star Network: a star network is a network in which
each node is connected to a central node. The weak
point of this topology is that if the central node fails,
the whole system fails. This weakness is not very
important in an embedded system, where all the
nodes are in the same chip. Using this topology it is
possible to build systems with 1 MBlaze as a central
node, and up to 8 MBlazes as general nodes. Also
bigger systems can be built by linking various
subsystems together. This is the choice taken for
developing our Multi MicroBlaze System.

Fig.8. Star network (left), and linked star

networks (right)

With this architecture, the central node will be the
one that decides which fragments of the work are
assigned to each general node, and will also be
responsible for grouping the results given by the
general nodes.

4 Complete System
Once the communication method (FSL links) and the
network topology (star network) were decided, 4
systems were built with: 1, 2, 4 and 8 MicroBlazes
each. The system with 1 MBlaze consisted of just the
central node, and was built with 1 MBlaze, 16
KBytes of Block RAM for instruction and data
memory, an uartlite and a timer attached to the OPB
bus. The general nodes were built with one MBlaze
and 16 KBytes of Block RAM for instruction and
data memory.
With this system some parallelizable applications for
testing the speedup obtained due to the use of many
processors instead of one were used.
The first application used to test the systems was an
application that performed matrix multiplications.

The parallelization of the matrix multiplication
algorithm implemented consists of sending one or
more rows of the first matrix, and the whole second
matrix to each processor. So each processor obtains
one or more rows of the resulting matrix.
The speedup of a parallel algorithm is defined as the
time needed to solve the problem using just one
processor divided by the time needed to solve the
problem with p processors. In an ideal system and
with an ideal parallel algorithm, the speedup would
be equal to the number of processors p.

p

s

t

t
speedup =

Another measure of the performance of a parallel
system is efficiency. Efficiency is defined as the
speedup per processor. In an ideal system with an
ideal parallel algorithm, the efficiency would be
equal to 1.

p

speedup
efficiency =

With this matrix multiplication program various tests
were performed with a different number of
processors, and with different matrix sizes. The time
measured includes the time for: reading the matrices,
distributing data to processors, performing the
multiplication, and reading back the results. The
results obtained for speedup and performance are
shown in the following graphics.

32x32 int matrix multiplication

0

0,5

1

1,5

2

2,5

2 4 8

Number of processors

S
p
e
e
d
U
p

0

0,2

0,4

0,6

0,8

1

2 4 8

Number of processors

E
ff
ic
ie
n
c
y

Fig.9. Speedup and efficiency for 32x32 integer matrix

multiplication parallel program

As it can be seen in this graph, results are not as good
as it could be expected. This is because when the
number of processors is increased, more time is spent
in communications, consequently the time saved with
parallelism is spent in data communications.
The second test consisted of the same matrix
multiplication algorithm, but using floating point
matrices. Floating point multiplication requires more
time than integer multiplication because floating
point operations must be emulated due to the lack of
a floating point unit in the MicroBlaze processor. In
this test, the time consumed in communication will be
the same as if the matrices were integer, but as the
processing time is bigger, better results in terms of
speedup and efficiency are expected.
The results obtained from this test are shown in the
next figure.

16x16 float matrix multiplication

0

1

2

3

4

5

6

2 4 8

Number of processors

S
p
e
e
d
U
p

0

0,2

0,4

0,6

0,8

1

1,2

2 4 8

Number of processors

E
ff
ic
ie
n
c
y

Fig.10. Speedup and efficiency for 16x16 float matrix

multiplication parallel program

As it can be seen in this graph, better results are
obtained. But efficiency also decreases when the
number of processors increases, due to the overhead
in communications. A possible solution for saving
time in communications and improving the system’s
efficiency would be to find a way for broadcasting
messages that are common to all processors instead
of sending one message to each processor. In this test,

broadcasting the second matrix to all processor would
save a lot of time.
To have an idea of how much FPGA space is needed
for multiprocessor systems using Microblaze, some
synthesis results will be presented. The system
developed has been tested on an RC300 board from
Celoxica, equipped with a XC2V6000 -4 Virtex 2
FPGA. The whole system’s clock speed was 50 MHz.
The synthesis results obtained for the final system (8
MBlazes) are presented in the following table.

Logic Utilization:
Total Number Slice Registers: 3,017 out of 67,584 4%
Number of 4 input LUTs: 5,760 out of 67,584 8%
Number of occupied Slices: 5,098 out of 33,792 15%
Total Number 4 input LUTs: 8,940 out of 67,584 13%
Number of Block RAMs: 64 out of 144 44%
Number of MULT18X18s: 24 out of 144 16%
Number of GCLKs: 1 out of 16 6%

Fig.11. Synthesis results in a XC2V6000-4
FPGA

From this table, it is clear that a multiprocessor
system with only 8 processors spends 15% of the area
of the FPGA, so bigger systems can be fitted into this
FPGA. The main problem for multiprocessor systems
on FPGAs is that there is not enough BlockRAM: a
system with 8 processors with 16 KBytes each,
spends almost half the BlockRAMs (44 %) of a big
FPGA even when 16 Kbytes are not as many RAM as
it would be desirable. A possible option for the
memory problem would be to use external RAM, but
FPGA boards usually have 2 or 4 memory banks, so
they should be shared between different processors
slowing down memory access.

5 Conclusions
A system using MicroBlaze and FSL links to
communicate between them has been developed, and
with the experiments tested it can be concluded that
the FSL links are an ideal choice for exchanging data
between processors due to their high speed data
transfer rates. A system with 8 processors connected
with FSL links has been used to test some parallel
algorithms. With the results of these tests, it can be
seen that the system is very appropriate for parallel
algorithms in which the data transfer time is
substantially lower than the computing time.
Analysing the synthesis results, it is clear that what
limits the number of processors in a multiprocessor
design on FPGA is the amount of BlockRAM
available, not the total size of the FPGA.

Future work includes the study of other buses for data
communication, alternatives to the reduced amount of

BlockRAM in FPGAs, and the development of a
software library (probably based on the MPI library)
to make the writing of parallel programs easier for the
software developer based on the underlying hardware
architecture and the communication engine of the
whole system.

References:

[1]. Wolf, W: The Future of Multiprocessor Systems-
on-Chip. Proceedings of the Design Automation
Conference (DAC’04) 2004. pp. 681-685

[2]. Wolf, W: Multimedia Applications of
Multiprocessor Systems-on-Chip. Proceedings of
the Design, Automation and Test in Europe

Conference (DATE’05). 2005. pp. 86-89
[3]. Grama, A; Gupta, A; Karypis; G, Kumar, V:

Introduction to Parallel Computing. Addison
Wesley 2003.

[4]. Culler, D; Sing, J.P; Gupta, A: Parallel

Computing Architecture: A Hardware Software

Approach. Morgan Kauffman Publishers 1999.
[5]. Dongarra, J; Foster, I; Fox, G; Gropp, W;
Kennedy, K; Torczon, L; White, A: SourceBook
of Parallel Computing. Morgan Kauffman
Publishers. 2003

[6]. Xilinx: MicroBlaze Processor Reference

Guide.(v 4.0). 2004
[7]. Xilinx: XAPP529: Connecting Customized IP to

the MicroBlaze Soft Processor Core Using the

Fast Simplex Link (FSL) Channel. (v 1.3). 2004

