An ILP Based Management Protocol for Wireless Networks
KHADIJA STEWART    SPYROS TRAGOUDAS
Electrical and Computer Engineering Department
Southern Illinois University

Carbondale, IL 62901

USA

http://www.elec.engr.siu.edu/elec/faculty/tragoudas/tragoudas.htm
Abstract:    In this paper, we propose a power management algorithm that schedules the time off for nodes in wireless networks.  Wireless nodes are energy constrained, thus it is very important to extend their battery lifetime.  The proposed management algorithm extends the battery life of the nodes by periodically turning off pre-selected nodes to save their energy while keeping the network connected at all times. 
Key-Words:    Off mode, Scheduling, Connected Network, Integer Linear Program.
1  Introduction
In this paper, we present an algorithm that schedules the time off requests for nodes in an Ad-Hoc network with the constraint of keeping the resulting network connected
. The life of a node is controlled by the amount of energy it has and prolonging the battery life prolongs the life of the network as a whole.
    Turning off some of the nodes periodically to save on energy consumption is a solution that has been presented before.  In our work, we schedule nodes to be turned off while making sure that the operational nodes constitute a connected network to ensure an acceptable level of communication in the network at all times.
    Nodes submit requests for time off according to their particular schedules.  The computation of the schedule is done at specified instances of time th where h ( {0, x, 2x, 3x,...} and x is a predetermined time period. In a cluster hierarchy, each node receives a control signal from the cluster head informing it of the starting time of its time off and the duration of the time off.  In this case, time synchronization is required which could be achieved using the algorithms in [1, 2].

    There are four different states in the operation of the nodes. The transmit state, where the node is transmitting a packet. The receive state where the node is receiving a packet. The idle state where the node is neither transmitting nor receiving. While at this state, the node consumes power because it has to continuously listen to the wireless medium in order to detect a packet that it should receive, in such case, the node will switch to the receive mode. We refer to the above three states as the on state. The last state is the sleep state (also called the off state). In this state, the power consumption is very low because the network interface can neither transmit nor receive packets. 
    A considerable amount of work has been done on ways to maximize the battery lifetime and save energy in ad hoc networks.  We review here, some of the work related to energy management in ad hoc networks. [3] presents a new multi-access protocol based on the MACA protocol with the addition of a separate signaling channel.  This protocol conserves battery power by powering off nodes that are not actively transmitting or receiving packets.  Also, [4] discusses power aware routing in ad-hoc networks and introduces new metrics to consider when routing.  [5]  proposes algorithms to select the routes and the corresponding power levels to maximize the battery life of the nodes.  The last two cited works can be used in conjunction with this work.

    Much interest has been given to maximizing the battery life of wireless systems using voltage scalable processors.  [6] presents a dynamic voltage scaling algorithm for periodic hard real time tasks based on an improved slack time estimation algorithm. [7] presents two scheduling schemes.  The first one optimizes the overall power consumption profile which improves the utilization of the ideal battery capacity and the second one performs variable voltage scheduling by efficiently allocating slack times which helps reduce the average discharge power consumption and flattens the discharge power profile. Finally, [8] proposes a new model for the battery life in wireless devices and proposes schemes to extend the battery life through task rescheduling.  The above are orthogonal directions to the one studied here and can be combined with the proposed scheduling algorithm.

    The paper is organized as follows:  In Section 2, we formally define the studied scheduling problem.  We also compare our scheduling formulations to existing ones in the areas of architecture, design automation and operating systems.  Section 3 provides with an optimum integer linear programming (ILP) formulation for the scheduling problem which provides with an optimum solution.  Experimental results (Section 4) are conducted on standardized benchmarks, and Section 5 concludes.
2  Preliminaries
Let N = (V, E, R) be an n node, m link connected cluster where G = (V, E) is an undirected graph.  R is the set of requests for time off, r = |R|, V is the set of vertices and E the set of edges.  We assume here that an edge (a radio link) is formed between two nodes if they are within transmission range of each other.  Every request uj ( R has a duration ((uj) and a deadline d(uj).  We define the Request Scheduling Problem, RSP as the problem of constructing a schedule for the request nodes to be in the off state such that the latency
  of the schedule is minimum, the requests are satisfied before their deadlines and the resulting network remains connected, see the example below.  Note here that having a minimum latency allows for more schedules to be computed and more nodes to be turned off to extend their battery life.  
[image: image1.wmf]
Fig. 1: A sample network
Example: For the network in Fig. 1, assume that nodes 1, 2 and 4 submit requests for time off with the following durations and deadlines:  Node 1 has a duration of five time units and a deadline equal to 10.  Node 2 has a duration of two time units a deadline equal to 5, and node 4 has a duration of four time units and a deadline equal to 11.  Notice that if we schedule all the requests to be in the off state at the same time, the resulting network will be disconnected (node 9 will not be able to communicate with nodes 3, 7 and 8.)  Thus, we need to turn off a subset of {1, 2, 4} at a time.  Also, notice that scheduling both nodes 2 and 4 at the same time will also disconnect the network.  However, nodes 2 and 1 can start being in the off state at time T = 0.  Node 2 will finish being in the off state at time T = 2 and then we can schedule node 4 to start being in the off state at time T= 2 since at that time node 2 will be back to the on state.  In the resulting schedule, the network is connected at all times and the latency of the schedule (total duration of the off time) is 6 time units as shown in Fig. 2.
[image: image2.wmf]
Fig. 2: The RSP schedule
    We reduce the decision version of the RSP to the Sequencing Within Intervals (SWI) problem, which is NP complete [9], to prove that the RSP in also NP complete. The proof is omitted here due to space limitations.

    There exists in the literature a wide range of scheduling problems spanning a variety of fields such as VLSI and design automation, computer architecture, operating systems, etc...  In the remaining of this section, we discuss some scheduling problems that are close to the one studied in this paper and justify why those techniques could not be used to solve the RSP problem.

    In [10], the authors present a scheduling algorithm for data flow graphs (DFG). This problem arises in design automation of architectural specifications see also [11].  The proposed scheduling algorithm assigns each operation in the DFG to a control step under certain constraints and chooses the schedule that optimizes a given objective function.  In this scheduling problem, there exists a direct data dependency between every pair of consecutive nodes and the DFG is a direct acyclic graph.  In our scheduling problem, there is no direct data dependency between the requests and it would be very restrictive to form a DFG from the submitted requests.

3  The ILP formulation for the RSP problem

A solution to the RSP is presented in this section using an integer linear program (ILP), which results in an optimum solution.  The formulation presented here uses aspects as in [11].  Several ILP formulations for scheduling problems with different objective functions have been presented in the literature, see [11], among others.

    Our objective here is to schedule requests to be in the off state such that the ones that constitute a cutset
 do not overlap in their time off. 
    Let Ij be the list of all possible starting times (the starting time for a request is the time at which the request can start being in the off state) for request j, Ij = {1, 2, ..., (d(j) - ((j)) } , where d(j) is the deadline of j and ((j) is its duration.  For instance, if ((j) = 5 and d(j) = 10 time units then, Ij = {1,2,3,4,5}, the latest starting time for node j is time 5, which means that node j will finish being in the off state at time 10.  Let xi,j denote a binary variable where i ( Ij, and j is the request being scheduled.  xi,j = 1 if node j is scheduled to start being in the off state at time t = i and xi,j = 0 otherwise. Every node must have a unique starting time.  Therefore, (i(Ij  xi,j = 1 for all the request nodes j ( R.

    We formulate an ILP that satisfies a bound on the starting times of the requests.  The latency of the schedule will be minimized by executing the ILP with different bounds and selecting the earliest.  Namely, let (1(j) ( Ij denote the starting time function of the off state and (() the duration function.  The latency of the schedule under the RSP formulation is (maxj(R {(1(j)+ ( (j)}).

    We note that the requests that constitute a minimal cutset must not overlap in their time off.  If for example, R = {u, v} and the set {u, v} is a minimal cutset of the network, the time off schedules of nodes u and v must not overlap.  Let Iu = {1,2,3} , Iv  = {1,2,3,4,5}, ((u) =1 and ((v) =2.  Let (1(u) be the starting time of node u and (2(v) be the starting time of node v.  In order to ensure that the time off schedules of the nodes u and v do not overlap, one of the following two cases must be true:

[image: image3.wmf]j

j

d

1

2

(

)

(

)

(

)

u

v

v

³

+

                           (1)

[image: image4.wmf]j

j

d

2

1

(

)

(

)

(

)

v

u

u

³

+




(2)
    In the first case, the starting time of node u is at least the sum of the starting time of node v and the duration of node v, i.e, node u starts being in the off state once node v has finished being in the off state, and similarly in the second case, the starting time of node v is at least the sum of the starting time of node u and the duration of node u.  Equations (1) and (2) can be rewritten as equations (3) and (4):

[image: image5.wmf]j

j

d

1

2

(

)

(

)

(

)

u

v

v

-

³




(3)


[image: image6.wmf]j

j

d

1

2

(

)

(

)

(

)

u

v

u

-

³

-



(4)
    The connectivity requirement implies that either equation (3) or equation (4) is true.  Formally, in the case of a cutset in R
 of cardinality two, the following set of constraints has to be satisfied to maintain the connectivity of the network.

[image: image7.wmf]"

Î

Ù

"

Î

á

-

á-

+

£

j

j

d

j

j

d

j

j

1

2

1

2

1

2

1

(

)

(

)

|

(

)

(

)

(

)

(

),

(

),

(

),

u

I

v

I

v

u

v

u

x

x

u

v

u

u

v

v

                (5)
    In the more general case where a minimal cutset in R has a cardinality c2, (c2 > 2), at most c2-1 of the nodes from the cutset can be in the off state at a time. Therefore, at least one pair of nodes in the cutset must satisfy either equation (3) or equation (4). 

    An important aspect in the above ILP is the derivation of the cutsets that are responsible for forming the majority of the constraints in the ILP formulation.  The formation of the minimal cutsets is done using the procedure min_cutsets presented below.  Much research has been done on minimal cutest formation.  [12] presents a recursive labeling algorithm for determining all minimal cutsets in a directed network and [13] gives two methods for minimal cutset enumeration which use combinations of nodes. However, the main purpose of this paper is not to form the minimal cutsets but rather to schedule the off state of the request nodes.  Therefore, we used a simple pseudo-polynomial time algorithm where the cutsets are formed by removing the first and second requests r1 and r2 in a sorted request list from the network, performing a network traversal to check for the connectivity of the network using the procedure connectivity.  If the network is not connected, the set { r1, r2} is a cutset of the network. If the network is connected, we delete the next request on the list.  Once all the cutsets are formed, the redundant sets, i.e., the non-minimal cutsets are removed by iteratively intersecting every cutset with the remaining cutsets.
Procedure min_cutsets (R, r, Sets)
1. construct P(r)  possible sets (P(r) is the power set of r)
2. every time a request node is added to a set

a. perform a network traversal

b. if the network is not connected

i. the set is a cutset
4  Experimental Results
The ILP program that we used is the lp_solve program [14].  We used the ISCAS 85 network topologies that are widely used in the VLSI field.  We made the graphs bi-directional to increase the density of the networks.

    We used different request lists for every benchmark used.  The requests, their deadlines and durations were generated randomly using the random number generators lrand48() and srand48().  The durations and deadlines were uniformly distributed in the intervals [1,21], [the duration, 200].  

    The input files for the lp_solve were generated according to the specifications in Section 3.  The lp_solve was executed 20 times for each benchmark using a different request table each time.  We report the CPU time, the latency of the schedule and the number of cutsets.  We do not report the percentage of time the lp_solve gives a feasible schedule since it is optimum, i.e., it computes a schedule whenever one exists and it computes the schedule with the minimum latency.  The CPU time reported for the lp_solve is the time it took the program to compute a solution.
    The first column in Table 1 lists the benchmarks used. The second column represents the number of nodes in the benchmark, the third column is the number of requests. The fourth column represents the CPU time, the fifth the latency of the schedule and the sixth column represents the number of cutsets obtained using the procedure min_cutsets.  The CPU times, latencies and the number of cutsets reported represent the mean value obtained out of the twenty trials. 

    Note that the number of constraints depends on the number of requests, the set of their starting times and, most importantly, on the number of cutsets (see also Section 3.) When the number of cutsets increases, the CPU time of the Lp_solve increases exponentially. Any Linear program could be used instead of the Lp_solve. We used the Lp_solve because it is widely available. More efficient Linear Programs would result in a smaller CPU time. 

	bench-marks
	num of nodes
	num of reqs
	Lp_Solve

	
	
	
	cpu
	laten-cy
	num of cut-sets

	
	
	
	
	
	

	C432
	196
	20
	0.04
	10
	0

	C432
	196
	30
	0.04
	11
	0

	C432
	196
	40
	0.04
	11
	0

	C432
	196
	50
	0.05
	11
	0

	C432
	196
	60
	0.32
	12
	5

	C432
	196
	70
	1.53
	14
	8

	C432
	196
	80
	2.51
	15
	10

	C432
	196
	90
	82.4
	26
	61

	C432
	196
	100
	184
	27
	82

	C499
	243
	20
	0.02
	10
	0

	C499
	243
	30
	0.03
	11
	0

	C499
	243
	40
	0.04
	11
	0

	C499
	243
	50
	0.06
	11
	0

	C499
	243
	60
	76.1
	32
	50

	C499
	243
	70
	96.2
	39
	121

	C499
	243
	80
	122
	38
	160

	C880
	443
	20
	0.04
	10
	3

	C880
	443
	30
	0.04
	11
	3

	C880
	443
	40
	0.04
	13
	4

	C880
	443
	50
	0.14
	13
	11

	C880
	443
	60
	10.1
	17
	33

	C880
	443
	70
	108
	18
	235

	C1908
	913
	20
	0.05
	11
	0

	C1908
	913
	30
	0.09
	11
	0

	C1908
	913
	40
	0.13
	18
	0

	C1908
	913
	50
	0.05
	11
	0

	C1908
	913
	60
	0.11
	11
	2

	C1908
	913
	70
	0.21
	11
	11

	C1908
	913
	80
	0.41
	18
	11

	C1908
	913
	100
	0.61
	18
	15

	C1908
	913
	110
	1.25
	11
	20

	C2670
	1426
	20
	0.08
	11
	20

	C2670
	1426
	30
	0.15
	11
	14

	C2670
	1426
	40
	1.23
	17
	51

	C2670
	1426
	50
	14.9
	26
	115

	C2670
	1426
	60
	35.1
	17
	158


Table 1: Summary of the experimental results on modifications of ISCAS 85
5  Concluding Remarks
In wireless networks, managing the power resources of the nodes is very crucial due the limited amount of energy that each node has.  In this paper, we present an ILP algorithm to manage the requests for time off submitted by the nodes in order to save their energy.  The RSP problem is shown to be intractable and the nature of the studied scheduling constraints are complexly different than any existing scheduling problem formulation in the literature.  

References:
[1] S. Ganeriwal, R. Kumar, and M. B. Srivastava, Timing-Sync Protocol for Sensor Networks, Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys ‘03), ACM Press, 2003, pages: 138-149.

[2] J. Elson, and D. Estrin, Time Synchronization for Wireless Sensor Networks, in the International Parallel and Distributed Processing Symposium (IPDPS 2001), Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, San Francisco, April 2001. 

[3] Suresh Singh, C.S. Raghavendra, PAMAS - Power Aware Multi-Access Protocol with Signaling for Ad Hoc Networks, ACM SIGCOMM computer communication review, Volume: 28, Issue: 3, pages: 5-26, July 1998. 

[4] Suresh Singh, Mike Woo, C.S. Raghavendra, Power-Aware routing in Mobile Ad Hoc Networks, in the proceedings of the fourth ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom'98), pages: 181-190, 1998.
[5] J.-H. Cheng and L. Tassiulas, Routing for Maximum System Lifetime in Wireless Ad-Hoc Networks, Proceedings of 37-th Annual 14 Allerton Conference on Communication, Control and Computing, 1999.

[6] Woonseok Kim, Jihong Kim, Sang Lyul Min, A Dynamic Voltage Scaling Algorithm for Dynamic-Priority Hard Real-Time Systems Using Slack TimeAnalysis, Design Automation and Test in Europe, pages: 788-794, Paris France 2002.

[7] Jiong Luo, Niraj K. Jha, Battery-aware Static Scheduling for Distributed Real-time Embedded Systems, DAC 2001, pages: 444-449,June 18-22, Las Vegas, Nevada. 

[8] Daler Rakhmatov, Sarma Vrudhula, Energy Management for Battery-Powered Embedded Systems, ACM Transactions on Embedded Computing Systems, Volume: 2, Issue: 3  2003, pages: 277-324.

[9] Michael R.  Garey, David S.  Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, Bell Telephone Laboratories, 1979.  

[10] S. Ogrenci, M. Bozorgzadeh, R. Kastner and M. Sarrafzadeh, A Super-Scheduler for Embedded Reconfigurable Systems, ACM/IEEE International Conference on Computer-Aided Design (ICCAD), pages: 391-394, November 2001.

[11] Giovanni De Micheli, Synthesis and Optimisation of Digital Circuits, McGraw-Hill, Inc.1994.

[12] Li Yan, Hamdi A.  Taha, Thomas L.  Landers, A Recursive Approach for Enumerating Minimal Cutsets in a Network, IEEE transactions on reliability, Volume: 43, Issue: 3, pages: 383-388, Sept. 1994.  

[13] S.  Hasanuddin Ahmad, Simple Enumeration of Minimal Cutsets of Acyclic Directed Graph, IEEE transactions on reliability, Volume: 37, Issue: 5, pages: 484-487, Dec. 1988.

[14] M.  Berkelaar, lp-solve version 3.2, www.cs.sunysb.edu/~algorithm/implement/lp_solve/.  
� A connected network is a network where there exists at least one route between every pair of nodes


� The total length of the time off of the requests scheduled


� A cutset of the network is a set of nodes that if removed from the network, will partition the network into non-connected entities


� We only consider minimal cutsets of the nodes that have submitted requests for time off





_1180726624.unknown

_1180726791.unknown

_1180727203.unknown

_1180726790.unknown

_1180726617.unknown

