
A Practical Application of FGDLS to Birds Flock Trajectory

Sabin Tabirca Tatiana Tabirca

University College Cork, Department of Computer Science, BCRI

College Road, Cork, Ireland

Lawrence Tianruo Yang

St. Francis Xavier University, Department of Computer Science

P.O.Box 5000, Antigonish, B2G 2W5, Canada

Andrea Unger Thomas Steube

Otto-von-Guericke-University of Magdeburg, Department of Computer Science

Magdeburg, Germany

Abstract: - In this paper we describe a practical application of the Feedback Guided Dynamic Loop
Scheduling (FGDLS) algorithm. FGDLS is a recent scheduling method that was proposed in Bull [1]
to deal with a sequence of similar or identical parallel loops. The presumption is that the parallel
loops are very similar with the same number of iterations and with iterations that do not vary much
from one step to another. The FGDLS algorithm uses feedback information from the previous parallel
iteration e.g. measured execution times to schedule the current parallel loop. So far all the applications
of FGDLS have considered only identical iterations within the parallel loops. In this article we will
propose a practical application to simulate the flocking birds (boids) trajectory. For this application
the iterations are not the same varying slightly from one parallel loop to another.

Key-Words: Dynamic scheduling, boid algorithm, visualization.

1 Introduction

Load imbalance is the most important overhead
in many parallel applications. Because loop struc-
tures represent the main source of parallelism, the
scheduling of parallel loop iterations to proces-
sors can have a significant effect on minimizing
load imbalance. Among many algorithms for loop
scheduling, Feedback Guided Dynamic Loop Schedul-
ing (FGDLS) is one that has been suggested re-
cently. The FGDLS algorithm was introduced by
Bull [2], and successively developed by Tabirca
et.al. [10] and [11]. The FGDLS method was
applied to solve several practical and theoretical
applications from Numerical Weather Prediction,

Linear Algebra or Graph Theory (see [1], [12] or
[13]).

2 FGDLS Method

In this section some properties of the FGDLS method
are reviewed. More information about the method
can be found in [2], [3], [10] and [11]. We assume
that the loop structure of Figure 1 is to be sched-
uled on a parallel machine (usually shared mem-
ory) with p processors P1, P2, . . . , Pp. We also as-
sume that the workload associated with the rou-
tine loop_body(i) at the outer parallel loop t is
given by {wi, i = 1, 2, . . . , n} and more impor-
tantly this does not vary much from a parallel loop

1

do seq t = 1, tmax
do par i = 1, n

call loop_body(i)

end do

end do

Figure 1: The FGDLS loop structure

to another. The FGDLS method uses block parti-
tioning of the parallel iterations on the processors
which can be given by ltj and ht

j, the lower and up-
per bounds of the iteration block assigned to the
processor j at the time t. These bounds satisfy
the equation

lt1 = 1, ltj+1 = ht
j+1, j = 1, . . . , p−1, ht

p = n. (1)

FGDLS starts with the initial, arbitrarily chosen,
loop bounds (l1j , h

1
j)1≤j≤p.

New loop bounds (lt+1

j , ht+1

j)1≤j≤p are calculated
from the bounds (ltj , h

t
j)1≤j≤p by approximately

equally distributing the total workload onto the
processors. We assume that the execution time of
each processor at time t (the accumulated execu-
tion time for loop_body(i), i = ltj , l

t
j+1, . . . , ht

j) is

given by T t
j =

∑ht
j

i=lt
j

wi, j = 1, 2, . . . , p. A piece-

wise constant approximation of the workload at
time t is then given by

wt
i =

T t
j

ht
j − ltj + 1

=

∑ht
j

i=lt
j

wi

ht
j − ltj + 1

, ltj ≤ i ≤ ht
j . (2)

New loop bounds, lt+1

j , ht+1

j , j = 1, 2, . . . , p, are
calculated so that this piecewise constant work-
load {wt

i , i = 1, 2, . . . , n} is approximately equally
distributed over the p processors:

h
t+1

j
∑

i=l
t+1

j

wt
i '

1

p
·

n
∑

i=1

wt
i = W. (3)

A simple way to solve this approximate distribu-
tion problem is to calculate the loop upper bounds
as follows

ht+1

j = h ⇔
h

∑

i=l
t+1

j

wt
i ≤ W <

h+1
∑

i=l
t+1

j

wt
i . (4)

The lower bounds are then given by

lt+1

j+1
= ht+1

j + 1, j = 1, 2, . . . , p − 1.

Equation (4) can generate an O(p+log p) schedul-
ing algorithm (see Tabirca et.al. [?]).

3 The Boid Trajectory Problem

Several research studies and books for birds flock-
ing trajectory have been written over the last 20
years but all of are based on the flocking behav-
ior model introduced by Craig Reynolds [8] and
[9]. This model which is called ”Boid Behavioral
Model” can be also applied to a variety of flocking
from ants and fishes to people. It provides au-
tonomous behavior for every element of the flock
by using a relatively easy mathematical model.

Three basic rules are applied for every bird:
alignment, cohesion and separation (see Figure 2).
Alignment is related to the fact that birds (or
swarms and crowds in general) head to the same
direction. So the alignment of a bird is influenced
by the average alignment of its neighbors. Cohe-
sion and separation are set against each other. On
the one hand, the flock is one unity that should not
be separated. The birds need to stay close. The
boid model takes this into account by heading each
bird to the average position of its flock neighbors.
As a result the bird stays within the flock. Co-
hesion leads to closer distances between the birds
until they clash. To avoid this, the counterpart
separation is used. Every bird steers away from
its closest flock mates to keep a comfortable space
that allows undisturbed flight. These three forces
are applied to the current velocity, which contains
heading and speed. The new position of a bird is
computed based on old position and resulting ve-
locity as well as the data of the other birds in the
flock.

Let’s assume that the bird flock has n birds.
As every bird is influenced by its neighbors, the
calculation for each bird needs to consider data
about its flock mates. This means that the new
position of a bird must consider n data (position
and velocity) of the whole flock as Figure 3 illus-
trate. This results in a time-consuming computa-
tion for a large number of birds as the positions are

2

Figure 2: Rules for Steering Behaviours.

found in O(n2). Moreover, parallel computation
can be employed to calculate the new positions of
the boid.

do seq t = 1, tmax
do par i = 1, n

call position(i, Listti);
end do

end do

Figure 3: The Main Loop Calculation for Boids.

A widely accepted way to reduce the complex-
ity [9] is to keep for each bird a list with all the
birds in its close vecinity at that moment

Listti = {j : dist(birdi, birdj) < d}, i = 1, ..., n.

The new position of the bird i considers in this
case only the birds from Listti which are in the
vecinity. The main advantage of this approach
is the computation of the new position, which is
done by the call of position(i, Listti) does not use
the whole n data but fewer. So that the complex-
ity of the computation decreases from O(n2) to
O

(
∑n

i=1 |Listti|
)

.
One can see that the call depends of time as the

list Listti can vary from one iteration to another.
However, the variation of the list Listti over time
is slow so that we can presume that the numbers

of birds in two consecutive lists Listti and Listt+1

i

are the same or vary only slightly. So the FGDLS
method can be used to schedule the loop structure.

4 FGDLS Solution for the Boid

Trajectory Problem

In this section describes how FGDLS can be ap-
plied to solve the Boid trajectory problem. Figure
4 gives the pseudo-code of this solution that sim-
ulates the trajectory of a boid. Initially, it should
be a preprocessing to initialize with random val-
ues the data (coordinates, velocity, etc) for each
bird. This is followed by another preprocessing to
calculate the lists List0j , j = 1, ..., n.

procedure boid(n)
// generate initial data (x,y,vel)

do par i = 1, n
generate(datai);

end do

// generate initial lists
do par i = 1, n

generate(i,data,Listi);
end do

// generate initial bounds
do par j = 0, p

h0
j = j ∗ n/p;

end do

// apply FGDLS
do seq t = 0, tmax

// Compute the lower bounds
do par j = 1, p

ltj = ht
j−1 + 1;

end do

do par j = 1, p
//Iterations assigned to Processor j
do seq i = ltj , h

t
j

call position(i, Listi,datai);
end do

Compute the execution time T t
j ;

end do

call fgdls(ht, T t, ht+1);
end if

end do

end.

Figure 4: FGDLS Computation for Boids.

The FGDLS method starts from the initial up-

3

per bounds h0
j = j ∗ n/p, j = 1, ..., p. From the

upper bounds, the lower bounds ltj = ht
j−1, j =

1, ..., p are computed at any step of the simulation
t. The parallel loop of Figure 3 can be now sched-
uled on processors so that each processor Pj re-
ceives the iterations i = ltj , l

t
j + 1, ..., ht

j . After this
parallel computation the execution times T t

j , j =
1, ..., p are observed. Based on the feedback in-
formation given by the upper bounds ht

j , j =
1, ..., p and the execution times T t

j , j = 1, ..., p the
call of fgdls(ht, T t, ht+1) finds the upper bounds
ht+1

j , j = 1, ..., p for the step t + 1.
Theoretical studies ([3] and [10]) have shown

that FGDLS achieves a very good load balance.
This means the execution times T t

j , j = 1, ..., p are
the same after the first few steps t. When the
workloads of the loop iterations do not vary from
one step to another, the upper bounds become sta-
ble ht

j = ht+1

j , j = 1, ..., p so that each processor
receives the same iterations. If this stability is de-
tected then there is no point in calculating the new
bounds as the previous bounds can be used. In this
way FGDLS achieves a perfect load balance for al-
most all the parallel loops and keeps the schedul-
ing overhead minimal as only the few sequences
of upper bounds are usually computed. However,
since the workloads vary slightly we do not expect
to achieve stability and the upper bounds must be
calculated at any time.

5 Practical Experiments

The boid trajectory problem was implemented on
a Silicon Graphics Origin 2000 parallel computer
with 64 R10000 processors (running at 195 MHz).
The implementation used the following scheduling
algorithms: block scheduling (B), self-scheduling
(SS) and feedback guided dynamic loop schedul-
ing (FS). The block scheduling algorithm divides
the parallel loop of Figure 3 into p equal-sized
blocks of iterations. This schedule can lead to load
imbalance, although the computation cost of the
scheduling algorithm is small, and there are no
synchronization overheads. However, the schedul-
ing can give good results when the lists Listi, i =
1, ..., n have a similar number of elements.

The self-scheduling algorithms keep a central
queue with the parallel iteration indices. When a

processor finishes the computation associated with
a given iteration index, it removes the next loop
iteration index from the queue and executes the
associated computation. The simple block self-
scheduling algorithm [4] allows a processor to take
a chunk of k iterations from the queue; this re-
duces the contention of multiple processors ac-
cessing the shared queue, but can lead to some
load imbalance. To avoid this poorer load bal-
ance, guided self-scheduling algorithms, see [5],
dynamically change the chunk size, starting from a
large size and making it progressively smaller. The
way in which the chunk size decreases gives rise to
several different guided self-scheduling algorithms:
adaptive guided self-scheduling [6], factoring [7]
and trapezoid self-scheduling [14]. Trapezoid self-
scheduling was used for also used to schedule the
parallel loops from Figure 3 as it is recognized to
be the most efficient of this class.

The Continuous FGDLS algorithm was used
to implement the call of fgdls(ht, T t, ht+1). We
know that algorithm has a very low scheduling
overhead and achieves an optimal load balance in
several cases [10], [11]. The implementation of this
scheduling follows exactly the pseudo-code illus-
trated in procedure boid(n).

The computation was done using a boid of
5000 birds whose trajectory was simulated 10000
times. Usually, the simulation is associated with
visualization too. An appropriate visualization re-
quires optimally 25 frames per second. The the
number of frames is smaller than 10 the effect of
standstill becomes unavoidable. With more and
more birds animated, the computation slows down
and so does the visualization if the scene is drawn
once after each computation. A sequential compu-
tation for this number of birds can only simulate 8
frames per seconds which is not acceptable. In the
following some experimental results are presented
when p = 4 processors are used. The initial distri-
bution of birds is done so that most of the birds
are grouped into a central flock with the rest scat-
tered around it. After a few steps of simulation all
the birds are gathered into the central flock.

The first experiment follows the execution times
per processors for these three methods. They are
presented below in milliseconds and reflect the com-
putation for t = 1, 2, 3, 4, 5. For the uniform block

4

scheduling the execution times are not balanced
and they are going to be like that for most of the
computation steps. The execution times for the
trapezoid self-scheduling are quite well balanced
started from the first iteration and stay well bal-
anced for the whole execution. For the FGDLS
method the execution times per processor are not
balanced initially but the method reaches the load
balance in only 4 steps. An important measure
is the average of those execution times which is
32.45 ms for SS and 31.5 ms for FS. The difference
of 1 ms quantifies the scheduling overhead that is
bigger for SS. Certainly, for the whole 10000 iter-
ations this difference cumulates in more than 10
second which is a big gap.

Uniform Block Scheduling

t=1 28.5 34.2 32.7 33.1

t=2 26.3 35.5 33.0 35.4

t=3 27.4 33.1 34.8 34.5

t=4 27.8 32.2 33,9 32.6

t=5 29.2 33.9 34.6 33.4

Trapezoid Self-Scheduling

t=1 32.3 32.7 32.8 32.0

t=2 32.5 32.2 32.4 32.9

t=3 32.9 32.8 32.2 32.5

t=4 32.1 32.6 32.3 32.9

t=5 32.8 32.4 32.3 32.2

FGDLS

t=1 28.6 34.1 32.3 33.0

t=2 31.5 33.2 32.6 31.3

t=3 31.9 31.0 31.5 31.2

t=4 31.4 31.5 31.6 31.4

t=5 31.4 31.5 31.4 31.6

The second experiment shows the overall ex-
ecution times for the whole simulation when the
number of processor varies. These execution times
expressed in seconds are presented in Table 1 and
Figure 5. They show that the execution times for
the trapezoid self-scheduling and FGDLS schedul-
ing are nearly the same but with a small advantage
for the latter.

Figure 5: Execution Times for p = 1, 2, 4, 8.

6 Final Conclusions

This article has presented an application of the
FGDLS scheduling to simulate the trajectory of
bird flocks. This is a practical application of the
method where the workloads of parallel iterations
vary slightly. The method has been tested against
trapezoid self-scheduling and uniform block schedul-
ing. Practical experiments have shown that FGDLS
offers the smallest execution times.
Acknowledgments: Research supported by the
Boole Centre for Research in Informatics at UCC.

References:

[1] J.M.Bull, R.W.Ford and A.Dickinson (1996)
A Feedback Based Load Balance Algorithm
for Physics Routines in NWP, Proceedings of
Seventh Workshop on the Use of Parallel Pro-
cessors in Meteorology, World Scientific.

[2] J.M.Bull (1998) Feedback Guided Loop
Scheduling: Algorithm and Experiments,

p = 1 p = 2 p = 4 p = 8

B 1,692.25 761.35 378.76 197.43

SS 1,653.39 674.82 330.35 173.54

FS 1,626.74 662.34 319.84 159.25

Table 1: Execution Times for p = 1, 2, 4, 8.

5

Proceedings of Euro-Par’98, Lecture Notes in
Computer Science, Springer Verlag.

[3] J.M.Bull, R.W.Ford, T.L.Freeman and
D.J.Hancock (1999) A Theoretical Investiga-
tion of Feedback Guided Loop Scheduling,
Proceedings of Ninth SIAM Conference on
Parallel Processing for Scientific Computing,
SIAM Press.

[4] C.P.Kruskal and A.Weiss (1985) Allocating
Independent Subtasks on Parallel Processors,
IEEE Trans. on Software Engineering, vol.11,
no.10, pp.1001–1016.

[5] C.D.Polychronopolos and D.J.Kuck (1987)
Guided Self-Scheduling: A Practical Schedul-
ing Scheme for Parallel Supercomputers,
IEEE Trans. on Computers, vol.36, no.12,
pp.1425–1439.

[6] D.L.Eager and J.Zahorjan (1992) Adaptive
Guided Self-Scheduling, Technical Report 92-
01-01, Department of Computer Science and
Engineering, University of Washington.

[7] S.F.Hummel, E.Schonberg and L.E.Flynn
(1992) Factoring: A Practical and Robust
Method for Scheduling Parallel Loops, Com-
munications of the ACM, vol.35, no.8, pp.90–
101.

[8] C.W.Reynolds (1987) Flocks, Herds, and
Schools: A Distributed Behavioral Model,
Computer Graphics, 21(4), July 1987, pp. 25-
34.

[9] C.W.Reynolds (1999) Steering Behaviors For
Autonomous Characters, in the proceedings
of Game Developers Conference 1999, San
Francisco, California, pp. 763-782.

[10] T.Tabirca, S.Tabirca, L Freeman, T. Yang,
Feedback Guided Dynamic Loop Scheduling;
A Theoretical Approach, Proceedings of the
3rd Workshop on High Performance Scien-
tific and Engineering Computing with Ap-
plications (HPSECA 2001), 2001, Valencia,
Spain.

[11] T.Tabirca, L.Freeman, S.Tabirca, An
O(log p) Parallel Algorithm for Feedback
Guided Dynamic Scheduling, Journal of
Parallel Algorithms and Applications, vol 17,
no 2, 2002, pp 157-165.

[12] T.Tabirca, L.Freeman, S.Tabirca, A Theoret-
ical Application of the Feedback Guided Dy-
namic Loop Scheduling, Proceeding of the In-
ternational Workshop on Clustering Comput-
ing, LNCS 2326, Springer-Verlag, 2002, pp.
287-292.

[13] T.Tabirca, S.Tabirca, L Freeman, T. Yang,
An Application of Feedback Guided Dy-
namic Loop Scheduling to the Shortest Path
Problem, Proceedings of the 2002 Inter-
national Conference on Parallel and Dis-
tributed Processing Techniques and Applica-
tions (PDPTA 2002), Las Vegas, 2002.

[14] T.H.Tzen and L.M.Ni (1993) Trapezoid Self-
Scheduling Scheme for Parallel Computers,
IEEE Trans. on Parallel and Distributed Sys-
tems, vol.4, no.1, pp.87–98.

6

