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Abstract: - An extended simulated annealing(ESA), based on grand canonical ensemble, is proposed. An ESA is used to solve the augmented traveling salesman problem(ATSP) and the multiple traveling salesman problem(MTSP). Experimental results show that ESA has salient features such as simplicity and ability to find high-quality solutions as simulated annealing has.
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1   Introduction 
The traveling salesman problem(TSP) is one of the hardest combinatorial optimization problems and remains NP-hard. Up to now, many researchers tried to solve large-scale multiple traveling salesmen problems for real world applications such as multi-depot vehicle routing problems and topological design of computer networks using many heuristic methods[1][2]. 

     Most of the heuristic methods use a local search algorithm which depends on a neighborhood structure or a complex transform scheme[2][3]. Simulated annealing(SA) is a powerful algorithm for solving combinatorial problems[4]. But SA can be applied only to the case of standard TSP because SA is based on the canonical ensemble which has the properties of fixed number of molecules with fixed volume.
2   Grand Canonical Ensemble, ATSP, and MTSP
2.1
Grand Canonical Ensemble 
The system in grand canonical ensemble(GCE), one of the representative ensembles, has a fixed volume, isolated temperature, predefined chemical potentials, varying number of molecules with opened energy barrier. We consider an isothermal system with any number of components is characterized by the thermodynamic variables, volume(V), temperature (T), chemical potentials((1, (2,…) and molecules(N1, N2,…). The probability that such a system contains the set, N1, N2,…, molecules and is in the energy state Ej(N1, N2,…,V) is 
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2.2
ATSP and MTSP  
The augmented traveling salesman problem(ATSP) and the multiple traveling salesman problem(MTSP) are extensions of the well-known TSP. In ATSP, n customer cities with their own profits are given. A salesman at a base city is required to visit k customer cities, k(n, and return to the base city. A cost is incurred and a profit is gained if a salesman visits customers. The ATSP is to determine the tour route to maximize the total benefit acquired from visited cities. The benefit and the cost function for solving the ATSP are defined as the following equations:
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where (i, Ni, and ( denote the profit of the city i, the number of appearance of city i in the tour route, and the weighting factor of the cost, respectively. d(i,j) denotes the (Euclidian) distance between city i and j.

    The MTSP can itself be generalized to a wide variety of routing and scheduling problems. In MTSP, there are n customer cities with m salesmen. Each salesman at a base city is required to visit k customer cities, k(n-m+1, and return to the base city and each customer city is to be visited by one salesman only. A cost is incurred if a salesman is actively used to visit customers. The MTSP is to determine the tour route to maximize the total benefit acquired by all the salesmen.
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where m denotes the number of salesmen. Si is the entropy term to make the salesmen’s workload be distributed equally, and ( is the weighting factor. Li denotes the number of cities that salesman i has visited.

3   Extended Simulated Annealing by GCE
In GCE the states of the system are to form a Markov chain by changing the number of molecules. GCE is an open system and this gives rise to the following four perturbation schemes to decide a next state of the system with N molecules(see Fig. 1):

(i) Increasing scheme : make a system to have N+1 molecules by extracting one molecule from the other systems and putting it into the system itself.

(ii) Decreasing scheme : make a system to have N-1 molecules by excluding one molecule from the system itself.

(iii) Internal swapping scheme : make a system to have the same number of molecules by interchanging a molecule with another molecule in the system.

(iv) External swapping scheme : make a system to have the same number of molecules by exchanging a molecule in the system itself with a molecule in the other systems.

 SHAPE  \* MERGEFORMAT 


    SHAPE  \* MERGEFORMAT 



(a)                                   (b)

 SHAPE  \* MERGEFORMAT 


    SHAPE  \* MERGEFORMAT 



(c)                                   (d)

Fig. 1 Examples of perturbation schemes of GCE : (a)Increasing, (b)Decreasing, (c)Internal swapping, (d)External swapping scheme

    These perturbation schemes are used in the following ESA algorithm for the TSPs.

Step 1: Set Initial and final temperature(T) values.

Step 2: (For the ATSP)  Select  one   of  the above perturbation schemes (i,ii,iii,iv) randomly and perturb a current tour route s to the route s’ by the scheme.


(For the MTSP) Perform one of the following steps(2.1, 2.2) randomly.

(2.1) Select two tour routes randomly, perturb one route by the perturbation scheme(ii) and another by the perturbation scheme(i) to make the route s’. It should be noted that the city to be deleted in one route must be added into another route.

(2.2) Select one tour route randomly, perturb it by the perturbation scheme(iii) to make the route s’.

Step 3: Compute the benefit B(s’) and compare it with the B(s) of the current route s, and let the route s’ be the new route with probability
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Step 4: Repeat step 2, 3 until the equilibrium state occurs and anneal with an annealing schedule. 

Step 5: Repeat  step 2, 3, and 4  until  final  T  is reached.

4   Experimental Results
An ESA algorithm is tested with 400 cities, denoted by circles, having their own profit values((i) on the ATSP and the MTSP. The tests are performed on an IBM PC-586(400MHz). They take less than 51 minutes to output the result of the tests with the starting temperature=1.0*103, the final temperature =1.0*10-2, (=1.0, respectively. The temperature(T) is decreased as T = 0.95T.  

    Fig. 2 shows the result of the SA in solving traditional the TSP with 25 cities and the same parameters. There is, in the beginning, a large degree of randomness at high temperature, and as the temperature is decreased the system converges to a stable state. 

    Fig. 3 shows the effectiveness of the ESA in solving the ATSP with 400 cities. There is a large degree of randomness at high temperature and the system converges to a stable state same as in Fig. 2. It is noticed that cost means the negative value of benefit in ATSP. The same output result also comes out when different initial tours are tried. It should be noted that some cities (dark gray colored cities in Fig. 3(a)) with the profit value of greater than 1.0 are not included and some cities(light gray colored cities in Fig. 3(a)) with the profit value of less than 1.0 are included in the final tour. This shows that a city is included in the tour not just because of its high profit and low cost but because of the high profits of its neighborhood included in the tour. 

    Fig. 4 shows the results of the test on the MTSP with 3 salesmen. The parameters used in this test are the same as the ones used before except (i=1.0 and (=80.0. The final tour routes, 3 colored routes for 3 salesmen, are shown in Fig. 4(a). This shows that the entropy plays a role to help the convergence. It is also noted that ESA can solve the MTSP without any transformation into a standard form, unlike most heuristic algorithms.
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(a)                         (b)
[image: image15.emf]Progress of the convergence(TSP)
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Fig. 2 The result of the TSP with 1 salesman(by SA) : (a)Initial tour route, (b)Final tour route, (c)Progress of the convergence
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Fig. 3 The result of the ATSP(by ESA) : (a)Final tour route, (b)Progress of the convergence.
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(b)
Fig. 4 The result of the MTSP with 3 salesmen(by ESA) : (a)Final tour routes, (b)Progress of the convergence(in case of a light gray colored route).

4   Conclusion

In this paper we propose ESA, based on GCE, and show how ESA can be used to solve the ATSPs and the MTSPs which can not be solved by original SA. SA can find the configuration of all particles arranged themselves only, ESA can also find the configuration of all or partial particles arranged themselves according to the problem conditions. Therefore ESA for ATSP causes the unselected cities (1,4,7,8,9, etc.) in final route and makes the total cost(see Fig. 3(b)) reduced. For the efficiency of ESA we presented an augmented TSP that can be applied to most combinatorial problems in real world, and showed it also can be solved by ESA. 

    ESA also has no need to transform MTSP into a standard TSP as most heuristic algorithms have. Experimental results, such as Fig. 3 and Fig. 4, show that ESA has salient features such as simplicity(in Section 3) and ability to find high-quality solutions as SA has in general. By adding the entropy constraints to the energy function, MTSPs can be solved by ESA effectively.

    Another attractive feature of the ESA, when it is applied to MTSP, is that finding every salesman’s route can be performed in parallel and can therefore take maximum advantage of parallel processing capabilities.
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