A non-parametric method for the estimation of a GPD parameter based on wavelet theory
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Abstract: - In this paper, we propose a technique for estimating the threshold of an empirical failure distribution, having supposed that excesses over the threshold follow a Generalised Pareto Distribution. Our method is substantially based on the estimates of the sampling mean excess, performed by a kernel function. Furthermore, we provide some examples on the application of the method with a small data set.  
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1   Introduction

Nowadays, the evaluation of the failure risk represents an important task for the mechanical area. In fact, in the context of failure risk prevision, a rare event can have a big influence on material robustness and so on the failure probability, but numerous events with low influence on robustness can greatly influence the failure probability. In such cases, it is important to know precisely the data distribution for the most likely values of the distribution as well as extremal values. The first natural choice is a parametric distribution accepted both by a usual test (which test the distribution in the range of the most likely values of the variable) and by an adequacy test for the distribution tail (for example the Exponential Tail (ET) test or the Generalized Pareto Distribution (GPD) test. 
The GPD test is a generalization of the ET test to all maximal domains of attraction. 

But the estimated distributions are principally influenced by the most likely values of the variable, and will are worse extrapolation properties.The specific methods for rare events prediction (as the Peaks over Threshold  or POT method) based on a small part of the sample studied, reveal estimation problems for small samples (when the information on the distribution tail, contained in the extremal values of the sample is too slight). We so suggest a method to ``measure'' this deterioration, and the improvement of the adequacy to rare events.
An abundance of high quality data sets requiring heavy tailed models necessitates reliable methods of estimating the shape parameter governing the degree of tail heaviness. The Hill estimator is a popular method for doing this but its practical use is encumbered by several difficulties. Here, we propose a non-parametric method for the estimation of the parameter of a GPD, which is based on wavelet theory. We show that this alternative method is more revealing than the standard method unless the underlying data comes from a Pareto distribution.
 We follow an approach similar to[1]. This method is based on the simulation of a probability density function of a given sample. In particular, we evaluate the shape parameter by applying the proposed method. Therefore, the evaluation of the threshold parameter, of a GPD, is performed by comparing the so obtained estimates with respect to Hill estimator [2]. 

2 Modelling the extreme value distribution by a GPD
Let X be a random variable and F its distribution function. The distribution, for values of X exceeding a high threshold u, defined as:

   Fu(y) = Pr (X ≤ u + y | X > u ),               (1)

can be composed by the following curves with 0 ≤ y < x0 ( u, where

           x0 = sup {x: F(x) < 1}

 (2)

is called the right endpoint of F. The distribution (1) is often modeled by the GPD as follows:
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where r = u + y. u, (, and ( are parameters denoting respectively the threshold, the shape and the scale of the distribution. Furthermore, for ( > 0, the GPD is a parameterized Pareto distribution; if ( = 0, it becomes an exponential distribution. The importance of a GPD is given by a theorem [3]; it illustrates that, if F(r) satisfies suitable regularity conditions, then exist a function ((u) such that
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The regularity conditions are satisfied by all the continuous distributions, such as beta exponential, gamma, normal, lognormal, t, uniform and (2. Finally, suppose that ( < 1 and X > 0. Furthermore, let u0 be the minimum value of the threshold so that, by (4), 
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two curves (the proof of this last relation is shown in the Appendix). Moreover, it can be shown that, if the excess distribution 
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 over the threshold u0 can be approximated  to a GPD, then, for any u (u0, u), also Fu is a GPD, with the same shape parameter ( and a different scaling: if ( is the scaling parameter of 
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 then ( +( (u ( u0) is the corresponding scaling parameter of Fu.      
3 Parameter estimation by means of wavelet theory with application to a GPD
3.1 A density estimator based on Haar Wavelet
Let X1, X2,..., XN be independent identically distributed random variables whose (unknown) density is f. In this case, an estimator of f  is given by [4]
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where
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Moreover, let ((x) a function (mother wavelet) whose first h (h ( N) moments are zero and ((x) a function (father wavelet) orthonormal to ((x), according to the L2 norm. In our work we have made the choice [5][6] [7]

[image: image12.wmf]ï

ï

î

ï

ï

í

ì

ú

û

ù

ç

è

æ

Î

ú

û

ù

ê

ë

é

Î

-

=

1

,

2

1

,

1

2

1

,

0

,

1

)

(

x

x

x

ψ

.

The choice of a similar interpolating curves is done because the order N, of the empirical data set, can be relatively small. It is easy to prove that, if ( is a mother wavelet, then also (jk is a mother wavelet.
 PRINT \p para "[ /EMC pdfmark [ /StPop pdfmark" Note  that we can express the estimator (6) in the equivalent form 
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where (m(x, y) = 2m((2mx, 2my) and [t] is the largest integer less or equal to t [8]. 

The choice of j1 is again discussed in statistic literature. It is made in order to minimize the mean integrated squared error

MISE =

E
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where E(() is the expected value of the observations and ||(|| denotes the usual L2 norm. Note that
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Now, let
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It follows that [9]
E
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Now, let Wn be the space spanned by the (orthonormal) basis {2n/2((2n/2x ( k), k ( Z}. Furthermore, let V0 be the space spanned by basis {((x ( k), k ( Z} and set Vn = Vn(1 + Wn(1 (i (  N}). By construction, 
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However, in a regression estimation (i.e., when Xi ( Xi(1 = 1/N = const.) it is accepted that 

j1 ( log2 N ( ln (log2 N )

(see [4]). Therefore, in our work we have chosen
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where 
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3.2   Estimating the threshold of a GPD 
Preliminarily, observe that, as pointed out in [10], the determination of an optimal threshold is a compromise between choosing a high threshold, in consideration of (4), and choosing an acceptable low threshold; in fact, the experimental values, over the chosen threshold, must be sufficient for estimating the other parameters. Therefore, we adopt the following procedure. First of all, for any i ( {1, 2,..., N}, we set 
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(x), of the random variable x: = (x1,...,xN), by utilizing estimator (6). Then, for any i ( {1,2,...,N}, we evaluate 
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Now, suppose that {X1, X2,..., XN}, are sorted in ascending order. Therefore, for any u ( [x1, xN],  we can estimate E(x ( u, x > u) by the position
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where x0 is given by (2). Finally, for any u ( [x1, xN], we evaluate E(x ( u|x > u) by setting
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 (9)
and, by numerical derivation, we can evaluate
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Now, observe that, by (5), the sampling mean excess E(x ( u|x > u) and the thresholds are linked by a line with slope (/(1((). Therefore we can conclude that, chosen a threshold X( ( {X1, X2,..., XN}, an estimate of ( can be given by the following relation:
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(observe that the parameter ( is independent from scale changing). Note that we can estimate the scale parameter (, by setting:
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We can obtain the estimate of (, by solving equation (5) with respect to ( and by putting u = u0 = X(. Finally, for various values of u ( {X1, X2,..., XN} we estimate the shape parameter ( by our method and by means of Hill estimator:
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where Xn(k is the chosen threshold u. Therefore, we compare the two obtained estimates of (. We assume that a given value u* ( {X1, X2,..., XN} is an estimation of the threshold iff the two corresponding values of xi* given by 
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4 Numerical evaluation

In Tables 1-2 are shown the results deriving from our proposed procedure. Given a sample, for various choices of u, we estimate the relative shape parameter for different values of j1. Tables 1-2 show that if we choose j1 = 5, by relation (8), then the value of u that minimizes
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	u
	Hill
	j1 = 4
	j1 = 5
	j1 = 6

	   43.6080
	0.8139
	0.4944
	0.6919
	0.7432

	   44.9304
	0.8494
	0.4944
	0.6919
	0.7432

	   45.1014
	0.9225
	0.4944
	0.6919
	0.7432

	   47.7844
	0.9511
	0.2345
	0.6269
	0.5993

	   67.6933
	0.6698
	0.5717
	0.6572
	0.6318

	   69.2992
	0.7272
	0.5717
	0.6572
	0.6318

	   75.1217
	0.7389
	0.7107
	0.7530
	0.5458

	   83.9096
	0.7330
	0.7324
	0.7036
	0.6316

	   85.3846
	0.8586
	0.7324
	0.7036
	0.6316

	  102.7258
	0.8422
	0.3782
	0.6360
	0.5680

	  122.4962
	0.8882
	0.5042
	0.4425
	0.6993

	  147.8732
	1.0499
	0.7327
	0.8604
	0.8221

	  338.4586
	0.4437
	0.3888
	0.8904
	0.7266


Table 1: comparison of 
[image: image43.wmf]ξ

ˆ

 with respect to different values of u. The chosen sample is z = [0.2601, 3.4647, 4.0474, 7.3917, 8.5966, 15.4340, 15.8669, 29.9727, 33.4728, 35.7628, 35.9188, 37.9968, 38.0782, 40.9464, 42.2939, 43.5196, 43.6080, 44.9304, 45.1014, 47.7844, 67.6933, 69.2992, 75.1217, 83.9096, 85.3846, 102.7258, 122.4962, 147.8732, 338.4586, 527.4641].

	u
	Hill
	j1 = 4
	j1 = 5
	j1 = 6

	   44.9757
	0.7996
	0.6555
	0.8560
	0.8472

	   45.4800
	0.8542
	0.6555
	0.8560
	0.8472

	   46.1098
	0.9168
	0.6555
	0.8560
	0.8472

	   46.1915
	1.0065
	0.6555
	0.8560
	0.8472

	   46.3552
	1.1145
	0.6555
	0.8560
	0.8472

	   47.3671
	1.2295
	0.6555
	0.8560
	0.8472

	   49.1006
	1.3640
	0.6555
	0.8560
	0.8472

	   65.0129
	1.2639
	0.5281
	0.4765
	0.4364

	  155.4047
	0.4709
	-0.3614
	0.2493
	0.1377

	  179.2390
	0.4103
	-0.1466
	0.2363
	0.2006

	  194.1682
	0.4404
	0.5568
	0.6593
	0.5581

	  198.2260
	0.6295
	0.6914
	0.7644
	0.7654

	  358.4985
	0.0740
	0
	-1.1471
	0


Table 2: comparison of 
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with respect to different values of u. The chosen sample is z = [0.1687, 0.6633, 9.6504, 9.9499, 17.1908, 21.9827,   26.3261, 29.7246, 30.4857, 30.7744, 33.7136,  34.6379, 35.0511, 38.3775, 39.6360, 40.6653,   44.9757, 45.4800, 46.1098, 46.1915, 46.3552,   47.3671, 49.1006, 65.0129, 155.4047, 179.2390, 194.1682, 198.2260, 358.4985, 386.0354].
6   Conclusions

In this paper a technique for estimating the threshold of an empirical failure distribution, having supposed that excesses over the threshold follow a GPD, has been proposed. Here, we propose a non-parametric method for the estimation of the parameter of a GPD, which is based on wavelet theory. The proposed methodology should be useful in practical problems, such as
· excess distribution estimation [12][13]
· posterior distribution to produce credibility intervals to measure our estimations uncertainty 

· hierarchical Bayesian procedures
· estimation and hypothesis testing approaches on a defined financial and/or insurance data set [14][15]].
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