
Interfacing Sensor Network to Grid Computing with Database Support

RICHARD A. WASNIOWSKI
Computer Science Department

California State University
Carson, CA 90747, USA

Abstract: - The widespread distribution and availability of small-scale sensors, actuators, and embedded
processors is transforming the physical world into a computing platform. Sensor networks that combine
physical sensing capabilities such as temperature, light with networking and computation capabilities are
becoming ubiquitous. Applications range from environmental control, warehouse inventory, and health care to
scientific and military scenarios. In this paper, we discuss a model for database support for interfacing sensors
to grid computing. Stored data are represented as relations. We also discuss the design and implementation of
experimental implementation the sensor database support system.

Key-Words:- Database, sensors, query, data streams, grid computing.

1 Introduction
In this paper we discuss the integration of sensor
networks with existing grid computing services.
Specifically we are looking at how we could extend
grid services which focuses on computation
resource usage rather than data resource usage with
sensor networks and database support. As an
integration mechanism, the Globus [6] toolkit is
used to interface between Grid and sensors. We
have developed a prototype to interface grid
computing with a sensor network. Our prototype
performs all the coding and the addressing that are
required between the two systems, thus allowing the
system to work with many types of sensors. A
sensor network is a distributed sensing technology
with limited processing ability and communications.
Grid computing is similar to a web service but with
more control due to the extra services it provides.
Both grid computing and sensor networks are
ongoing areas of research with collaboration from
around the world. Grid computing looks at utilizing
the vast amount of resources that are spread across
networks, while sensor networks utilize the
collections of simple devices to cover large areas at
a low cost. While sensor networks use the grid
resources, the grid uses the data collection by the
sensor networks. Different sensor networks format
the data being sent in different ways requiring
integrating schema. Schema is created in this project
for defining the format of the data, and for the XML
parser to be used. The Globus toolkit is used to

develop the grid side of the system, and the sensor
network is simulated using simulators.

2 Motivation
Integrating sensor networks with the traditional grid
poses several challenges. The technical challenges
are related to the development of sensors and sensor
network infrastructure, including the need to comply
with emerging APIs for grid and Web services.
Process-driven challenges, which are related to the
development and adoption of new models and
applications, are driving this technology. The
challenges within the integration project relate to
that fact that sensor networks and grid computing
are very different systems. For instance, grid is not
concerned about how processor intensive the service
is. It uses complex protocols to solve
interoperability issues that are acceptable for the
targeted environment with no restrictions on power
supplies. On the other hand, sensor networks are
designed with very energy efficient protocols, and
the data being sent is in a compressed form.
Therefore, less data is sent overall thus a decrease in
power usage overall. CPU usage is kept to a bare
minimum to save power, and interoperability is of
little concern due to increasing overheads in both
CPU usage and bandwidth requirements. Most of
sensor network systems involve monitoring answers
to continuous queries over data streams produced at
physically distributed locations, and most previous
approaches require streams to be transmitted to a

single location for centralized processing.
Unfortunately, the continual transmission of a large
number of rapid data streams to a central location
can be impractical or expensive. TinyDB allow
users to extract useful information from a sensor
network using aggregation queries. These systems
use in-network aggregation to reduce transmission
cost, hence reduce the energy consumptions of the
network. See the references [1-10].

3 System Overview
Sensor networks consist of very large numbers of
low-cost devices, each of which is a data source,
measuring some quantity the object's location, or for
example the ambient temperature (see Fig 1)

Fig.1 Sensor element from Crossbow Inc.

These networks provide important data sources and
create new data management requirements. For
instance, these sensors are generally self powered,
wireless devices. Such a device draws far more
power when communicating than when computing.
Thus, when querying the information in the network
as a whole, it will often be preferable to distribute as
much of the computation as possible to the
individual nodes. In effect, the network becomes a
new kind of database, whose optimal use requires
operations to be pushed as close to the data as
possible. Query execution on sensor networks
requires a new capacity: the ability to adapt to
rapidly changing configurations, such as sensors
that die or disconnect from the network. In sensor
networks individual sensor nodes are connected to
other nodes in their neighborhood through a
wireless network, and they use a multihop routing
protocol to communicate with nodes that are
spatially distant. Sensor nodes also have limited
computation and storage capabilities: a node has a
general-purpose CPU to perform computation and a
small amount of storage space to save program code
and data. A sensor node has one or more sensors
attached that are connected to the physical world.
Example sensors are temperature sensors or light
sensors. Thus each sensor is a separate data source
that generates records with several fields such as the
id and location of the sensor that generated the

reading, a time stamp, the sensor type, and the value
of the reading. Records of the same sensor type
from different nodes have the same schema, and
collectively form a distributed table. The sensor
network can be considered a large distributed
database system consisting of multiple tables of
different types of sensors. Sensor data might contain
noise, and it is often possible to obtain more
accurate results by data fusion from several sensors.
For example, when monitoring the concentration of
a dangerous bio-chemical in an area, one possible
query is to measure the average value of all sensor
readings in that region, and report whenever it is
higher than some predefined threshold.

3.1 TinyOS
We consider the sensor network as a large
distributed database system, namely sensor
database. Recent development of sensor database
systems has attracted more and more interests in the
querying performance for sensor network. TinyDB
is a sensor database system developed at Berkeley
for the project called TinyOS. The contribution of
TinyDB is the design of an acquisition query
processor for data collection in sensor networks.
They use in-network aggregation and are able to
significantly reduce power consumption over
traditional passive systems. A simple extension to
SQL has been done for controlling data acquisition,
and they show how acquisition issues influence
query optimization, dissemination, and execution.
For example, in the TinyDB system, there is a base
station directly connected to a sensor designated as
the root node. Aggregate queries over the sensor
data are formulated using a simple SQL-like
language, and then distributed across the network.
As the query is distributed across the network, a
spanning tree is formed for the sensors to return data
back to the root node. At each node in the tree, the
sensor combines its own values with the data
received from its children, and sends the aggregate
to its parent. TinyDB performs reordering on the
query predicate to optimize the query process. They
also propose other ways of optimizing query
execution plan for sensor database. If there are no
failures, this technique works extremely well for
decomposable aggregates, namely distributive and
algebraic aggregates such as MIN, MAX, COUNT
and AVG. A collection of motes all running
TinyOS/TinyDB can be easily deployed in an
environment and then effectively programmed. This
is suitable for any environmental monitoring
application. TinyDB works not only for sensing, but
can be used for actuation by making use of its
triggering capabilities.

3.2 TinyDB
TinyDB is an application that runs over TinyOS on
the Berkeley Mica mote platform. This combination
creates a network of low powered nodes, which
communicate in an adaptive, multi-hop, ad-hoc
wireless network. It provides a SQL-like interface
for querying the network for data without the need
to load application specific code into each node.
TinyDB takes care of issues to do with minimizing
radio communication through the use of in-network
processing and aggregation, putting the CPU into a
low-power mode whilst not communicating or
processing, as well as optimizing queries for power
efficiency in the network. TinyDB is a query
processing architecture for TinyOS sensor networks.
It is an SQL like interface and the functionality to
respond to the queries distributed in the network. It
has the ability to efficiently use network resources
and to perform limited operations on the data values
- either with in network or at the interface. The
major aspects of this framework are that queries are
processed with a query optimizer that generates a
query that is efficient on the particular network,
reducing the use of network resources. The query
optimizer determines how data flows between nodes
and establishes aggregation filters that allow an
optimization between computation and
communication. In addition TinyML and TinyVM
can be used. TinyML is a lightweight
implementation following some of the SensorML
ideas that are built on XML. The basic platform
components relate to physical devices (such as the
Mica2). There are a few fundamental elements for
TinyML. The first is the concept of a Platform. A
platform consists of a basic infrastructure with some
type of processor, an energy source and a radio or
other communication device. In addition to the
infrastructure, platforms have sensors and/or
actuators. Basic sensors are such things as
microphones for sound detection and thermistors for
temperature readings. A sensor field, a collection of
sensor nodes is made up of a collection of platforms.
The platforms may be uniform or different in their
capabilities and attributes. A sensor network also
has elements that could provide data to link the field
to an external reference points. An example is a
sensor field that has platforms with self organizing
location data and a field reference description that
has a link to GPS data at one or more points.
Consider for example a relation sensors containing
readings of temperature and light from N sensors
located in different geographical locations described
by coordinates
 (i, j), in M sets and defined as:

)(
...

)(1

sensorslocationijsensorM

sensorslocationijsensor

σ

σ

=

=

This can be transformed into a selection operation as
illustrated in the following (TinyDB) SQL
statement:

SELECT nodeij, light, temperature
FROM sensors
WHERE location = “(1,7)”
SAMPLE PERIOD is for 30s

This statement collects light and temperature
readings from location (1,7).

3.3 Grid Computing
A sensor network is a distributed sensing
technology with limited processing ability and
communications. Grid computing is similar to a web
service but with more control due to the extra
services it provides. Both grid computing and sensor
networks are ongoing areas of research with
collaboration from around the world. Grid
computing looks at utilizing the vast amount of
resources that are spread across networks, while
sensor networks utilize the collections of simple
devices to cover large areas at a low cost. While
sensor networks use the grid resources, the grid uses
the data collection by the sensor networks. Different
sensor networks format the data being sent in
different ways requiring integrating schema.
Schema is created in this project for defining the
format of the data, and for the XML parser to be
used. The Globus toolkit is used to develop the grid
side of the system, and the sensor network is
simulated using simulators.

4 Integration Frameworks
Given the view of a sensor network as a huge dis-
tributed database system, we would like to adapt ex-
isting techniques from distributed and
heterogeneous database systems for a sensor
network environment. However, there are major
differences between sensor networks and traditional
distributed and heterogeneous database systems.
Because of the large scale and dynamic nature of a
sensor network, we cannot assume that a centralized
optimizer maintains global knowledge and thus
precise meta-information about the whole network.

We have developed a prototype to interface grid
computing with a sensor network. Our prototype
performs all the coding and the addressing that are
required between the two systems, thus allowing the
system to work with many types of sensors. The
grid - sensors framework we developed features the
following modules: Inter-process communication:
the processes communicate and synchronize each
other, resource discovery; the resources needed to
execute the program are automatically discovered at
run time, remote commanding, callbacks, are used to
implement application monitoring, and
authentication. All intermediate data are stored in a
database using database. We wanted our database to
be free to implement so we wanted a free-to-use
database manager ant that is why our database is
implemented in mySQL. We are using declarative
queries are the preferred way of interacting with a
sensor network. Rather than deploying
application-specific procedural code expressed in
programming language, we believe that sensor
network applications are naturally data-driven, and
thus we can abstract the functionality of a large class
of applications into a common interface of
expressive queries. It also helped us identify a set of
challenging issues that we are addressing with our
ongoing research. Due to the large scale of a sensor
network, it is highly probable that some of the
sensors and some of the communication links will
fail at some point during the processing of a
long-running query. We are currently studying how
sensor database systems can adjust to
communication failures and return a more accurate
answer at the cost of increased response time and
resource usage.

5 Concluding Remarks
Sensor networks are becoming ubiquitous, and the
database community needs to be prepared to address
the new challenging problems. In this paper we
introduce a framework for integrating sensors with
grid computing. We described a vision of processing
queries over sensor networks, and discussed some
initial steps in system implementation. We have
described an architecture based on the Globus
Toolkit to integrate devices and sensors into the
Grid.
There are still many improvements that need to be
made to the system. A few of these issues are
discussed below. Results from the TinyDB query to
the sensor network are currently sent back to the
backend and then stored directly in a database which
can then be analyzed separately. This does have its
benefits, but detracts from the overall TinyDB

application. We will need some kind of ODBC
driver for TinyDB. With an ODBC driver the sensor
network can be made to appear as a standard table.
We will also focus on querying wide area sensor
databases, containing (XML) data derived from
sensors. The basic idea is to use XPATH queries on
XML database.

References
[1] Cohen, P.R., and Feigenbaum, E.A., editors
(1982) The Handbook of Artificial Intelligence -
Vol. 3 AddisonWesley Publishing Co: Reading,
MA, U.S.A.
[2] Duntsch, I., and Gediga, G. (1998) "Uncertainty
measures of rough set prediction", Artificial
Intelligence, no. 106, pp. 109-137.
[3] Efron, B. (1982) The Jackknife, the Bootstrap
and Other Resampling Plans. CBMS-NSF Regional
Conference Series in Applied Mathematics, no. 38.
Society for Industrial and Applied Mathematics:
Philadelphia, PA, U.S.A.
[4] Fayyad, U.M., Piatetsky-Shapiro, G., and Smyth,
P. (1996) "The KDD process for extracting useful
knowledge from volumes of data", Communications
of the ACM, v. 39, no. 11, pp. 27-34.
[5] Frawley, W.J., Piatetsky-Shapiro, G., and
Matheus, C. (1992) "Knowledge discovery in
databases: An overview." AI Magazine, pp. 57-70.
[6] The Globus toolkit, www.globus.org/toolkit
[7] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.
[8] Serge Abiteboul, et al, The Lowell Database
Research Self-Assessment, COMMUNICATIONS
OF THE ACM, May 2005/Vol. 48, No. 5, pp 111-
115
[9] R. Wasniowski, Interfacing of sensor networks
to grid computing, report 2004.
[10] Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Record 3(3), 2002.

